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Abstract: The level of environmental microplastics in the sea is constantly increasing. They can enter
the human body with food, be absorbed through the gut and have negative effects on the organism’s
health after its digestion. To date, microplastics (MPs) are considered new environmental pollutants
in the air sea and they are attracting wide attention. The possible toxic effects of MPs isolated at
different sea depths of 1, 24 and 78 m were explored in an in vitro model of human gingival fibroblasts
(hGFs). MPs isolated from the sea showed different size and were then divided into different sample
groups: 1, 24 and 78 m. The results obtained revealed that MPs are able to activate the inflammatory
pathway NFkB/MyD88/NLRP3. In detail, the exposure to MPs from 1 and 78 m led to increased
levels of inflammatory markers NFkB, MyD88 and NLRP3 in terms of proteins and gene expression.
Moreover, cells exposed to MPs showed a lower metabolic activity rate compared to unexposed
cells. In conclusion, these findings demonstrate that the inflammation process is stimulated by MPs
exposure, providing a new perspective to better understand the intracellular mechanism.

Keywords: sea; microplastics; pollution; human gingival fibroblasts; intracellular inflammation pathway

1. Introduction

The continuous consumption of plastic by modern society leads to a consequent in-
crease in the production of plastic waste [1]. This causes a slowdown in waste management
and recycling processes, which leads to an accumulation of plastic in environments includ-
ing the marine one [2]. It was estimated that plastic fragments represented 60%–80% of total
marine debris and >90% of floating particles making them the predominant components of
marine debris. This situation has alerted both the scientific community and policy makers.
In 2014, the United Nations Environment Program (UNEP) identified plastic pollution
in the oceans as one of the top 10 emerging global environmental problems [3]. Plastic
pollution has several negative effects in the marine environment: alterations in biodiversity
and ecosystem health, entanglement and ingestion by marine biota, leaching of chemicals,
and socio-economic consequences related to tourism, navigation, fishing and aquaculture
activities [4].

In general, plastic is very resistant to decomposition and, for this reason, it can remain
in the environment and pollute it for centuries. Most plastics are resistant to biodegradation,
but they will break down gradually through mechanical action. Plastic waste decomposes
into small plastic fragments of 5–40 mm, then into microplastics (MPs, plastic particles
with dimensions of 1–5000 µm) and nanoplastics (NPs), particles unintentionally produced
within the size range of 1 to 1000 nm [5,6].
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Specifically, MPs are distinguished into primary and secondary according to the
sources from which they derive: primary MPs are those released directly into the environ-
ment in the form of micropellets, microspheres or microfibers, while secondary MPs are
those derived from the rupture of large or meso-litter plastics in the environment under the
action of physical, chemical and biological forces. Most of the MPs found in the environ-
ment are secondary MPs [7,8]. There are many kinds of MPs. Polystyrene (PS) was found
to be one of the main components of MPs pollution in the environment and it is widely
used in the production of plastic products and plastic packaging [9]. Due to the increase
in consumption of MPs, their potential effects in human health have become the focus of
researchers [10]. Studies have shown that food intake is one of the main pathways for MPs
to enter the organism and accumulate in tissues and organs [11,12]. Animal studies have
reported intestinal inflammation, intestinal villi rupture, intestinal epithelial cell damage
and intestinal metabolism disorder after exposure to MPs [13]. The toxicity of MPs is
size-dependent [14]. Since MPs particles mostly enter the human body together with food
and the digestive tract is the main place for digestion and absorption of food, it is important
to understand the impact of MPs in human health [15]. The oral cavity is the first part of
the gastro-intestinal apparatus and it is the first point of contact with MPs in food.

Human gingival fibroblasts extracted from masticatory gingival tissue showed unique
morphological features such as a spindle-shaped appearance and adherent growth on plas-
tic [16,17]; moreover, human gingival fibroblasts (hGFs) play a crucial role in the secretion
and degradation of the extracellular collagen matrix, which provides structural integrity
and participates in wound healing and tissue regeneration, immunological regulation,
mechano-transduction, angiogenesis and organ fibrosis [18,19]. MPs could also be a risk
factor for the development of Autism Spectrum Disorder, and the maternal ingestion of
MPs could represent a risk factor for the development of ASD [20].

Several scientific data reported the presence of both plastics and MPs in populated
coastal areas and in remote parts of the world such as polar seas and deep abyssal environ-
ments [4].

The Mediterranean Sea was one of the different seas considered in the studies for
analysis of microplastic pollution. Large amounts of plastic debris have been reported
from the Mediterranean seabed and floating on its surface, as well as on beaches and
coastal environments. Mediterranean biodiversity is affected by the interaction with marine
litter. Artificial polymers have been found in the stomach contents of Mediterranean
pelagic predators, deep-sea fish and commercial species [21]. About 1/3 of Mediterranean
freshwater discharges flow into the Adriatic Sea, which is a narrow elongated sub-basin
with a high land to sea ratio (1.80) surrounded by seven countries (~3.5 million inhabitants
in the coastal zone) and many tourist centers (e.g., Venice, Split, Dubrovnik, Corfu) [22,23].
Our study was focused mainly on the toxicity of the MPs identified in the Adriatic Sea to
assess the risk they pose to human health. In the current work, water samples withdrawn
from three different depths of the Adriatic Sea have been studied: 1, 24, and 78 m. In these
samples, MPs of different sizes were found in the water taken at a depth of 1 m, MPs in
the range of 100–150 nm were found in the water at 1 and 78 m, while in the water at 24 m
depth, MPs were found in the range of 600–700 nm. In the present study, the effect of MPs
of different sizes and at different depths was evaluated on cellular toxicity using human
gingival fibroblasts (hGFs) in order to evaluate the role of sea MPs on inflammation by
analyzing inflammation pathways.

2. Materials and Methods
2.1. Sampling Procedures and Estimation of Microplastics (MPs) Recovery

The Adriatic Sea is a part of the Mediterranean basin, extending from the Italian
Peninsula to the west and the Balkan Peninsula to the east. It is about 800 km long and
90 to 220 km wide, and extends between 40◦ and 46◦ lat. N and between 12◦ and 20◦

across (Figure 1). The area of the Adriatic Sea is about 132,000 km2, the average depth
ranges from about 35 (the northern part) to 140 m (central part), reaching 260 m in the
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Pomo Depressions. The Otranto Canal is the connection between the Adriatic Sea and
Mediterranean Sea.
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Figure 1. Map of the Adriatic Sea where the pilot study was carried out.

The water dynamic of the Adriatic Sea is mainly cyclonic, driven by thermohaline
currents with rare storms that can result in waves exceeding 9 m in amplitude [24]. The
water mass of the Adriatic Sea is well stratified and can be divided in three main layers: (1) a
superficial layer (0–30 m) with the upper 10 m being less saline, dominated by waters of
coastal origin; (2) a Levantine intermediate water layer (30–130 m) with maximum salinity at
about 80 m depth; and (3) a bottom-water region (>130 m) with very dense waters [25].

The sea water specimens analyzed in this work were sampled from the central Adriatic
(Geographical fishing Sub-Area, GSA17) during a pilot study carried out in summer–fall
2019 focused on the collection of marine litter with the help of 40 fishing boats. The collected
marine litters were intercepted by trawls and deposited in the Pescara harbor in central Italy
for litter classification and evaluation. Besides marine litter analysis, sea water specimens
were collected from three different depths from the sea surface (1, 24 and 78 m) to have
samples of the different layers of the Adriatic and to check if the composition and presence
of micro and nano-plastics is depth-dependent. The site of the sample (Figure 1) was 13 km
from the coast (42◦26′64” N, 14◦31′63” E).

2.2. Cell Culture Establishment

Primary cultures of human gingival fibroblasts (hGFs) were established by the explant
method as previously described [26]. Fragments of healthy gingival tissue were rinsed
three times in Phosphate Buffered Saline (PBS, Lonza, Basel, Switzerland) solution, cut into
small tissue pieces and cultured in Dulbecco’s modified Eagle’s medium (DMEM, Lonza)
supplemented with 10% Fetal Bovine Serum (FBS, Lonza) and 0.1% gentamicin (10 mg/mL;
Euroclone, Milan, Italy) at 37 ◦C in 5% CO2 atmosphere. The gingival tissue biopsies were
cultured until hGFs spontaneously migrated (about 4 weeks; [27]). Cells were incubated
in standard conditions (37 ◦C in a humidified atmosphere of 5% (v/v) CO2). Cells were
observed under inverted light microscopy (Leica Microsystem, Milan, Italy) as previously
described [28]. All the experiments were performed with cells processed between 4 and
8 passages and each assay was performed in triplicate.
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2.3. Flow Cytometry Analyses of Particle Size

Water samples collected at 1, 24 and 78 m were treated with 1% Triton X-100 (30 min)
in order to remove any biological particles. Samples were then acquired by flow cytometry
(FASCVerse, BD Biosciences, San Jose, CA, USA). To avoid swarm effects, sample dilution
was established as recommended [29]. In any case, the flow rate resulted in event counts
≤2000 events/second. Diluted samples were then acquired and 1 × 105 events/sample
were registered. Side Scatter and Forward Scatter (FSC) MegaMix-Plus beads (Byocitex,
Marseille, France) were used to measure the particle size [30,31]. MegaMix-Plus SSC and
FSC are mixes of fluorescent polystyrene beads of known diameters selected to cover the
size range 0.1–1 µm (SSC beads: 0.16, 0.20, 0.24 and 0.50 µm; FSC beads: 0.1, 0.3, 0.5 and
0.9 µm). By acquiring the beads using the same setting applied for sample analysis, it is
possible to identify, in the scatter plots, the particle diameter ranges, given that the scattered
light (FSC and/or SSC) is proportional to the particle diameter [32]. The same parameters
were applied for all other analyses. Instrument performances, data reproducibility and
fluorescence calibrations were sustained by the Cytometer Setup & Tracking Module (BD
Biosciences) [32].

2.4. Study Design

All the following experiments were performed in triplicate. The present work was
carried out with the following groups:

– Untreated hGFs, used as control (CTRL);
– hGFs treated with 100 nm micro plastics isolated at 1 m depth (1 m);
– hGFs treated with 600 nm micro plastics isolated at 24 m depth (24 m).
– hGFs treated with 100 nm micro plastics isolated at 78 m depth (78 m);

2.5. Cell Metabolic Activity

hGFs were seeded at a cell density of 2 × 103 cells/well into a 96-well tissue cul-
ture plate. The cell metabolic activity of hGFs was evaluated after 24, 48 and 72 h of
treatment in all sample groups: 1, 24 and 78 m. The 3-(4,5-dimethylthiazol-2-yl)-5-(3-
carboxymethoxyphenyl)-2-(4-sulfo-phenyl)-2H-tetrazolium (MTS) assay (CellTiter 96®

Aqueous One Solution Cell Proliferation Assay, Promega, Madison, WI, USA) was used. At
the established end points, 20 µL/well of MTS dye solution was added to culture medium,
and cells were incubated for 3 h at 37 ◦C. The quantity of formazan product, directly propor-
tional to the number of living cells in culture, was detected by absorbance measurements at
490 nm wavelength utilizing the Synergy™ HT Multi-detection microplate reader (Biotech,
Winooski, VT, USA). The MTS assay was executed in three independent experiments.

2.6. Immunofluorescence Analyses

All samples were processed for observation under confocal laser scanning microscopy
(CLSM). Cells were exposed to the MPs (derived from 1, 24 and 78 m) for 48 h of culture.
A 4% solution of para-formaldehyde in 0.1 M PBS (Lonza) was used to fix cells. The
permeabilization process was then performed by means of treatment with 0.5% Triton
X-100 in PBS (Lonza) for 10 min followed by blocking with 5% skimmed milk in PBS
(Lonza) for 30 min. Subsequently, the cells were incubated for 2 h at room temperature with
the following primary antibodies: anti-NF-kB (1:500; SantaCruz Biotechnology, Dallas, TX,
USA), anti-MyD88 (1:500, SantaCruz Biotechnology) and anti NLRP3 (3 µg/mL; Novus,
Milan, Italy). Alexa Fluor 568 red fluorescence conjugate was used as secondary antibody
(1:200; Molecular Probes, Thermo Fisher Scientific), samples were incubated for 1 h at
37 ◦C [33]. Cells were then stained for 1 h with Alexa Fluor 488 phalloidin green fluorescent
conjugate (1:400; Molecular Probes) to mark cytoskeleton actin and for 1 h with TOPRO
(1:200; Molecular Probes) to stain cell nuclei. Glass coverslips were placed upside down
on glass slides and mounted with Pro-Long Gold Antifade (Molecular Probes). CLSM
(LSM800, Zeiss, Jena, Germany) was used to visualize the samples. All images were



Int. J. Environ. Res. Public Health 2022, 19, 7782 5 of 15

acquired at a resolution of 1024 × 1024 pixels at 12 bit (4096 grey values) using ZEN 3.0 SR
software (Zeiss).

2.7. RNA Isolation and Real-Time PCR Analysis

NFkB, MyD88 and NLRP3 mRNAs expression was analyzed by real-time PCR on
hGFs exposed to the MPs (1, 24 and 78 m) for 48 h. Total RNA was extracted using a
PureLink RNA Mini Kit (Ambion, Thermo Fisher Scientific, Milan, Italy) according to the
manufacturer’s instructions. Three independent biological replicates were analyzed for
each sample. RNA (2 µg) was retrotranscribed using the High Capacity cDNA Reverse
Transcription Kit catalog number 4,368,814 (Applied Biosystems, Waltham, MA, USA) to
synthesize cDNA for 10 min at 25 ◦C, 10 min at 37 ◦C and 5 min at 85 ◦C according to
the manufacturer’s instructions. Real-time PCR was performed with the Mastercycler ep
real plex real-time PCR system (Eppendorf, Hamburg, Germany). The levels of mRNA
expression of NFkB, MyD88, NLRP3 and Beta-2 microglobulin (B2M) (endogenous marker)
were evaluated in hGFs cells exposed to MPs from 1, 24 and 78 m depth compared to the
mRNA expression levels of unexposed hGFs (CTRL). Commercially available TaqMan
Gene Expression Assays (NFkB Hs.PT.58.22880470; MyD88 Hs.PT.58.40428647.g; NLRP3
Hs.PT.58.39303321; TemaRicerca, Milan, Italy) and the TaqMan Universal PCR Master Mix
(Applied Biosystems, Foster City, CA, USA) were utilized according to standard protocols.
Beta-2 microglobulin (B2M Hs99999907_m1) was utilized for template normalization. The
amplification program consisted of a pre-incubation step for cDNA denaturation (3 min
95 ◦C), followed by 40 cycles consisting of a denaturation step (15 s 95 ◦C) and an annealing
step (1 min 60 ◦C) [34]. At the end of each run, melting curve analysis was performed in
the temperature range of 60 ◦C to 95 ◦C. Expression levels for each gene were performed
according to the 2−∆∆CT method. RT-PCR was performed in three independent experiments;
duplicate determinations were performed for each specimen.

2.8. Western Blot Analysis

Proteins from untreated and MPs-treated hGFs (for 48 h) were separated using sodium
dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) followed by Western blot
analysis (Bio-Rad V3 Western Workflow™, Milan, Italy). Membranes were saturated for
120 min at room temperature in a blocking buffer (1 × TBS, 5% milk, 0.1% Tween-20)
followed by overnight incubation at 4 ◦C with the following primary antibodies: mouse
anti-NFkB (1:500; Santa Cruz Biotechnology), mouse anti-MyD88 (1:500; Santa Cruz Biotech-
nology) and mouse anti-NLRP3 (3 µg/mL; Novus). Subsequently, membranes were incu-
bated for 60 min at room temperature with peroxidase-conjugated anti-mouse secondary
antibody (1:5000; Bethyl Laboratories, Montgomery, AL, USA) [35]. Enhanced chemilumi-
nescence with the Alliance 2.7 system (Uvitec Ltd., Cambridge, UK) was used to identify
and quantify the bands obtained.

2.9. Statistical Analysis

GraphPad Prism software (version 5.01, GraphPad Software, San Diego, CA, USA) was
used for the statistical analysis. The data were analyzed using one-way ANOVA followed
by Tukey’s post hoc test for a comparison of the means of all groups with the mean of all
other groups. p < 0.05 was considered statistically significant. Data were expressed as the
mean ± S.E.M. All data were collected for at least three independent experiments.

3. Results
3.1. MPs Characterization

The inorganic particles in the water samples taken at 1, 24 and 78 m were acquired
by flow cytometry using an appropriate setting [25]. MegaMix-Plus beads (beads with
known diameters) were used as reference materials to set the gates, identifying specific
diameter values (low dot plots; 100, 500 and 900 nm). When samples were taken at low sea
depths (1–7 m) the smallest particles (about 100 nm in diameter), which are probably the
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lighter ones, were detected. At middle depths (24 m) bigger particles (100–1000 nm) were
observed, while at higher sea depths (78 m) a mix of small (about 100 nm, the densest) and
medium particles (200–500 nm) was identified (Figure 2).
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Figure 2. Flow cytometry analysis of particle features. FSC MegaMix-Plus and SSC MegaMix-Plus
were used as a reference to identify size ranges on a FSC-A/SSC-A dot plot. Water samples at
different depths were analyzed using the same parameters applied for bead acquisition. In detail,
the following samples were collected and analyzed: water surface, 1 m depth, 24 m depth and 78 m
depth.

3.2. MPs Attenuated the Cell Viability Rate of hGFs

Bar graph data shows that cell viability was decreased in hGFs exposed to 1 and 78 m
MPs in all considered endpoints, while the cell viability of the hGFs treated with 24 m MPs
was better (Figure 3).

3.3. Upregulation of NFkB, MyD88 and NLRP3 Expression in hGFs Treated with MPs

Immunofluorescence detection showed the expression of the inflammation pathway
modulated by the exposure to MPs. As shown in Figures 4–6, MPs resulted in increased
expression of inflammation markers, suggesting that MPs might cause alterations in hGFs.
CTRL cells showed a regular shape and were neatly arranged on a plastic substrate with
no positive signals of inflammatory markers (Figure 4(A1), Figure 5(A1) and Figure 6(A1)).
However, inflammatory reaction was observed in hGFs exposed to MPs (1 m and 78 m)
(Figure 5(B1,D1), Figure 6(B1,D1) and Figure 7(B1,D1)). NFkB, MyD88 and NLRP3 were
upregulated in cells treated with 1 and 78 m MPs, while a lesser extent was observed in
cells exposed to 24 m MPs (Figure 4(C1), Figure 5(C1) and Figure 6(C1)).
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to (B1) 1, (C1) 24 and (D1) 78 m MPs. (A1–D1) Red fluorescence: cytoskeleton actin; (A2–D2) green
fluorescence: NFkB; (A3–D3) blue fluorescence: cell nuclei; (A4–D4) merged image of the above-
mentioned channels. Scale bar: 20 µm.
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To explore the specific inflammatory pathway modulation induced by MPs, the ex-
pression of NFkB, MyD88 and NLRP3 were detected by the evaluation of RT-PCR and
Western blot analyses (Figure 7A,B). RT-PCR results showed that the mRNA levels of NFkB,
MyD88 and NLRP3 were upregulated in cells exposed to 1 and 78 m MPs when compared
to the CTRL group (unexposed cells) (Figure 7A). On the other hand, hGFs exposed to the
24 m MPs showed a slight increase in mRNA levels of all considered inflammatory markers
(Figure 7A).

Western blotting analysis showed an upregulation of NFkB, MyD88 and NLRP3
protein levels in hGFs exposed to the MPs as demonstrated by specific expression of protein
bands and the related densitometric analysis. Human GFs exposed to 24 m MPs showed a
slow increase in inflammatory protein expression compared to the other MPs groups (1
and 78 m) (Figure 7B).
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4. Discussion

In the sea, the presence of more plastic products broken down into small pieces
provokes the deterioration of the marine environment. The tiny pieces of plastic parti-
cles showed a diameter less than 5 mm and they can still be ingested by animals and
humans [5,36–39].

Increased accumulation of MPs decomposed from plastic waste leads to a contami-
nation in each cubic meter of ocean water [40], and they are ubiquitously distributed in
open seas and coasts [41]. The potential negative effects on human health have become an
important field of research [10].

MPs with different sizes could be easily absorbed by marine fauna and through the
food chain; the MPs could be ingested by human organisms leading to negative effects on
the human gut [42–44]. As reported in the recent literature, MPs can also cause harm to the
respiratory tract and reproductive system of animals [45–47].

Some studies have summarized the possible mechanisms that contribute to negative
effects on human health as cell internalization of MPs particles producing cytotoxic ef-
fects [42,48,49], increased levels of intracellular reactive oxygen species (ROS), the induction
of DNA damage and the activation of pro-inflammatory cytokine release [50].

Since cells of oral cavity mucosa are in direct contact with the external environment, we
speculated that the increase in MPs pollution might affect cellular physiological processes.
The purpose of this study was to evaluate the effects of MPs on hGFs by using MPs derived
from different sea depths and of different sizes (for sea depth: 1, 24 and 78 m; for MPs size:
100 and 600 nm) with an exposure lasting 48 h. MPs showed different degrees of cytotoxic
and damaging effects on human cell lines [51–53]. Recent in vitro studies demonstrated the
cytotoxic effects of MPs on human monocytes [54], an increase in the production of ROS



Int. J. Environ. Res. Public Health 2022, 19, 7782 11 of 15

in T98G and HeLa cells [55] and mitochondrial depolarization in colon adenocarcinoma
cells [15].

The cytotoxicity of MPs was evaluated through cell metabolic activity rate experiments.
Our data demonstrated that cells exposed to MPs from 1 and 78 m showed a lower cell
metabolic activity rate when compared to the sample group exposed to MPs from 24 m.
This process could be related to the increase in cellular oxidative stress, ROS accumulation
and mitochondrial depolarization. MPs are able to enter into cells at the cytoplasmic level
and increase cell toxicity [56]. Recent studies have reported that MPs accumulate in the
body are able to induce oxidative stress in the gut. Wu et al. demonstrated that when
Caco-2 cells were exposed to MPs in the high-concentration group, the levels of relevant
antioxidant enzymes were significantly reduced, indicating that a high concentration of
MPs would exert a certain inhibition on antioxidant cellular mechanisms in relation to the
size of MPs [15]. Our results demonstrated that the viability rate of cells was lower when
MPs were 600 nm in size, which further proved a toxic effect on hGFs when compared to
the 100 nm MPs derived from 1 and 78 m of sea depth.

The lower metabolic activity could indicate that the properties of the used MPs inter-
fere with the viability of the cells. The cytotoxicity of MPs was broadly in line with previous
research [57,58].

The recent literature indicates that environmental pollutants, such as MPs, could
trigger NLRP3 inflammasome [59,60] and increase the inflammatory factors IL-6, IL-1β
and TNF-α [61,62]. Our results demonstrated that exposure to MPs leads to an increased
expression of NFkB, MyD88 and NLRP3, suggesting that MPs could contribute to inducing
the intracellular inflammation process [63]. NLRP3 inflammasome is the active center for
regulation of the cellular inflammatory response [64–66].

Interestingly, in our experiments, we observed a significant increase in NFkB, MyD88
and NLRP3 expression after exposure to MPs from 1 and 78 m, while the expression of
the investigated inflammatory markers was downregulated when cells were exposed to
MPs from 24 m, as reported in the immunofluorescence results and validated by Western
blotting analysis.

The protein molecular expression and gene expression trends in this study are consis-
tent with the qualitative data obtained by immunofluorescence experiments. Oxidative
stress and pro-inflammatory processes were considered to be interdependent, but many
studies have shown that oxidative stress can induce inflammatory responses and the release
of many chemokines [64,67]. Environmental toxicants showed deleterious effects on female
reproduction in utero, in the neonatal and prepubertal periods and in adulthood [68].
Toxicant exposure during the development of the tooth germ leads to the occurrence of
structural anomalies in teeth [69].

NFkB plays a key role in the cellular response to oxidative stress and is also largely
considered as an activator of classic pro-inflammatory signaling pathways [70,71]. As pre-
viously demonstrated, MPs are able to induce a strong cellular inflammatory response [72].
NLRP3 inflammasome activation is strictly related to NFkB expression, and the inhibition
of NFkB reduces the pro-inflammatory response mediated by the NLRP3 inflammasome.
MyD88 is a molecular factor that modulates most TLR signaling, as well as Interleukin
(IL)-1, IL-18 receptors and Toll-like receptors (TLRs) activating the innate immune response
and the inflammation process [73]. The innate immune response during inflammation is
regulated by the TLRs via the expression of NFkB that leads to an increasing release of
inflammatory cytokines and chemokines [74]. Obtained results demonstrated an increasing
level of inflammatory related markers in hGFs exposed to MPs from 1 and 78 m, and this
activation could be correlated to the size of MPs (100 nm).

5. Conclusions

Our results provided a novel insight on MPs-induced inflammation and illustrated
that exposure to MPs induces the inflammation process in hGFs via the activation of the
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NFkB/MyD88/NLRP3 pathway. In conclusion, MPs obtained from 1 and 78 m sea depth
can trigger inflammatory responses in human oral cells.
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