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Over the past two decades, the field of osteoimmunology has emerged in response

to a range of evidence demonstrating the reciprocal relationship between the immune

system and bone. In particular, localized bone loss, in the form of joint erosions and

periarticular osteopenia, as well as systemic osteoporosis, caused by inflammatory

rheumatic diseases including rheumatoid arthritis, the prototype of inflammatory arthritis

has highlighted the importance of this interplay. Osteoclast-mediated resorption at

the interface between synovium and bone is responsible for the joint erosion seen in

patients suffering from inflammatory arthritis. Clinical studies have helped to validate

the impact of several pathways on osteoclast formation and activity. Essentially, the

expression of pro-inflammatory cytokines as well as Receptor Activator of Nuclear factor

κB Ligand (RANKL) is, both directly and indirectly, increased by T cells, stimulating

osteoclastogenesis and resorption through a crucial regulator of immunity, the Nuclear

factor of activated T-cells, cytoplasmic 1 (NFATc1). Furthermore, in rheumatoid arthritis,

autoantibodies, which are accurate predictors both of the disease and associated

structural damage, have been shown to stimulate the differentiation of osteoclasts,

resulting in localized bone resorption. It is now also evident that osteoblast-mediated

bone formation is impaired by inflammation both in joints and the skeleton in rheumatoid

arthritis. This review summarizes the substantial progress that has been made in

understanding the pathophysiology of bone loss in inflammatory rheumatic disease and

highlights therapeutic targets potentially important for the cure or at least an alleviation

of this destructive process.

Keywords: inflammatory rheumatic diseases, rheumatoid arthritis, spondyloarthritis, bone erosion, inflammatory

bone loss, osteoclast

INTRODUCTION

The close relationship between the immune and bone systems has long been noted since
pioneering work on soluble immune cell-derived osteoclast-activating factors performed in the
early 1970s (1, 2) and was termed osteoimmunology (3). The most significant osteoimmunological
example arose from the observation of osteoclast-mediated bone loss in inflammatory rheumatic
diseases. Inflammatory rheumatic diseases encompass more than 100 heterogeneous multisystem
disorders which can affect joints and lead to disability. However, rheumatoid arthritis (RA) and
the spondyloarthritis group (SpA) are the most common inflammatory rheumatic diseases that
preferentially affect joints and cause tenderness, swelling, and destruction of joints. Consequently,
in this review, we will confine the term “inflammatory rheumatic diseases” to these particular
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diseases. SpA, also termed “seronegative” as they do not
produce rheumatoid factor nor the anti-citrullinated peptide
antibodies (ACPA) observed in RA, represent a group
of diseases with common genetic and clinical features,
including ankylosing spondylitis (AS), reactive arthritis,
psoriatic arthritis (PsA), and SpA associated with inflammatory
bowel disease.

RA is considered to be the prototype of destructive
inflammatory arthritis with bone loss at sites of articular and
peri-articular inflammation. SpA also causes inflammation of the
axial skeleton and extra-articular entheses leading to not only
bone degradation but also to ectopic bone formation—which
in some cases can even lead to bony ankylosis of the joint.
Genetic and experimental evidence has associated the activation
of IL23-IL17 axis with inflammation and entheseal new bone.
The ectopic bone formation aspect of SpA will not be discussed
further, as herein review focus is restricted to bone loss, formation
is reviewed elsewhere (4). This dissimilarity in the anatomical
sites of bone affected and in bone formation patterns highlights
the differences in pathophysiological mechanisms involved in
these conditions.

Herein, we briefly highlight the key concepts and recent
advances in the osteoimmunology field within the context of
bone loss in inflammatory rheumatic diseases.

DIFFERENTIAL BONE LOSS IN
INFLAMMATORY RHEUMATIC DISEASES

Three forms of bone loss have been identified in patients
with inflammatory rheumatic diseases: localized bone loss
with erosion, periarticular osteopenia, and generalized bone
loss (Table 1).

Although cortical bone erosion revealed by radiography is
commonly considered to be a hallmark of RA, it can also be
observed in SpA as well as other rheumatic diseases such as
gout or osteoarthritis—with a distinct radiographic appearance
and location. Erosion begins early in inflammatory rheumatic
diseases, even prior to the clinical onset of arthritis: erosion
has been described in ACPA-positive healthy subjects (5). For
long considered as being less destructive than RA, PsA is
muchmore aggressive than previously thought. Essentially, about
20% of PsA patients develop a mutilating form of arthritis
and 40–60% of PsA patients develop erosions in the first 2
years of the disease (6). Usually considered to be irreversible,
bone erosion is a key outcome in inflammatory rheumatic
diseases and correlates with disease severity and functional
deterioration. The radiographic assessment of bone erosion
is the ≪ gold standard ≫ for diagnosis, in daily clinical
practice as well as in randomized controlled clinical trials of
disease-modifying antirheumatic drugs, but is challenging. The
development of more sensitive and reproducible analysis using
ultrasound, magnetic resonance imaging or high-resolution
peripheral quantitative computer tomography would be a
promising development for erosion detection and monitoring
in daily clinical practice. Periarticular trabecular bone is also
altered in RA likely with similar mechanisms involved in

TABLE 1 | Common features and differences in bone loss between SpA and RA.

SpA RA

(AS, PsA, reactive

arthritis)

Erosions • DIP, PIP joints

• Evenly distributed

• Small, � or

tubule-shaped

• Poorly demarcated

• Periarticular site

• Association with

enthesitis and

bone formation

• MTP, MCP, PIP, and wrist

joints

• Radial sites

• U-shaped

• Neatly demarcated

• Joint margins

• No association with

enthesitis and

bone formation

Periarticular

osteopenia

• absent • May precede bone

erosion

Generalized

bone loss

• Axial skeleton

• Vertebral fractures

• Association with ectopic

new bone formation

• Axial and appendicular

skeleton

• Vertebral and non-

vertebral fractures

• No association with

ectopic new

bone formation

Bone

remodeling

• ↑ Bone resorption • ↑ Bone resorption

• ↓ bone formation

DIP, distal interphalangeal; MTP, metatarsophalangeal; MCP, metacarpophalangeal; PIP,

proximal interphalangeal. RA erosions, Neatly demarcated and located at joint margins

where the inflamed synovium is in direct contact with bone, erosions in RA are U-

shaped and observed predominantly in metacarpophalangeal / metatarsophalangeal and

proximal interphalangeal joints with a strong preponderance for radial sites; PsA erosion,

Poorly demarcated, smaller in size and depth, Ω or tubule-shaped, and are more evenly

distributed. They are located in the periarticular site in proximal and distal interphalangeal

joints and are closely associated with bone formation.

generalized bone loss. Radiographic periarticular osteopenia is
one of the earliest radiological manifestations and may precede
bone erosion or joint space narrowing in RA (7). In contrast,
it appears that there is no periarticular bone loss in early
PsA (8).

Secondary systemic osteopenia or osteoporosis involving
the axial and appendicular skeleton remote from synovial
inflammation is an important co-morbidity in inflammatory
rheumatic diseases. In effect, the prevalence of densitometric
osteoporosis in RA patients is increased about two fold compared
with the general population and is responsible for a risk
of both vertebral and non-vertebral fractures (9). Although
patients with SpA have radiographic evidence of ectopic new
bone formation, many present evidences of marked osteopenia,
and osteoporosis in the spine that is associated with a high
prevalence of vertebral fractures—even in early axial SpA (10,
11). Inflammation is the major mechanism involved in bone loss
in inflammatory rheumatic diseases. Proinflammatory cytokines
increase osteoclast activation and subsequent bone resorption in
both rheumatic disease types (12) but inhibit bone formation
only in RA (13, 14). As a consequence, treatment with TNF-
blockers both in RA and SpA has been shown to improve
skeletal remodeling (15, 16). Apart from inflammation, others
factors play a role such as the adverse skeletal effects of
corticosteroids used to treat these diseases and immobility, due to
painful joints, muscle weakness, and spine ankylosis—although
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bone loss is observed well-before the development of spinal
immobility (17–19).

OSTEOCLAST DIFFERENTIATION AND
FUNCTION IN INFLAMMATORY
RHEUMATIC DISEASES

Osteoclasts are responsible for bone erosion and have been
identified at sites of focal erosion at the pannus-bone interface
both in RA patients (20, 21) and animal models of arthritis
(22–26). This role was definitively demonstrated by osteoclast-
deficient mouse models of arthritis which were shown to
be fully protected from bone erosion (25, 26). Osteoclasts
are multinucleated bone resorbing cells which originate
from the fusion of mononucleated cells belonging to the
myeloid lineage in the presence of macrophage colony-
stimulating factor (M-CSF) and Receptor Activator of
Nuclear factor-κB Ligand (RANKL). Osteoclast formation
is governed by a regulatory triad, the receptor activator of
NF-κB (RANK), its ligand RANKL and a decoy receptor
osteoprotegerin (OPG) also known as osteoclastogenesis
inhibitory factor. OPG binds to RANKL hampering RANK-
RANKL interaction, though RANKL/OPG ratio determines
osteoclast number, lifespan and activity. Activation of RANK
on mononuclear osteoclast precursors initiates a transcriptional
cascade culminating in osteoclast differentiation. Interestingly,
transcription factors important for osteoclast differentiation
are key regulators of immune responses—such as NF-κB and
nuclear factor of activated T cells cytoplasmic 1 (NFATc1).
RANKL signaling in osteoclasts is strengthened by the
synergistic activation of Immunoreceptor tyrosine-based
activation motif (ITAM)-containing proteins, DNAX-
activating protein of 12 kDa (DAP12) and Fc gamma receptor
(FcRγ) (27, 28).

RANKL expression is high in synovial tissue from RA, PsA,
and SpA peripheral joint disease patients (29–32). Treatment
with non-biologic disease-modifying anti-rheumatic drugs
(DMARDs) or glucocorticoids decreases the RANKL/OPG ratio
in RA synovium and is satisfyingly associated with improved
radiographic scores (17, 33). In addition, pharmacological
inhibition of osteoclasts either by bisphosphonate zolendronic
acid, or denosumab, a RANKL-specific monoclonal blocking
antibody, also demonstrated some efficacy in impairing
the progression of bone erosion in both arthritic mice and
RA patients (34–38). However, these anti-resorptive drugs
targeting osteoclasts are inadequate because they also alter
physiological bone remodeling, necessitating the discovery of
new targets.

ROLE OF T CELLS
IN OSTEOCLASTOGENESIS

T cells have emerged as primary players through both direct
and indirect mechanisms in the pathogenesis of bone loss
in arthritis (39). Although osteoblasts, osteocytes and T cells
express RANKL, the major RANKL-expressing cell subset in

arthritic joints has been shown to be synovial fibroblasts [(39),
(Figure 1)]. However, these cells express RANKL under the effect
of interleukin-17 (IL-17) produced by T helper (Th) 17 cells (40).
Congruent with this result, IL-17A promotes osteoclast precursor
increase, bone resorption biomarker induction, and bone erosion
(41, 42); its inhibition leads to improvement of inflammatory
arthritis animal models (24, 43). Nevertheless, while IL-17A
inhibition has demonstrated robust efficacy in SpA including PsA
(44–46), it has shown only limited effect in the treatment of active
RA (47–51).

IL-17-producing Th17 cells are the exclusive pro-
osteoclastogenic Tcell subset while Th1 and Th2 subsets
inhibit osteoclastogenesis through their respective canonical
cytokines IFN-γ and IL-4 (52). Similarly, regulatory T
cells inhibit osteoclastogenesis through anti-inflammatory
cytokines such as IL-10 and through cytotoxic T lymphocyte
antigen 4 (CTLA4) signaling, a negative regulator of T cell
activation (47, 49, 50). The anti-erosive effect of abatacept,
a CTLA4-Ig fusion protein efficacious in patients with
RA and active PsA, underlines this effect. Deficiencies
in regulatory T cell function and Th17/regulatory T cell
imbalance have been identified in RA and psoriasis (53, 54).
However, data on the presence and distribution of regulatory
T cells in inflamed synovial tissue and on the effects of
abatacept on regulatory T cell function are both limited and
conflicting (8, 55–57).

ACPA-MEDIATED BONE EROSION

ACPA targets are citrullinated proteins—mainly fibrinogen,
α-enolase, and vimentin. Citrullination, a posttranslational
conversion of arginine residues to citrulline performed by
peptidylarginine deiminases, is a physiological process which can
be pathologically triggered by smoking, a well-known risk factor
for RA (58).

ACPA currently constitute the most specific serological
marker for the diagnosis of RA and have been thereby included
in the American College of Rheumatology (ACR)/European
League Against Rheumatism (EULAR) 2010 RA classification
criteria (59). ACPA are also a strong predictive factor for
the development of bone erosion (60, 61) and can emerge
long before the onset of synovitis during an initial pre-
clinical phase of autoimmunity, which is either asymptomatic
or only associated with arthralgia (62–65). Remarkably, the
hypothesis that bone damage in RA precedes the clinical onset
of disease is supported by the discovery of systemic bone
loss and cortical bone erosion in a cohort of healthy ACPA-
positive individuals (5), suggesting that ACPA directly trigger
bone loss.

ACPA mainly belong to the IgG subtype and thus are
recognized by FcγR on immune cells. It was therefore originally
proposed that ACPA indirectly mediate bone loss through the
enhanced production of TNF by monocytes / macrophages
(66), but in recent years two groups have shown that ACPA
also bind directly to citrullinated proteins on the surface of
osteoclast precursors and directly enhance osteoclastogenesis
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FIGURE 1 | Signaling network between synovial membrane and bone in inflammatory rheumatic disease. Left panel RA and right panel SpA cytokine signaling at

inflamed joint. Plain arrows indicate an action of the cytokine, factor or auto-antibodies on the cells. Dotted arrows indicate cytokine, factor or auto-antibody

production by the cells. ACPA, anti-citrullinated peptide antibodies; BMPC, bone marrow progenitor cells; DKK-1, Dickkopf-1; FLS, Fibroblast-like synoviocytes. B, B

cells; Th17, Th17-cells; cDC, circulating dendritic cells. M, Macrophages.

(67, 68) (Figure 1). Remarkably, ACPA glycosylation patterns
shift the change toward a more pro-inflammatory phenotype
only within the 3 months prior to the onset of RA (69,
70). Furthermore, in newly differentiating antibody-producing
cells, β-galactoside α2,6-sialyltransferase expression is regulated
by Th17 cells in an IL-22- and IL-21- dependent manner,
determining the glycosylation profile of IgG produced by
plasma cells (70). Consequently, while IL-17 inhibition has
a limited effect in the treatment of active RA, it may have
a role when instituted at the early stages. Moreover, insofar
as ACPA can promote bone resorption and some biologic
DMARDs such as abatacept and rituximab (a monoclonal
antibody against B cell CD20) can decrease ACPA levels in
RA patients, the goal of achieving immunological remission
with these treatments is enticing (71). However, the real
value of reducing ACPA in RA patients still needs to

be determined.

Taken together, these studies support a pathogenic role for

ACPA in mediating bone loss in RA. In contrast, PsA is not
frequently associated with circulating autoantibodies, including

ACPA (72). This is probably the reason why rituximab, is
effective in RA and not in PsA. However, when ACPA are
present in PsA, titers are usually low but the disease phenotype
is more severe with polyarticular involvement and erosive
disease (73).

PROINFLAMMATORY
CYTOKINE-MEDIATED BONE
RESORPTION

Bone loss correlates well with disease activity and severity,
supporting the current therapeutic strategy in inflammatory
rheumatic diseases of targeting the best control of synovitis
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and the biological inflammatory syndrome. Indeed, conventional
DMARDs, such as methotrexate, enable protection from bone
erosion simply by their ability to reduce synovitis (74). However,
some RA patients in sustained clinical remission or low disease
activity still continue to accrue bone erosions (38, 75), likely
because of subclinical synovial inflammation (76). This evolution
is probably similar in SpA, but it has not yet been clearly
demonstrated in the absence of well-defined remission criteria.

TNF overexpression is sufficient to induce arthritis in mice
(77). TNF operates by several mechanisms: it promotes bone
resorption indirectly in conjunction with IL-6 by up-regulating
RANKL expression in synovial fibroblasts (78, 79) and directly
by aiding the differentiation of osteoclasts from mononuclear
precursors in synovial tissues in synergy with RANKL (80)
(Figure 1). Recent evidence suggests that combinations of
cytokines, such as TNF plus IL-6, may drive RANK/RANKL-
independent osteoclast formation (81) but this process still needs
confirmation using other models. TNF also expands the pool of
osteoclast precursor cells (82). Additionally, IL-1 is a mediator of
TNF-induced osteoclastogenesis (83) while IL-6 is an important
factor for Th17 differentiation. Accordingly, clinical trials—only
in RA—with TNF blockers (16) and the Il-6 receptor blockade
(84), have confirmed the impact of pro-inflammatory cytokines
on osteoclastogenesis as they can retard or arrest the occurrence
of bone erosion. As for the IL-1 blockade, despite having a
limited effect on swelling, it protects from bone erosion in
RA (85).

OSTEOFORMATION AND
EROSION REPAIR

In RA only, the inflammatorymilieu also impairs bone formation
and erosion repair. TNF is the instrumental cytokine that
unbalances bone homeostasis, blocking osteoblast differentiation
and maturation through Wingless (Wnt) ligand signaling (86).
Bone formation is governed by Wnt pathways which are
critical for the osteoblast transcriptional differentiation program
through the canonical β catenin-dependent activation. The Wnt
ligands interact with the membrane-bound co-receptor frizzled
and the low–density lipoprotein receptor-related proteins LRP-
5 or LRP-6. This activated receptor complex stabilizes β catenin
transcription factor, allowing its translocation to the nucleus to
directly coactivate Runx2 and OPG (87, 88). In inflammatory
rheumatic diseases, bone erosion repair is scarcely observed, even
under biologic therapies such as TNF or IL-6 receptor blockers,
and manifests only as apposition of new bone (sclerosis) at the
base of the erosion (89, 90). Paradoxically, analysis of histological
sections of arthritic samples, either from humans or frommurine
models, has shown the presence of osteoblast lineage cells close
to the eroded bone once inflammation resolves (21, 91). In
addition, intermittent parathyroid hormone (PTH) treatment -
an anabolic agent for bone- used for treatment of osteoporosis,
fails to reduce erosion volume in patients with established RA
with disease activity controlled by TNF blockers (92). By contrast
to humans, treatment of hTNFtg mice with a combined therapy
consisting of anti-TNF together with intermittent PTH led to

regression of local bone erosion and bone repair, demonstrating
new bone formation (93). An alternative to anabolic treatment
aiming at increasing bone formation and repair, is to block bone
formation antagonists. Indeed, Wnt pro-osteogenic function is
controlled and tempered by several physiological antagonists:
Dickkopf proteins (DKK-1 and 2), soluble frizzled-related
proteins (sFRPs) (94, 95) and sclerostin that—in the presence
of Wnt ligands—antagonizes LRP-6 internalization (96, 97).
In RA, TNF lessens osteoformation by up-regulating DKK-1
expression, for instance DKK-1 level is found to be elevated
in RA patients’ sera and in hTNFtg mice, CIA, and GPI-
induced arthritis mice, (98, 99). In hTNFtg mice only, DKK-
1 inhibition is able to prevent bone erosion and to promote
bone formation, generating osteophytes around inflamed joints
(99). Soluble frizzled-related proteins sFRP1 and sFRP2 are
Wnt antagonist that sequestrate Wnt ligands, preventing them
to activate frizzle/Lpr5 receptors, were also found elevated in
synovial fluids of KBxN serum transfert inflammation induced
mice model (91). Among the Wnt ligand antagonists, sclerostin
is an attractive therapeutic target for bone loss pathologies.
Sclerostin-neutralizing antibodies have been shown to have
strong bone-building effects in mice, rats, monkeys, and humans
(97–101). This treatment prevents the decrease of bone mineral
density and bone volume at axial and appendicular sites in
Collagen-Induced Arthritis mice but does not protect from
erosion on the periarticular bone and fails to repair focal
erosions (102). On the other hand, in hTNFtg mice, TNF
induced sclerostin expression in inflammatory synoviocytes,
unexpectedly, the absence of sclerostin in hTNFtg/ Sost−/− mice,
instead of reversing the inflammatory bone destruction, elicited
exacerbation of the disease. These observations suggest that
sclerostin may be involved in regulating other pathways besides
Wnt signaling or has an anti-osteoclastogenic effect in TNF-
dependent chronic arthritis (103). In line with this paradigm of
uncovered sclerostin functions, recent findings surprisingly show
that overexpressing sclerostin in murine skeletal stem cells forms
overgrown bones when engrafted. This observation indicates that
sclerostin could have an osteoforming effect on skeletal stem cells
(104). Moreover, a recent study using non-inflammatory bone
loss mouse models, unveiled a compensatory mechanism leading
to increased expression of sclerostin when DKK-1 is inhibited. It
would therefore perhaps be prudent before embarking upon anti-
sclerostin treatments for RA, to conduct further studies in animal
models of RA using Sost tissue-specific ablation to help obtain a
better understanding of the precise role of sclerostin in chronic
inflammatory diseases.

In contrast to RA, bone formation is observed in SpA
at entheseal sites, resulting in endochondral bone formations.
IL32γ, among others pro-inflammatory cytokines, is found
elevated in SpA synovial fluid, it is proposed that IL32γ enhances
osteoblast differentiation via DKK-1 suppression, thereafter
promoting abnormal bone formation (105). Indeed, lower levels
of DKK-1 in AS and PsA patients and sclerostin in AS
patients have been reported, potentially explaining the non-
impediment of osteoblast activity (99, 106, 107). In conflict
with the above report, a recent meta-analysis showed no
significant difference in sclerostin serum levels in AS and RA
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patients vs. healthy controls which suggests that sclerostin
may not be associated with the pathogenesis of AS and
RA (108). Last, a recent and challenging study revealed that
vesicular RANK produced by mature osteoclasts stimulate
early osteoblast differentiation through osteoblastic RANKL
reverse signaling (109). Consequently, the development of
a biological compound to trigger RANKL reverse signaling
in osteoblast would be a new promising lead to promote
bone formation.

CONCLUSIONS

In inflammatory rheumatic diseases, systemic and local bone
loss constitute a common key outcome in terms of functional
capacity and reflects the tight interaction between the immune
system and bone, leading to an increase in osteoclast activity
and a consequent uncoupling of bone resorption from formation.
Once established, bone erosions are at present, still irreversible. It

is to be hoped that a better future understanding of the molecular
pathways involved in bone loss and bone formation—particularly
in the context of inflammation—will enable the development of
new therapies that can selectively and directly halt, or even repair,
bone erosion.
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