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Negative observational 
learning might play a limited 
role in the cultural evolution 
of technology
Yo Nakawake  1,2* & Yutaka Kobayashi  1

Theoretical and empirical studies of the cultural evolution in technology have often focused on 
positive observational learning, i.e., copying a successful individual. However, negative observational 
learning, i.e., avoiding negative or bad exemplar behavior, is ubiquitous in humans and other animals. 
In this paper, we experimentally investigate whether observing negative examples can assist in tool 
making in the virtual arrowhead task, which has been widely applied to test the theory of cultural 
evolution in the technological domain. We set three conditions that differ in the kinds of social 
learning available to participants: (1) positive observational learning, (2) negative observational 
learning, and (3) pure asocial learning. The results of the positive observational and pure asocial 
learning conditions replicated previous studies; i.e., participants in the positive observational learning 
condition outperformed those in the asocial learning condition. In contrast, opportunities to observe 
negative examples did not increase the performance compared to pure asocial learning. Computer 
simulations in the same setting showed that the presence of negative exemplars is in theory beneficial 
to participants, providing additional pieces of information on the relationship between arrowhead 
designs and their performance scores. These findings together suggest that negative observational 
learning might play only a limited role in the cultural evolution of technologies possibly due to a 
cognitive bias in humans toward copying.

According to the prevailing view, high-fidelity transmission of information across generations is essential to 
cumulative cultural evolution, allowing new generations to build upon the advances established by preceding 
generations1,2. Understandably, recent studies in developmental and comparative cognition have sought cog-
nitive capacities that enable faithful informational transmission uniquely developed in humans3–6. Plausible 
candidates are overimitation7–9, mentalizing10, production and understanding of ostensive signals11, or shared 
intentionality12. The Vygotskian intelligence13 or cultural brain hypothesis14 claims that those social capacities 
enabling high-fidelity transmission, rather than individual cognitive intelligence (e.g., rationality or causal rea-
soning), are the key to understanding human cultural complexity. Thus, synonymous usage of social learning 
and copying (i.e., transmission of behavior through social learning) is deeply entrenched in the field of cultural 
evolution15, where research attention has mostly been paid to the context16 and contents17–19 of copying, although 
the term ‘social learning’ itself has a much broader meaning15.

Some researchers, however, suggested that faithful transmission20–22 or even copying itself23 might not be 
a prerequisite for cumulative cultural evolution. For example, a transmission chain experiment of visual pat-
terns showed that cumulative cultural evolution can occur without copying (i.e., more structured visual pat-
terns emerged through transmissions); in this experiment, however, each participant was rewarded when their 
behavior was dissimilar to that of the previous participant in the same transmission chain23. Conversely, in the 
cultural evolution of technologies, which is the focus of the present study, the performance of an artifact should 
be determined by its degree of adaptation to the environment rather than by similarity or dissimilarity to the 
artifacts of exemplars. Therefore, there is room to discuss whether cumulative cultural evolution without copy-
ing is also possible for technological traits. In theory, the presence of unsuccessful neighbors should be a useful 
source of social learning, allowing observers to avoid learning the same mistakes on their own through trial and 
error. Interestingly, however, the abovementioned transmission chain experiment suggested that human children 
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may have a stronger bias toward copying than do baboons23. Such a bias, if manifested in the transmission of 
artifact designs, might impede humans from utilizing social information obtained through the observation of 
low-performance exemplars in a rational and efficient manner.

Social learning from positive or successful outcomes is well documented in theoretical and empirical stud-
ies under the names of copy-successful-individuals17,24, prestige-biased25–27 or payoff-biased28 learning. However, 
learning based on a negative or unsuccessful outcome is scarcely studied in the context of cumulative cultural 
evolution, especially in terms of cultural evolution in the technological domain (except one theoretical study29).

Note that several types of learning mechanisms related to negative experiences of conspecific individuals are 
widely observed in various species and contexts, although these mechanisms are very different from each other 
and should not be lumped together under the heading of ‘negative observational learning’. Here we briefly present 
three of these types. (1) One type, found widely in animals, is fear learning through witnessing unfortunate events 
that other individuals happen to experience: vicariously learning not to do a certain behavior or not to approach 
a certain target through negative conditioning30. Examples range from avoidance of toxic food in Norway rats 
(Rattus norvegicus)31 to predator recognition in woodfrog tadpoles (Rana sylvatica) acquired through predation of 
conspecifics32. (2) The second type is learning to avoid danger through signals related to others’ negative experi-
ences. For example, animals can learn to avoid the odor of predators by observing conspecifics’ fear responses to 
the odor32. Likewise, oral transmission allows humans to transmit the avoidance of cues related to predators33,34. 
Note that in this type of learning learners do not directly observe negative experiences of others unlike in the 
first type. (3) The third type, which is the most relevant to the present study, is learning through witnessing failed 
attempts by others to achieve a certain specific goal. A previous study of the three-armed bandit task (finding 
treasure by choosing from three options) showed that human children (3–6 years old) could beneficially exploit 
negative social information (i.e., failure of others) when it is combined with positive social information35. Further, 
an experimental study showed that 3-year-old children were more likely to learn correct tool-use when negative 
and positive social information were given together than when only positive social information was given; the 
performance did not significantly increase compared with chance level when only negative social information 
was given36. Those studies suggested that from early childhood, humans can already exploit negative outcomes 
of others’ actions to get their own desirable outcomes.

While those empirical studies showed potential benefits of acquiring negative social information, its role 
in the cumulative cultural evolution of technology remains unclear. Nakahashi’s model29 showed that negative 
observational learning could in theory foster the speed of cumulative cultural evolution of technology. While 
usual models of cultural evolution assume that individuals learn socially from the most successful members 
of the group37,38, Nakahashi’s model deals explicitly with the process through which individuals select their 
role models29. In this model, the probability that an individual eventually reaches a good exemplar increases 
with the variance in performance among exemplars; that is, the presence of low-performance exemplars helps 
guide novices to successful exemplars29. Although the observation of low-performance individuals accelerates 
cumulative cultural evolution, the copy-successful-individuals mechanism still plays a pivotal role in his model.

In this paper, we investigate whether negative observational learning contributes to the technological per-
formance of individuals in a laboratory experiment. The framework we use is the virtual arrowhead task, which 
is a computer-based task originally developed by Alex Mesoudi17,39–42. In this task, each participant designs a 
virtual arrowhead on a computer display, where the performance of each design is determined by an exogenously 
defined fitness landscape and an additional noise factor. The participants can access only the fitness outcomes of 
their artifacts but not directly the shape of the underlying landscape itself. This framework was originally intro-
duced to explain the cultural variability of archaeological artifacts in the Great Basin (Nevada and California 
in the US) and was subsequently applied to the investigation of the social learning strategies of individuals17, 
their cultural differences42, or the role of inductive bias in cultural evolution43. Using this framework, a series of 
experiments showed that the participants were highly dependent on social information and tended to copy the 
most successful individual17,39,41,42. In our experiment, unlike in previous experiments, participants provided 
with social information could access either only positive information (i.e., designs better than theirs) or only 
negative information (i.e., designs worse than theirs), depending on condition. We also set an asocial condition 
in which participants could not access any social information as the baseline case. This setting enabled us to test 
whether the presence of negative information could increase performance compared to the asocial condition 
and, if so, whether it would be as effective as positive information.

Prior to the experiment, we hypothesized that participants in the (i) positive and (ii) negative social learning 
conditions would both outperform those in the asocial learning condition. We tested hypothesis (i) about posi-
tive social learning to confirm the consistency with the results of previous studies. We were more interested to 
test hypothesis (ii) about negative social learning. This hypothesis is rational because participants in the negative 
social learning condition experience additional useful information that is not available to those in the asocial 
learning condition. This rationale behind the second hypothesis was indeed confirmed through computer simula-
tions (see “Agent-based computer simulation” section): the simulations show that rational players should be able 
to exploit the opportunities of negative social learning to perform better than pure asocial learners. However, 
real humans might not be as rational as agents in the simulations, and hence the second hypothesis was still 
worth testing through the experiment.

Results
The mean score (average performance or fitness) of participants’ arrowheads in each condition is shown in Fig. 1, 
and the shifts in the values of length, width, and thickness are shown in Fig. 2. Inspection of Fig. 1 revealed that 
participants in the positive condition performed much better than those in the other two conditions in Seasons 2 
and 3. In those seasons, the mean score in the positive condition was consistently higher than that in the asocial 
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condition shortly after the first social learning opportunity and almost reached the maximum (1000 cal) in later 
trials. While participants in the negative condition performed better than those in the asocial condition in the 
first few trials, the latter soon caught up with, and eventually outstripped, the former.

Following the method of the previous study17, we performed t-tests to compare each of the two social learn-
ing conditions with the asocial condition in terms of the overall performance (i.e., the mean score over the 30 
trials). Given that two comparisons were made (i.e., positive vs. asocial; negative vs. asocial) for each of three 
seasons, the significance criteria were adjusted by the Bonferroni correction method (αBonferroni = 0.0083; divided 
by six, two comparisons for each of three seasons). Participants in the positive condition did not perform signifi-
cantly better than those in the asocial learning condition in Season 1 (Mpositive = 599.9, SD = 126.2, Masocial = 543.4, 
SD = 120.9, t77.6 = 2.05, p = 0.044, d = 0.46) but performed significantly better in Season 2 (Mpositive = 822.32, 
SD = 87.0, Masocial = 625.88, SD = 97.4, t77.02 = 9.51, p < 0.001, d = 2.13) and in Season 3 (Mpositive = 796.9, SD = 116.2, 
Masocial = 639.0, SD = 146.8, t74.10 = 5.33, p < 0.001, d = 1.19). Participants in the negative condition significantly 
outperformed those in the asocial condition in none of the three seasons: Season 1 (Mnegative = 613.3, SD = 162.9, 
Masocial = 543.4, SD = 120.9, t71.96 = 2.18, p = 0.033, d = 0.49), Season 2 (Mnegative = 638.2, SD = 111.3, Masocial = 625.88, 
SD = 97.4, t76.67 = 0.53, p = 0.601, d = 0.12) and Season 3 (Mnegative = 626.9, SD = 176.4, Masocial = 639.0, SD = 146.8, 
t75.51 =  − 0.33, p = 0.740, d =  −  0.08).

Thus, negative observational learning did not yield appreciable benefits to participants, even though the 
failure of others should in theory convey useful information. One might suspect that participants in the nega-
tive condition considered the social information useless and hence ignored it. However, this is unlikely for at 
least two reasons. First, the postquestionnaire showed that participants in the negative condition rated social 

Figure 1.   (a) Average fitness (performance) of participants’ arrowheads (excluding perception error) against 
trials. Error bars show standard errors. (b) Corresponding results of the computer simulation with the CSI and 
Reverse social learning algorithms. The rows correspond to seasons both in (a,b).
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information on average as slightly more useful (M = 4.7, SD = 1.75) than 4, the neutral middle point (t39 = 2.45, 
p = 0.019, d = 0.39); however, the rating was not as high as in the positive condition, where 80% of participants 
(32/40) gave the maximum rating of 7 (M = 6.5, SD = 1.22). Second, the looking time and frequency of social 
information suggest that negative social information was exploited as much as positive social information was. 
Figure 3a plots the mean looking time of social information (summed over the four hunters and averaged over 
participants) against trials. As the figure shows, participants spent as long a time browsing negative information 
as browsing positive information. Similarly, the frequency of mouse clicks for browsing social information was 

Figure 2.   Shifts in the values of length (a), width (b), and thickness (c) across 30 trials. The dotted lines show 
the optimal value (global optimum) for each attribute. Error bars show standard errors.

Figure 3.   (a) Average total looking time (seconds) of social information. Error bars represent standard errors. 
(b) Standard deviation in fitness against trials.
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comparable between the two social learning conditions (see Supplementary Material). In summary, participants 
in the negative condition might not consider social information very useful but referred to it as frequently as in 
the positive condition; that is, participants did not simply ignore the negative social information.

Another possibility is that there might be two types of participants: one using negative social information 
efficiently, and the other performing even worse than asocial learners due to maladaptive imitation of unsuccess-
ful exemplars; these two effects might have canceled each other out. However, this is again unlikely. The standard 
deviation of the scores in the negative condition was not particularly large compared to that in the asocial condi-
tion (see Fig. 3b). The F-test for equality of variance showed that the variance in the final trial’s performance was 
not significantly different between the negative and asocial conditions in all three seasons: Season 1 (F39,39 = 0.89, 
p = 0.728), Season 2 (F39,39 = 0.71, p = 0.292) and Season 3 (F39,39 = 0.86, p = 0.639). Furthermore, the distribution 
of the individual scores in the negative condition largely overlaps with that in the asocial condition (see Fig. S5).

Agent‑based computer simulation
We conducted agent-based simulations to predict how well artificial learning algorithms would perform in the 
setting of our experiment. The details of the simulations are given in the Supplementary Material (B. Details of 
the computer simulation). We followed the method of Mesoudi and O’Brien40, who also simulated their own 
experiment39 with artificial learning strategies40. The simulation code was coded in C++ by YN. Our simulations 
were identical to our experiment in the following respects: the shape of the fitness landscape in each of the three 
seasons, the initial values of the arrowhead attributes, the number of hunting events, the timings of the oppor-
tunities for social learning, and the distributions of error terms. Mesoudi and O’Brien ignored the two discrete 
attributes (color and shape) to simplify their simulations, and we adopted the same approach. Below, we explain 
the learning algorithms used in the simulations.

We adopt the ‘Win-Stay Strategy’ as an individual learning algorithm, following Mesoudi and O’Brien40. 
The algorithm works in a similar way to Skinnerian conditioning40. Each agent memorized its own score in the 
previous trial and the direction of modification (either + or −) for each of the three attributes. In each trial, each 
agent randomly chose one of the three attributes (height, width, and thickness) and modified the value of the 
chosen attribute by Li units in the direction memorized and then went hunting. As in the previous simulation 
study40, we set Li = 5, which is the median of the empirical modification sizes observed in Mesoudi and O’Brien’s 
experiment39 and in our experiment. If the score did not decrease compared to the previous trial, the agent kept 
the direction of modification unchanged for the focal attribute; otherwise, the agent changed it. Note that the 
sign of the direction of change is updated for one attribute in each trial. The agents kept following this algorithm 
through all three seasons unless they were given opportunities for social learning.

As in the experiment, we also considered social learning conditions, where social learning opportunities 
came once in every three trials in Seasons 2 and 3. Three hunters appeared, each of whom brought an arrowhead 
slightly modified from the focal agent’s arrowhead in the previous trial with respect to only one of the three 
continuous attributes. Each attribute was modified by exactly one hunter, so that agents could observe hunt-
ing results of three arrowheads modified in different dimensions. We considered several simple social learning 
algorithms that differ in the extent to which agents were influenced by the other hunters (for the details of the 
algorithms, see Supplementary Material B 3.2 Social learning algorithm). Below we only report the results for 
two of such algorithms, one for the positive condition and the other for the negative condition; other social 
learning algorithms, however, yielded qualitatively similar results, as discussed in the Supplementary Material.

In the algorithm for positive observational learning, which we call copy-successful-individuals (CSI), the agents 
copy all the modifications made by other hunters at once. Given that an agent of this type combines all three 
modifications, and each of the other hunters modifies only one attribute at a time, the resulting arrowhead must 
be superior to any of the arrowheads brought by the other hunters (unless the agent already found the optimal 
values). On the other hand, the algorithm for negative observational learning, which we call Reverse, is slightly 
more complicated. In this algorithm, agents change the values of the attributes in the opposite directions to 
the modifications made by other hunters. More specifically, they modify the value of attribute j by − Ls,j, given 
that the corresponding hunter modifies the attribute by Ls,j. Note that the learning rules analogous to our CSI 
were addressed in the literature 17,28,44. We do not know of any equivalents of Reverse addressed in the literature, 
although it is a natural variant of CSI in that it is equivalent to CSI in all respects but the signs of the modifica-
tions made to the attributes.

The simulation result of CSI closely resembled the experimental result of the positive condition (see Fig. 1), 
where CSI agents consistently outperformed asocial agents. However, the simulation result of Reverse was not 
necessarily obvious in light of the corresponding experimental result. In Season 2, Reverse agents outperformed 
asocial agents in the first 10 trials or so, but later, the difference in performance between the two types of agents 
vanished. A similar pattern was observed in the experiment, although negative observational learners eventually 
performed worse than asocial learners. The simulation result for Season 3 attested that negative observational 
learners could in theory outperform pure asocial learners. Furthermore, as shown in the Supplementary Material, 
we found that other algorithms of negative observational learning, which exploit much less social information, 
outperformed asocial learning (see Fig. S4). Despite these theoretical results, the experimental results did not 
show evidence that participants advantageously exploited social information about unsuccessful individuals.

Discussion
In our experiment, individuals given the opportunities for positive observational learning performed markedly 
better than those who were given only opportunities for asocial learning. Conversely, negative observational 
learning did not show any appreciable effect on performance when compared to pure asocial learning. An 
additional analysis showed that participants in the negative condition referred to social information as much as 
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those in the positive condition did, indicating that negative social information was not just ignored. Computer 
simulations showed that rather simple algorithms could exploit negative social information to increase overall 
performance. Thus, the experimental results contradicted theoretical predictions, suggesting that humans are 
not as rational or intelligent as the simulations presumed.

One possible factor that may have influenced the present result is informational/environmental uncertainty to 
decision makers often discussed in an adaptive decision framework45,46. In terms of our experiment, uncertainty 
comes from the lack of information on the shape of the fitness landscape and noise in performance scores dis-
played to participants. Under such uncertainty, copying the arrowhead of successful individuals almost ascertains 
an increase in the performance, regardless of how complex the fitness landscape would be, theoretically speaking, 
inasmuch as the random noise is relatively small47,48. In contrast, exploiting negative social information could help 
narrow the search space but does not ensure increased performance. Thus, exploiting negative information should 
be challenging for humans, bounded rational agents in both informational availability and cognitive capacities 
(memory and calculation45). Further, a previous empirical study suggested that, when useful social information 
is given, participants invested less cognitive effort in information processing to infer the rules behind the task49. 
Thus, it is possible that in our experiment negative social information interfered with asocial learning effort of 
participants; they might have enjoyed the benefits of negative social information, but this positive effect, if any, 
was not large enough to exceed the negative side effect (interference with asocial learning). Thus, given these 
cognitive limitations of humans, negative social learning might play only a limited role in the cultural evolution 
of technologies at least in complex situations where multiple dimensions of artifacts are involved and/or the 
performance of artifacts is not fully deterministic as in our experiment.

There are at least two reasons to expect that humans are generally more likely to learn from success than 
failure of others specifically in the technological domain. First, negative information may be inherently more 
difficult to process than positive information in many realistic situations. We suppose that such difficulty largely 
comes from inferring the structure of the fitness landscape underlying each technological problem, as discussed 
in the previous paragraph. Note that it is more difficult to infer the local structure of the landscape from negative 
information alone in a highly rugged landscape than in a smooth landscape. Negative social information would 
therefore be more useful in simple tasks than in complex tasks. Second, human psychology for social learning 
is probably innately biased toward copying. It is known that human children tend to copy not only relevant but 
also irrelevant actions of role models when they try to achieve a goal7. On the other hand, chimpanzees (Pan 
troglodytes) copy only relevant actions in the same situation. Arguments on the adaptive meanings of this ‘over-
imitation’ in humans have not settled down yet. One plausible explanation is ‘cultural Pascal’s wager’50,51; i.e., 
apparently irrelevant actions should be copied if the potential risk of overlooking important actions, which appear 
to be irrelevant but actually are not, is larger than the cost of copying and doing irrelevant actions. Note that the 
abovementioned two factors are not mutually exclusive and may even be intertwined. If positive information is 
generally useful compared to negative or other kinds of social information, natural selection would favor psy-
chological bias toward copying. However, it is probably premature to argue that faithful copying alone explains 
the uniqueness of human cumulative culture. For example, a previous study on causal understanding showed 
that 3-year-old children were already able to exploit negative social information to increase performance36. Note, 
however, that the children could exploit negative information only when it was provided together with positive 
information. This latter result seems to be consistent with our conclusion that negative information is less likely 
to be exploited than positive information. Further research would be necessary to evaluate the extent to which 
human learning is inclined toward copying.

As argued above, our experiment requires participants to infer the local shape of the fitness landscape at least 
in the asocial and negative social learning conditions. Information for the inference mostly comes from trials 
and errors by self or others. The task does not require causal understanding in a strict sense because there are no 
principles underlying the relationship between artifact designs and performance. Therefore, there is still room 
for negative social learning to function usefully if an experimental setup allows participants to derive underlying 
principles based on others’ experiences and extrapolate the result to yet unexplored combinations of attribute 
values. The role of causal understanding in human cultural evolution is under debate. One experimental study 
suggested that causal understanding may not be a prerequisite for cumulative improvements of technology52; 
however, another study using the same experimental framework showed that understanding of technological 
structure fostered the cumulative improvement53 of performance. Further research on cognitive processes15,54,55 
involved in cultural transmission would be necessary.

It has been argued that learning from negative examples is just as important as learning from positive exam-
ples in the field of social sciences, such as education56 or management science57, as well as in machine learning58. 
Although an experimental study in management science showed that participants could learn from others’ 
mistakes, it also insisted that learning from others’ failures had been neglected in the discipline57. In fact, an 
organization can learn a lot from its members’ failures, but a failure is not often systematically exploited (e.g., 
ending in a ‘witch-hunt’); one exception may be the military, which employs systematic practice for learning from 
others’ failures59. Together, these examples may indicate that copying or learning from positive social information 
is entrenched in human cognition and is easy to exercise, while its negative counterpart, learning from negative 
examples, requires systematic practices despite its rationality.

Methods
Ethics.  The research was conducted in accordance with the protocol approved by the ethics committee of 
Kochi University of Technology (ID: 202) and in accordance with the ethical guidelines of Kochi University of 
Technology.
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Participants.  A total of 120 students (undergraduate and graduate, aged 18 to 26 years; gender: 62 females, 
57 males, 1 no response) in Kochi Prefecture participated. One participant who did not complete the postques-
tionnaire was excluded from the postquestionnaire analysis but was included in the main analysis. All partici-
pants were recruited via the online recruitment system. Each of them received 700 JPY as the basic participation 
fee plus an additional reward up to 1000 JPY according to the score that the participant earned through virtual 
hunting. Informed consent was obtained from all participants.

Materials.  All the participants conducted the experimental task with computers surrounded by three-way 
partitions. The experimental program of the virtual arrowhead task was reconstructed with Visual Basic (Visual 
Studio 2019), referring to the C++ source code provided by the author of the original program39 and the corre-
sponding executable file downloaded from his website (http://​alexm​esoudi.​com/​resou​rces/, retrieved September 
2019). We kept the overall design of the experimental program identical to the original studies 39,41, except for 
two points: (1) in the original studies, the instructions were embedded in the program, while we presented the 
instructions separately; so that the participants could refer to the instructions throughout the experiment when-
ever they wanted; (2) more importantly, we modified the way social information was displayed. We explain this 
modification in detail in the “Design” section.

Procedure.  Upon arrival, participants filled out the consent and medical check forms (to exclude those who 
were potentially infected by COVID-19; none of participants were excluded in this process). After completing 
the forms, the participants received the instructions for the experiment. One of the experimenters read out the 
instructions with the aid of slides projected onto a screen in front of the participants. The instruction slides 
were also printed and distributed to the participants as handouts, which they could refer to throughout the 
experiment. Then, to ensure that participants understood the instructions correctly, every participant filled out 
a printed prequestionnaire, and then the answers were immediately checked by the experimenters (Table S2). 
When participants failed to answer some of the questions correctly, they received as much additional explana-
tion as necessary on an individual basis so that every participant was eventually able to answer all the questions 
correctly. Once all participants finished the prequestionnaire, they started the main experimental task on the 
computers. Upon completing the main task, each participant filled out a postquestionnaire and subsequently 
received their payment. The whole experiment lasted an average of 40 min per session, but no more than 60 min.

Experimental task.  In the main task, participants repeatedly designed a virtual arrowhead and earned 
scores in a learning-while-doing manner (Fig. 4). In each trial, participants set the values for five attributes of 
an arrowhead. For three of the five attributes (length, width, and thickness), the values might take integer values 
between 1 and 100, while the other two attributes (shape and color) were discrete traits with four categorical 
options each. Each time participants changed the values of the attributes, they could check the appearance of 
the resulting arrowhead by clicking the ‘Show the arrowhead’ button. Once participants were satisfied with the 
arrowhead design, they clicked the ‘Go hunting’ button to submit the design and obtained its score displayed 
in units of hypothetical ‘calories’. The score, which represented the performance of the arrowhead designed by 

Figure 4.   A sample screenshot of the experimental screen (negative social learning condition). English 
translations of labels are added.

http://alexmesoudi.com/resources/
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the participant, ranged from 1 to 1000 for every single hunting opportunity. We used the same formula as in the 
unimodal setting of original studies17,40,41 (Formulas (S1), (S2)) to compute the score for each arrowhead design. 
Specifically, this formula assumes a predefined fitness landscape (i.e., a mapping from the designs to the scores), 
in which the attributes contribute additively and independently to the expected resulting score. However, the 
actual score earned by each participant was perturbed by a small noise, which was normally distributed ( ∼ N (0, 
52)), so that the shape of the fitness landscape was not obvious from the observed scores alone. Participants were 
informed in the instructions about the presence of the noise, although not about the shapes of the noise function 
and the fitness landscape. The payment was calculated based on the performance with this noise. Participants 
were encouraged in the instructions to obtain as many calories as possible and were also monetarily incentivized 
by being informed that they would gain additional JPY equivalent to the average score earned per hunting event.

Each session of the experiment consisted of three seasons (Seasons 1–3), with 30 trials each. The fitness 
landscapes differed between seasons but stayed unchanged within each season, about which participants were 
also informed (understanding of this was confirmed in the prequestionnaire).

Postquestionnaire.  In the postquestionnaire, each participant subjectively rated the importance of each of 
the five attributes for the performance of the arrowhead on a 7-point scale (Table S3). In addition, in conditions 
where social information was provided, an additional question was asked about the subjective evaluation of the 
usefulness of the social information.

Design.  A between-subjects design was adopted, where each participant was randomly assigned to one of 
three conditions: positive, negative, and asocial conditions. In the positive and negative conditions, participants 
had opportunities for positive and negative observational learning, respectively, whereas in the asocial condi-
tion, they had no such opportunities. In Season 1, participants conducted the virtual arrowhead task without any 
social information, irrespective of the experimental conditions. This season helped participants get used to the 
task and allowed us to make fair comparisons of participants’ basic skills across different conditions. In Seasons 2 
and 3, participants in the positive and negative conditions had opportunities to observe the arrowheads designed 
by four hypothetical ‘other hunters’, which were artificially generated. The opportunities for observation were 
given once in every three trials when they designed the arrowhead. In the positive (negative) condition, the 
scores of the other hunters were always higher (lower) than that of the participant in the previous trial. In the 
asocial condition, participants continued to work on the same task without social information as in Season 1, 
except that the fitness landscapes differed between seasons.

The arrowheads of the other hunters displayed to each participant were generated based on the arrowhead 
designed by the focal participant in the previous trial (let us call this the ‘reference’ arrowhead). Specifically, each 
of the four other hunters slightly modified one of the three quantitative attributes, i.e., length, width, and thick-
ness. In the positive condition, the absolute size of the modification was normally distributed, with mean = 10 
and SD = 10, and the sign of the modification was always chosen to increase fitness compared to the reference 
arrowhead. Then, like participants, a normally distributed noise ( ∼ N (0, 52)) was added to the fitness before it 
was shown to the participant. This addition of noise occasionally made the fitness of the other hunter’s arrowhead 
lower than the reference. In this case, we resampled both the attribute value and the perception error. Resampling 
was repeated a maximum of 10,000 times until we found a combination of an attribute value and noise that made 
the other hunter’s arrowhead better than the reference in terms of both true and perceived performance. In case 
this procedure could not find such a combination, we set the other hunter’s arrowhead to the same as the refer-
ence (this typically occurred when a participant was at the maximum of the landscape). Participants were told 
that other hunters would imitate the participant’s arrowhead in the previous trial and bring only improved ones. 
Every participant understood that the arrowheads of other hunters were generated based on, and always superior 
to, the participant’s own arrowhead in the previous trial, as we confirmed in the prequestionnaire. The negative 
condition underwent a similar procedure, but unlike in the positive condition, the sign of each modification was 
chosen to reduce the performance of the arrowhead. Likewise, resampling for each hunter was repeated until 
we obtained an arrowhead which was inferior to the reference in terms of both true and perceived fitness or 
the maximum repeat count (10,000) was reached; in the latter case, the other hunter’s arrowhead was set to the 
reference as in the positive condition. Participants were told that other hunters would imitate the participant’s 
arrowhead in the previous trial and bring only ones with reduced performance. Again, every participant under-
stood how other hunters’ arrowheads would behave, as we confirmed in the prequestionnaire.

In the positive and negative conditions, the information regarding the arrowheads of other hunters (appear-
ance, score, and the values of the five attributes) was concealed behind four gray panels arranged vertically on 
the right side of the display. The information of each hunter’s arrowhead was revealed only when the left button 
of the mouse was pressed on the corresponding panel and held down; it was hidden again when the button was 
released. Thus, a participant could see only one of the four arrowheads at a time, but as long and as many times as 
the participant wanted. When the information on the arrowhead was shown, the value changed was highlighted 
with colored characters in bold font to reduce the participants’ cognitive burden. In the asocial condition, no 
social information was displayed.

Data availability
The main experimental dataset and reproductive analysis code are attached as Supplementary Files. All materi-
als (including instructions, computer simulation code, experimental program, datasets, and analyses codes) are 
available at https://​github.​com/​YNaka​wake/​proje​ctile_​neg.

https://github.com/YNakawake/projectile_neg
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