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Abstract

Influenza is a major cause of morbidity and mortality worldwide. However, vaccine effective-

ness has been low to moderate in recent years and vaccine coverage remains low, espe-

cially in low- and middle-income countries. Supplementary methods of prevention should be

explored to reduce the high burden of influenza. A potential target is the respiratory tract

microbiome, complex microbial communities which envelop the respiratory epithelium and

play an important role in shaping host immunity. Using a household transmission study, we

examined whether the nose/throat microbiota was associated with influenza susceptibility

among participants exposed to influenza virus in the household. Further, we characterized

changes in the nose/throat microbiota to explore whether community stability was influ-

enced by influenza virus infection. Using a generalized linear mixed effects model, we found

a nasal/oropharyngeal community state type (CST) associated with decreased susceptibility

to influenza. The CST was rare and transitory among young children but a prevalent and

stable CST among adults. Using boosting and linear mixed effects models, we found associ-

ations between the nose/throat microbiota and influenza also existed at the taxa level,

specifically with the relative abundance of Alloprevotella, Prevotella, and Bacteroides oligo-

types. We found high rates of change between bacterial community states among both sec-

ondary cases and household contacts who were not infected during follow up. Further work

is needed to separate the effect of influenza virus infection from the considerable short-term

changes that occur even in the absence of virus. Lastly, age was strongly associated with

susceptibility to influenza and the nose/throat bacterial community structure. Although addi-

tional studies are needed to determine causality, our results suggest the nose/throat micro-

biome may be a potential target for reducing the burden of influenza.
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Introduction

Influenza is a major contributor of human illness and death worldwide, estimated to cause 3–5

million cases of severe illness [1] and 400,000 deaths during interpandemic years [2]. Vaccina-

tion is the best available means of influenza prevention. However, vaccine effectiveness has

been low to moderate in recent years [3,4] and vaccine coverage remains low, especially in

low- and middle-income countries [5]. With increasing support for a role of the microbiome

in shaping host immunity [6–8], exploring whether these effects extend to influenza risk could

contribute to supplementary methods of prevention.

We hypothesized that the nose/throat microbiome is an unrecognized factor associated

with susceptibility to influenza virus. Murine and human studies support this assertion. Com-

pared to controls, mice treated with oral antibiotics exhibited enhanced degeneration of the

bronchiole epithelial layer and increased risk of death following intranasal infection with influ-

enza virus [7]. In two separate randomized controlled trials, newborns fed prebiotics and pro-

biotics had significantly lower incidence of respiratory tract infections compared to placebo

[9,10]. These studies suggest the manipulation of the microbiome, either through disruption

or supplementation, can alter risk of respiratory tract infections.

The epithelial cells of the upper and lower respiratory tracts are the primary targets for

influenza virus infection and replication [11]. However, these cells are enveloped by complex

bacterial communities that may directly or indirectly interact with influenza virus to mediate

risk of infection. Commensal bacteria may prevent infection by regulating innate and adaptive

host immune responses [6,7]. In addition, this immune response might stimulate changes in

the microbiome [12–14]. In a human experimental trial, young adults given intranasal admin-

istration of live attenuated influenza vaccine were characterized by increased taxa richness rel-

ative to the control group [15].

Further, influenza-related changes in the bacterial community structure might explain the

enhanced risk of bacterial pneumonia and otitis media following influenza virus infection [16–

19]. The most commonly detected causative organisms of bacterial pneumonia and otitis

media increase in abundance in the upper respiratory tract following respiratory virus infec-

tion [20,21]. We previously showed that adults in the US with influenza virus infection

expressed increased nose/throat carriage of Streptococcus pneumoniae and Staphylococcus
aureus [20]. Similarly, other studies have observed an increase in pneumococcal density fol-

lowing rhinovirus infection [21] and changes in the microbiota during rhinovirus and respira-

tory syncytial virus infections [22]. Increased carriage elevates risk of invasive disease [23,24],

potentially through more frequent microaspiration into the lung or migration to the middle

ear [25]. However, an association between the nose/throat microbiome and influenza risk has

not been demonstrated in human populations.

In this study, we used data from a longitudinal household transmission study of influenza

to assess the relationship between the nose/throat microbiota and susceptibility to influenza

virus infection and to determine whether influenza virus infection alters the bacterial commu-

nity structure using an untargeted 16S rRNA taxonomic screen (Fig 1).

Results

Study population

A total of 717 participants from 144 households were enrolled in the Nicaraguan Household

Transmission Study during 2012–2014. During this period, 3,101 pooled nose/throat samples

were collected over 5 home visits (mean: 4.3 samples per person; interquartile range (IQR):
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4–5). Analysis was restricted to 537 household contacts who were negative for influenza virus

by real-time reverse transcription polymerase chain reaction (RT-PCR) at time of enrollment.

Sixty-one household contacts were children�5 years of age (median: 2 years; IQR: 1–4),

163 were children 6–17 years of age (median: 10 years; IQR: 8–14), and 313 were adults

(median: 33 years; IQR: 24–43) (Table 1). Fifty-one percent of all household contacts were

exposed to at least one tobacco smoker in the household and 29% resided in crowded house-

holds (on average, >3 persons per bedroom). Household contacts were rarely vaccinated

against influenza (5%) and very few used antibiotics (<1% two weeks prior to enrollment and

<1% during follow up) or oseltamivir (6% during follow up).

After the enrollment of an index case, households were followed for up to 13 days through

5 home visits conducted at 2–3 day intervals. Seventy-one secondary cases from 48 households

Fig 1. Graphical abstract.

https://doi.org/10.1371/journal.pone.0207898.g001
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were identified by RT-PCR during follow up. Fourteen out of the 48 households had more

than one secondary case (29%), suggesting clustering of cases by household. Most secondary

cases were older children and young adults (median: 13.0 years; IQR: 6, 23) and had at least

one symptom of an acute respiratory infection during follow up (79%) (S1 Table).

Nasal/oropharyngeal community state types

We conducted 16S (V4) rRNA sequencing on a pair of samples from each study participant:

712 samples collected at enrollment and 698 samples collected at the last available home visit.

The median time between samples was 9 days (IQR: 9–10 days). After quality filtering, micro-

biota data was available for 710 samples collected at enrollment and 695 samples collected at

the last available home visit.

Dirichlet multinomial mixture modeling [26], an unsupervised clustering method, was

used to assign nose/throat samples to 5 nasal/oropharyngeal (NOP) community state types

(CST) (S1 Fig: model fit by Dirichlet components; S2 Fig: PCoA plot by CST). Ninety-eight

percent of all sequenced samples were assigned to a CST, after applying a�80% posterior

probability threshold. Permutational multivariate analysis of variance (PERMANOVA) indi-

cated NOP CSTs differed significantly from one another (Bray-Curtis dissimilarity, p = 0.001,

R2 = 0.21). Relatively few oligotypes explained clustering of the single-CST model for the five-

CST model, as 50% of the difference between models was attributed to 15 of the 230 total oligo-

types. The relative abundances of these 15 oligotypes are depicted in Fig 2. The relative abun-

dances of all 230 oligotypes are available in S2 Table.

The prevalence of NOP CSTs among household contacts differed significantly by age. Most

notably, NOP CST 4 was rare among young children and became more prevalent with age (at

enrollment; 0–5 years: 5%, 6–17 year: 12%, adults: 20%; χ2-test, p = 0.004) (Table 1). We

observed similar results after restricting our analysis to household contacts who remained

Table 1. Characteristics of 537 household contacts of influenza cases from 144 households, Managua, Nicaragua, 2012–2014, by nasal/oropharyngeal community

state type (CST)� at enrollment.

Characteristic All (n = 537†) CST 1

(n = 132)

CST 2

(n = 125)

CST 3

(n = 122)

CST 4

(n = 85)

CST 5

(n = 59)

No. (%) No. (%) No. (%) No. (%) No. (%) No. (%)

Age (years)

0–5 61 (11) 9 (7) 15 (12) 4 (3) 3 (4) 26 (44)

6–17 163 (30) 51 (39) 41 (33) 38 (31) 19 (22) 9 (15)

�18 313 (58) 72 (55) 69 (55) 80 (66) 63 (74) 24 (41)

Female 347 (65) 86 (65) 88 (70) 87 (71) 45 (53) 35 (59)

Influenza

infection

71 (13) 21 (16) 20 (16) 15 (12) 5 (6) 6 (10)

Influenza vaccination‡ 27 (5) 8 (6) 6 (5) 8 (7) 2 (3) 3 (5)

Smoker in household 245 (51) 54 (46) 58 (52) 56 (51) 44 (59) 28 (50)

>3 persons per bedroom in the household 156 (29) 40 (30) 35 (28) 36 (30) 22 (26) 19 (32)

Antibiotic use

<2 weeks prior

1 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (2)

Antibiotic use during follow up 4 (1) 2 (2) 0 (0) 1 (1) 0 (0) 1 (2)

Oseltamivir use during follow up 33 (6) 4 (3) 14 (11) 6 (5) 3 (4) 5 (8)

�Defined using Dirichlet multinomial mixture method (see Methods).
†Includes 10 household contacts with undefined CST at time of enrollment
‡Prior to enrollment and in same year as index case

https://doi.org/10.1371/journal.pone.0207898.t001
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Fig 2. Relative abundance of 15 oligotypes, by nasal/oropharyngeal community state type (CST). Oligotypes included in the figure attributed>50%

of the difference between the single-CST model and the five-CST model. Bars represent the mean relative abundance of each oligotype (±1 standard

error). 1,405 samples from 717 study participants residing in 144 households in Managua, Nicaragua, 2012–2014.

https://doi.org/10.1371/journal.pone.0207898.g002
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influenza negative during follow up (at enrollment; 0–5 years: 7%, 6–17 years: 12%, adults:

21%; χ2 test, p = 0.011) (S3 Table). Young children were primarily colonized by NOP CST 5,

which was less common among older age groups (at enrollment 0–5 years: 43%, 6–17 years:

6%, adults: 8%; χ2-test, p<0.001) (Table 1). These results indicate age is strongly associated

with the nose/throat bacterial community structure.

Nasal/oropharyngeal community state type associated with lower

susceptibility to influenza virus infection

To investigate the relationship between NOP CSTs and influenza susceptibility, we first esti-

mated secondary attack rates by NOP CST. Secondary attack rates were calculated as: the num-

ber of secondary cases identified by RT-PCR during follow up over the total number of

household contacts at start of follow up. Point estimates of secondary attack rates among

household contacts with NOP CST 4 were nearly half of other NOP CSTs; however, differences

were not statistically significant (5.9% vs. 10.2%-16.0%; χ2-test, p = 0.056) (Fig 3). Similar pat-

terns in point estimates were observed after stratifying by age. An attack rate of 0 for NOP

CST 4 among young children was likely attributable to the low numbers of children with NOP

CST 4 (n = 3).

We used a generalized linear mixed effects model to examine the relationship between

NOP CSTs and influenza susceptibility after adjusting for age, a smoker in the household,

household crowding, and clustering by household. A detailed description of the model is avail-

able in S1 Appendix. Our decision to account for household clustering was supported by an

intra-class correlation of 0.21, which indicates 21% of the total variance was due to clustering

by household. We found household contacts with NOP CST 4 had a lower odds of influenza

virus infection (odds ratio (OR): 0.26; 95% CI: 0.07, 0.99) (Fig 4), Further, young children

were most likely to acquire influenza virus (OR: 4.66; 95% CI: 1.62, 13.37), followed by older

children (OR: 2.91; 95% CI: 1.47, 5.80). These results suggest household contacts with NOP

CST 4 were less likely to be infected with influenza and younger household contacts were at

greater risk after adjusting for other known risk factors.

We were inadequately powered for influenza type/subtype-specific models; however, no

household contacts with NOP CST 4 at enrollment (n = 85) were infected with H3N2, the

most commonly identified influenza subtype in this population (52% of all secondary cases).

This suggests associations between the microbiota and influenza susceptibility may vary by

subtype but further work is needed to test this hypothesis.

Oligotypes associated with susceptibility to influenza virus infection

In addition to analysis at the CST level, taxa-specific analysis was conducted using MaAsLin

[27]. MaAsLin first uses boosting in a univariate pre-screen to identify taxa and metadata (fea-

tures) that are potentially associated. Significantly associated features are then identified using

linear mixed effects models. Models included in our analysis adjusted for age, a smoker in the

household, household crowding, and clustering by household (S1 Appendix). Two oligotypes,

Alloprevotella sp. and Prevotella histicola / sp. / veroralis / fusca / scopos / melaninogenica, were

positively associated with influenza virus infection (S4 Table). One oligotype was negatively

associated with influenza virus infection. Although unclassified in the HOMD database, a

BLAST search using the GenBank database (https://www.ncbi.nlm.nih.gov/genbank/) classi-

fied the oligotype as Bacteroides vulgatus. All three oligotypes were rare in all NOP CSTs (S2

Table) and in the total community composition (range: 0.01–0.38%).

The relative abundance of multiple oligotypes were strongly associated with age. Relative to

adults, 119 oligotypes were differentially abundant among young children and 41 oligotypes

Respiratory microbiome and influenza virus
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were differentially abundant among older children. Lastly, four oligotypes were associated

with household crowding and no oligotype was associated with exposure to a smoker in the

household. All statistically significant associations are listed in S4 Table.

Community diversity and influenza virus infection

We examined whether community diversity was associated with influenza susceptibility. Shan-

non diversity was significantly different between NOP CST 4 and other NOP CSTs (Wilcox

rank-sum tests, all comparisons p<0.001) (S3 Fig). NOP CST 4 (median: 3.43) was less diverse

than NOP CST 1 (median: 3.58) and more diverse than NOP CSTs 2, 3, and 5 (medians: 2.56–

3.29).

To further explore whether community diversity influenced the relationship between NOP

CSTs and influenza susceptibility, we reran our generalized linear mixed effects model using

Shannon diversity as our primary predictor. Alpha diversity was not significantly associated

with influenza susceptibility (OR: 1.76; 95% CI: 0.83, 3.72) (S4 Fig).

Fig 3. Secondary attack rates by nasal/oropharyngeal community state type at enrollment and age. 533 household contacts of

influenza cases with defined community state type at enrollment, residing in 144 households in Managua, Nicaragua, 2012–2014.

Numbers represent sample size of each group.

https://doi.org/10.1371/journal.pone.0207898.g003
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Stability of community state types during influenza virus infection

To examine the stability of the respiratory microbiota during influenza virus infection, we

characterized changes in the bacterial community structure over a median of 9 days (IQR: 9,

10). We used Markov chain plots to represent short-term changes in the nose/throat micro-

biota among household contacts, by influenza case status and age (Fig 5 and S2 Appendix).

Circles represent NOP CST 1 through 5 and the size of the circles represent the prevalence of

each CST at start of follow up. Arrows represent transitions between CSTs during follow up.

The width and number assigned to each arrow represents the proportion of individuals who

transitioned between CSTs. CST stability was estimated as the proportion of household con-

tacts who showed no change in CST over follow up.

Although the prevalence of NOP CSTs appeared to remain similar between the two sam-

pling points (S3 Table), we found transitions between CSTs were common with approximately

half of all household contacts (45% among secondary cases, 55% among uninfected) changing

to a different CST by the end of follow up (Fig 5 and S2 Appendix). Stability ranged from 40–

62% for all CSTs in both secondary cases and uninfected household contacts. Although we

were inadequately powered to test for statistical differences in specific CST-to-CST transitions,

the overall contrast between the two groups suggest community dynamics may differ by influ-

enza status and should be explored further.

We specifically focused on the stability of NOP CST 4, which was associated with decreased

influenza susceptibility. Stability among uninfected household contacts with NOP CST 4

increased with age (0–5 years: 0%, 6–17 years: 40%, adults: 70%; Fisher exact test, p = 0.016)

(Fig 5B). We were inadequately powered for a similar analysis among secondary cases.

We used a generalized linear mixed effects model to examine whether NOP CST stability

was associated with influenza virus infection, after adjusting for NOP CST at enrollment, age,

a smoker in the household, household crowding, and clustering by household (S1 Appendix).

We did not find an association between NOP CST stability and influenza virus infection. How-

ever, we found stability was lowest among children 6–17 years old (OR: 1.67; 95% CI: 1.07,

2.60) (Fig 6).

Fig 4. Generalized linear mixed effects model estimating odds of influenza virus infection. Model adjusting for nasal/oropharyngeal community state type (relative

to community state type 1), age (relative to adults), a smoker in the household, household crowding (average of>3 persons per bedroom), and clustering by household.

468 household contacts of influenza cases with complete data, residing in 132 households in Managua, Nicaragua, 2012–2014.

https://doi.org/10.1371/journal.pone.0207898.g004
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Sensitivity analysis

Sensitivity analysis was conducted to investigate potential sources of bias (S3 Appendix). To

assess whether sequencing depth could influence our results, we first examined whether

sequencing depth differed by NOP CST. We found no meaningful differences in sequencing

depth by NOP CST. In addition, we reran our influenza susceptibility model with sequencing

depth as an additional predictor. We found only minor differences in model estimates, with a

slightly enhanced effect of NOP CST 4 (OR: 0.24; 95% CI: 0.06, 0.94).

To assess whether time between samples influenced CST stability, we additionally con-

trolled for time between samples in our CST stability model. We found only minor differences

in model estimates.

We explored whether a more conservative criterion for NOP CST assignments would influ-

ence our results. We reran our influenza susceptibility model after assigning samples with a

maximum posterior probability <90% as missing. We found minor differences in our results.

However, the association with NOP CST 4 was no longer statistically significant (OR: 0.27;

95% CI: 0.07, 1.03).

Lastly, we examined whether the microbiome was associated with prior infection and

immunity. We used generalized linear mixed effects models to examine whether a hemaggluti-

nin inhibition (HAI) titer of�1:40 was associated with NOP CST, after adjusting for age and

clustering by household. A titer of 1:40 is commonly associated with a 40–70% reduced risk of

influenza [28]. We ran this model for each influenza subtype and repeated the analysis using a

more flexible titer of�1:20. We found no statistically significant association between titer and

NOP CST.

Discussion

To our knowledge, this is the first human population study to prospectively explore the rela-

tionship between the nose/throat microbiome and influenza virus infection. Although second-

ary attack rates did not differ by NOP CST, we demonstrate influenza susceptibility is

associated with differences in the overall bacterial community structure after adjusting for

potential confounders. The exact biological mechanisms remain unclear but the few murine

studies that have examined this relationship suggest it is likely mediated by immunomodula-

tion. In these studies, mice treated with antibiotics exhibited diminished innate and adaptive

immune responses compared to placebo. Specifically, mice with disrupted microbiomes

expressed impaired macrophage responses to type I and type II interferons and lacked micro-

biomes containing bacterial lipopolysaccharides that stimulate Toll-like receptors and other

pattern recognition receptors [6,7]. Although these mechanisms suggest a causal relationship

between the respiratory microbiome and influenza virus infection, additional work is needed

to evaluate whether epidemiologic associations in human populations represent a true effect of

the microbiome or merely reflect differences in host immunity. Further, future studies should

examine whether the relationship differs by influenza type/subtype.

Most longitudinal studies that have characterized the upper respiratory tract microbiota are

limited to infants [22,29,30]. Here, we examine a unique population consisting of both

Fig 5. Stability of nasal/oropharyngeal community state type (CST) over follow up. 513 household contacts with microbiota data both at enrollment

and follow up, residing in 144 households in Managua, Nicaragua, 2012–2014. (A) By influenza case status. (B) By age, among 443 household contacts

who remained negative for influenza virus infection during follow up. (C) By age, among 70 secondary cases. Circles represent nasal/oropharyngeal

community state types (CST) and circle size is proportional to prevalence of CSTs at enrollment. CST u corresponds to samples with an undefined CST.

Transition rates between CSTs were estimated as Markov chain probabilities and are shown numerically. Transitions rates<0.10 were removed for

simplicity. Complete data are available in S2 Appendix.

https://doi.org/10.1371/journal.pone.0207898.g005
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children and adults. We demonstrate age is strongly associated with both the prevalence and

stability of nose/throat bacterial communities. Most notably, we found the NOP CST associ-

ated with decreased susceptibility to influenza was less prevalent and less stable among young

children. If a causal relationship between the microbiome and influenza truly exists, our results

would suggest the microbiome may contribute to the increased influenza risk observed among

young children [31].

We found the microbiome structure changed frequently among both influenza cases and

household contacts who remained uninfected during follow up (median: 9.0 days, IQR: 9.0–

10.0). This was expected among influenza cases as prior studies have demonstrated increased

colonization by opportunistic pathogens in the upper respiratory tract following respiratory

virus infection [20,21]. However, much less is known for short-term changes in the upper

respiratory tract microbiome of healthy individuals, especially among adults. The high degree

of change among uninfected household contacts in our study may represent normal variation

among healthy individuals or be indicative of a response to influenza exposure in the

household.

Preliminary findings from our Markov chain analysis suggest community dynamics may

differ by influenza status. Characterizing multiple longitudinal samples per participant would

lead to a better understand of influenza and its impact on the microbiome. In addition, future

studies should explore whether changes in the bacterial community structure are directly due

to influenza virus or indirect responses to changes in the virome or mycobiome.

A limitation in our study is the use of pooled nose and throat samples. Differential sampling

by site can introduce bias if sampling is related to both the observed bacterial community

structure and influenza susceptibility. Although this was minimized through consistent sam-

pling techniques across all study participants, factors such as age could confound associations

Fig 6. Generalized linear mixed effects model estimating odds of change in nasal/oropharyngeal community state type (CST) during follow up. Model

adjusting for influenza virus infection, nasal/oropharyngeal community state type at enrollment (relative to CST 1), age (relative to adults), a smoker in the

household, household crowding (average of>3 persons per bedroom), and clustering by household. 443 household contacts with defined CST at enrollment

and follow up and complete data, residing in 130 households in Managua, Nicaragua, 2012–2014. Household contacts with an undefined CST were excluded

from analysis.

https://doi.org/10.1371/journal.pone.0207898.g006
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and may partially explain age-related differences in the bacterial community structure. In our

analysis, we used descriptive statistics to thoroughly explore the effects of age and other poten-

tial confounders on our outcomes and adjusted as appropriate in our statistical models. A sec-

ond limitation is the use of RT-PCR for identifying influenza cases. Individuals can be infected

with influenza virus (i.e.�4-fold increase in hemagglutinin inhibition antibody titer) and not

shed virus [32]. We may have missed true index cases and secondary cases with low levels of

virus. Although our results and conclusions are limited to secondary cases with viral shedding,

RT-PCR allowed us to screen for secondary cases at 2–3 day intervals while limiting invasive

procedures. Lastly, we did not consider pre-existing immunity from previous infections in our

models, which might potentially confound or modify associations. However, we did not find

any statistically significant associations between HAI titer and NOP CSTs in our sensitivity

analysis.

While much work is needed to translate these results into potential clinical and public

health applications, our findings contribute to a growing literature suggesting that it may be

possible to manipulate the microbiome and decrease risk of disease [9,10]. Influenza virus is a

major cause of severe illness and death each year [1,2]. However, vaccine effectiveness varies

by year [4] and there still much debate on the use of antivirals for prophylaxis, especially for

preventing asymptomatic infections and influenza transmission [33]. Our study suggests the

microbiome should be further explored as a potential target in reducing influenza risk.

Methods

Study population and sample collection

The Nicaraguan Household Transmission Study of Influenza is an ongoing prospective case-

ascertained study conducted among urban households in Managua, Nicaragua. Patients

attending the Health Center Sócrates Flores Vivas were screened for study eligibility. Index

cases of influenza were identified as patients with a positive QuickVue Influenza A+B rapid

test, symptom onset of an acute respiratory infection within the past 48 hours, and living with

at least one other household member. Symptoms of acute respiratory infection included fever

or feverishness with cough, sore throat, or runny nose.

Index cases and household members (contacts) were invited to participate and clinical,

sociodemographic, and household data were collected at time of enrollment. Participants were

followed for up to 13 days through 5 home visits conducted at 2–3 day intervals. At each home

visit, oropharyngeal and anterior nares swabs were collected, combined, and stored at 4˚C in

viral transport media. All samples were transported to the National Virology Laboratory at the

Nicaraguan Ministry of Health within 48 hours of collection and stored at -80˚C. A symptom

diary was collected for all participants during follow up.

A total of 168 households were enrolled for follow up during 2012–2014. Households were

excluded from analysis if a suspected index case was negative for influenza virus by real-time

reverse-transcription polymerase chain reaction (RT-PCR) at time of enrollment. RT-PCR

was used to identify influenza cases as infections are often asymptomatic [34]. Two household

contacts were excluded from analysis due to missing influenza virus infection status at time of

enrollment. The remaining participants consisted of 144 index cases of influenza positive by

RT-PCR, 537 household contacts influenza negative by RT-PCR at time of enrollment, and 36

household contacts who were RT-PCR positive for influenza virus on the first day of follow up.

Ethics statement

Written informed consent was obtained from adult participants and from parents or legal

guardians of participants under 18 years of age. In addition, verbal assent was obtained from
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children over 5 years of age. The study was approved by Institutional Review Boards at the

University of Michigan, the Nicaraguan Ministry of Health, and the University of California at

Berkeley.

RNA extraction and RT-PCR

Total RNA was extracted from all available nasal/oropharyngeal samples using the QIAmp

Viral Mini Kit (QIAGEN, Hilden, Germany) per manufacturer’s instructions at the National

Virology Laboratory in Nicaragua. Samples were tested for influenza virus by RT-PCR using

standard protocols validated by the Centers for Disease Control and Prevention [35].

DNA extraction and 16S rRNA sequencing

Total DNA was extracted from a pair of samples from each study participant: the first sample

collected at time of enrollment and the second sample collected at the last day of follow up

(median days between samples: 9.0 days, IQR: 9.0–10.0). Among the 717 total study partici-

pants, five first samples and 19 second samples were not available for DNA extraction. DNA

was extracted using the QIAmp DNA Mini Kit and an enzyme cocktail composed of cell lysis

solution (Promega, Madison, USA), lysozyme, mutanolysin, RNase A, and lysostaphin

(Sigma-Aldrich, St. Lious, USA) in 22.5:4.5:1.125:1.125:1 parts, respectively. 100 μL of sample

was incubated at 37˚C for 30 minutes with 80 μL of the enzyme cocktail. After adding 25 μL

proteinase K and 200 μL of Buffer AL, samples were vortexed and incubated at 56˚C for 30

minutes. Samples were washed with 200 μL of 100% ethanol, 500 uL of Buffer AW1, and then

500 uL of Buffer AW2. To maximize DNA yield, DNA was eluted twice with 100 uL of Buffer

AE and stored at -80˚C.

The V4 hypervariable region of the 16S rRNA gene was amplified and sequenced at the

University of Michigan Microbial Systems Laboratories using Illumina MiSeq V2 chemistry

2x250 (Illumina, San Diego, CA) and a validated dual-indexing method [36]. Briefly, primers

consisted of an Illumina adapter, an 8-nt index sequence, a 10-nt pad sequence, a 2-nt linker,

and the V4-specific F515/R806 primer [37]. Amplicons were purified and pooled in equimolar

concentrations. A mock community of 21 species (Catalog No. HM-782D, BEI Resources,

Manassas, VA) or a mock community of 10 species (Catalog No. D6300, Zymo Research,

Irvine, CA) was included by the Microbial Systems Laboratories to assess sequencing error

rates. For every 96-well plate submitted for amplification and sequencing (90 study samples),

we included two aliquots of an in-house mock community consisting of Streptococcus pneumo-
niae, Streptococcus pyogenes, Staphylococcus aureus, Haemophilus influenzae, and Moraxella
catarrhalis and two aliquots of an oropharyngeal control sample. These internal controls were

randomly assigned to plate wells and used to assess systematic variation in sequencing. All

samples were sequenced in duplicate, demultiplexed, and quality filtered.

Oligotyping and community state types

We used mothur v1.38.1 [38] to align and perform quality filtering on raw sequences using the

mothur standard operating procedures (https://www.mothur.org/wiki/MiSeq_SOP, accessed

November 18, 2016). Sequences were converted to the appropriate oligotyping format as previ-

ously described [39]. We used the Minimum Entropy Decomposition (MED) algorithm [40]

with default parameters (-M: 13779.0, -V: 3 nt) to cluster sequences into oligotypes. Briefly, the

algorithm identifies variable nucleotide positions and uses Shannon entropy to partition

sequences into nodes. The process is iterative and continues to decompose parent nodes into

child nodes until there are no discernable entropy peaks. Oligotyping has previously been used
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to examine within-genus variations in the microbiota [39,41–43] and provides increased reso-

lution relative to conventional distance-based clustering methods.

After excluding five samples with less than 1,000 reads, our dataset consisted of 1,405 sam-

ples with a total of 61,784,957 sequences decomposed into 230 oligotypes. To assign taxonomy,

we searched representative sequences of each oligotype against the Human Oral Microbiome

Database (HOMD) v14.51 [44] using blastn v2.2.23 [45]. Classifications with�98% identity

were kept.

We used Dirichlet multinomial mixture models [26] in R v3.4.4 [46] and the DirichletMul-

tinomial v1.16.0 package [47] to assign all samples to 5 NOP CSTs. We determined the num-

ber of CSTs by comparing the Laplace approximation of the negative log models and

identifying the point at which an increase in Dirichlet components resulted in minor reduc-

tions in model fit (S1 Fig). This approach allowed us to consider both model fit of the negative

log models and statistical power in downstream analysis. The goal was not to identify the “true

communities”, as CSTs are representations of data. All formal statistical inferences are based

on the models relating CSTs to our outcomes of interest, with any findings being statistically

supported by the data.

Samples were assigned to NOP CSTs with the greatest posterior probability. 98.2% of all

samples had a posterior probability of 80% or higher. To minimize misclassification, samples

were assigned as having an undefined NOP CST if the posterior probability was less than 80%.

Each NOP CST contained between 13.0–24.8% of all samples (n = 182–348) and 1.8% of all

samples (n = 25) were undefined.

Statistical models

Detail to statistical models used in this study are described in S1 Appendix. To examine the

association between NOP CSTs at enrollment and susceptibility of influenza virus infection,

we used a generalized linear mixed effects model estimating the odds of infection after adjust-

ing for NOP CST (relative to NOP CST 1), age (relative to adults), a smoker in the household,

household crowding, and clustering by household. Household crowding was defined as hav-

ing, on average, more than three household members per bedroom. The model was adapted to

examine the effects of alpha diversity.

Associations between individual oligotypes and participant data were determined using

MaAsLin [27]. Briefly, MaAsLin is a sparse multivariate approach used to identify associations

between individual taxa and participant data. Relative abundance values were arcsine square-

root transformed to stabilize variance. Potentially associated features (i.e. oligotypes) were

selected using boosting in a univariate prescreen. Linear mixed effects models are then used to

find associations between the selected features and metadata. The Benjamin-Hochberg

method was used to correct for multiple testing. Associations with a q-value <0.05 were con-

sidered statistically significant.

To examine the effect of influenza virus infection on community stability, we used a gener-

alized linear mixed effects model estimating the odds of any change in NOP CST over follow

up, after adjusting for NOP CST at enrollment (relative to NOP CST 1), age (relative to adults),

a smoker in the household, household crowding (average of>3 persons per bedroom), and

clustering by household. All statistical analysis was conducted using R v3.4.4 [46] and the

lme4, vegan, and maaslin packages [27,48,49].

Markov chain analysis

We estimated CST transition rates over time using methods described previously [50]. Briefly,

we restricted our dataset to household contacts with complete nose/throat sample pairs (i.e.
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microbiota data at enrollment and at follow up). CST transition rates were calculated as Mar-

kov chain probabilities. Analysis was repeated after stratifying by influenza status and age.

Sensitivity analysis

We conducted sensitivity analyses to investigate potential sources of bias including sequencing

depth, follow up time, NOP CST assignment, and prior infection and immunity (S3 Appen-

dix). To assess sequencing depth, we examined the distribution of total sequences per sample

by CST. We then reran our influenza susceptibility model after additionally adjusting for

sequencing depth. To examine whether time between sampling points could influence our

results, we reran our community stability model after additionally adjusting for time between

samples. We also examined whether using a more conservative criterion for CST assignments

could affect our results by rerunning our influenza susceptibility model and community stabil-

ity model after assigning samples to missing if the maximum posterior probability was less

than 90%. Lastly, we examined whether HAI titer was associated with NOP CSTs. For each

influenza subtype, we ran generalized linear mixed effects models that examined the relation-

ship between a titer�1:40 and NOP CSTs, after adjusting for age and clustering by household.

Models were repeated using a more flexible titer cutoff of�1:20.

Supporting information

S1 Table. Characteristics of 71 secondary cases from 48 households, Managua, Nicaragua,

2012–2014, by nasal/oropharyngeal community state type (CST) at enrollment.

(DOCX)

S2 Table. Relative abundance of all 230 oligotypes, by nasal/oropharyngeal community

state type (CST).

(XLSX)

S3 Table. Distribution of nasal/oropharyngeal community state types by age, time, and

whether acquired influenza by end of follow up.

(DOCX)

S4 Table. MaAsLin results.

(XLSX)

S1 Fig. Model fit of negative log models by number of Dirichlet components. We deter-

mined the number of nasal/oropharyngeal community state types (CST) by estimating the

Laplace approximation of the negative log models and identifying the point at which an

increase in Dirichlet components resulted in minor reductions in model fit. This approach

allowed us to consider both model fit of the negative log models and statistical power in down-

stream analysis. The goal was not to identify the “true communities”, as CSTs are representa-

tions of data. All formal statistical inferences are based on the models relating CSTs to our

outcomes of interest, with any findings being statistically supported by the data.

(TIF)

S2 Fig. Principal coordinates analysis of nose/throat samples assigned to nasal/oropharyn-

geal community state types. 1,405 nose/throat samples from 717 study participants residing

in 144 households in Managua, Nicaragua, 2012–2014. Based on Bray-Curtis dissimilarity.

(TIF)

S3 Fig. Shannon diversity of nose/throat samples, by nasal/oropharyngeal community

state type. 1,380 samples with defined community state types, 717 study participants residing
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in 144 households in Managua, Nicaragua, 2012–2014.

(TIF)

S4 Fig. Generalized linear mixed effects model estimating odds of influenza virus infection

using Shannon diversity. Model adjusts for Shannon diversity, age (relative to adults), a

smoker in the household, household crowding (average of>3 persons per bedroom), and clus-

tering by household. 477 household contacts of influenza cases with complete data, residing in

132 households in Managua, Nicaragua, 2012–2014.

(TIF)

S1 Appendix. Description of statistical models.

(DOCX)

S2 Appendix. Stability of nose/throat community state type (CST) over follow up, includ-

ing all transitions.

(DOCX)

S3 Appendix. Sensitivity analysis.

(DOCX)
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