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The adrenal gland is one of the prominent sites for steroid hormone synthesis. 
Lipoprotein-derived cholesterol esters (CEs) delivered via SR-B1 constitute the dominant 
source of cholesterol for steroidogenesis, particularly in rodents. Adrenocorticotropic 
hormone (ACTH) stimulates steroidogenesis through downstream actions on multiple 
components involved in steroidogenesis. Both acute and chronic ACTH treatments can 
modulate SR-B1 function, including its transcription, posttranscriptional stability, phos-
phorylation and dimerization status, as well as the interaction with other protein partners, 
all of which result in changes in the ability of SR-B1 to mediate HDL-CE uptake and the 
supply of cholesterol for conversion to steroids. Here, we provide a review of the recent 
findings on the regulation of adrenal SR-B1 function by ACTH.
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The adrenal gland, in addition to the gonads, is one of the prominent sites where steroid hormones 
are synthesized (1–5). Cholesterol is the common precursor for steroidogenesis, which involves the 
contribution from multiple enzymes and requires the conversion of cholesterol to pregnenolone as 
the initial step of a multistep process. Pregnenolone is subsequently metabolized to produce various 
biologically active steroids in a tissue-specific manner. In general, this process is thought to involve 
five major steps: (1) cholesterol acquisition through de novo synthesis and/or uptake from lipopro-
teins and stored as cholesterol esters (CEs) in lipid droplets (LDs), (2) cholesterol mobilization from 
CEs that are stored in LDs, (3) trafficking of cholesterol to the cytochrome P450 side-chain cleavage 
enzyme (P450scc, CYP11A1) at the inner mitochondrial membrane (IMM), following cholesterol 
trafficking to the outer mitochondrial membrane (OMM), (4) production of pregnenolone by 
CYP11A1 through cleavage of the cholesterol side-chain, and (5) efflux of pregnenolone from the 
mitochondria to the endoplasmic reticulum (ER), where enzymes convert it into intermediates that 
shuttle between mitochondria and ER to produce progestins, estrogens, androgens, glucocorticoids, 
or mineralocorticoids in a tissue-specific manner (2, 5).

The adrenal gland is a compound endocrine gland composed of two developmentally unrelated 
tissues, an outer layer of adrenal cortex and an inner layer of adrenal medulla. The adrenal cortex 
is the site of steroid hormone synthesis and produces three classes of steroid hormones. These are 
glucocorticoids (cortisol and corticosterone), mineralocorticoids (aldosterone), and androgens 
[androstenedione and dehydroepiandrosterone (DHEA)]. The cells of the adrenal zona glomerulosa, 
which is the outermost layer of the adrenal cortex, synthesize aldosterone in response to angiotensin II 
(1, 2), whereas the cells of the adrenal cortical zona fasciculata–reticularis produce cortisol, corticos-
terone, or androgens [androstenedione and DHEA/dehydroepiandrostenedione sulfate (DHEAS)] 
in response to adrenocorticotropic hormone (ACTH) stimulation. Humans synthesize cortisol, but 
because CYP17 is poorly expressed in the zona fasciculata in rats and mice, consequently, corticos-
terone is the dominant glucocorticoid produced in rodents. The adrenal steroidogenic pathways are 
illustrated in Figure 1.

All the steroid hormones synthesized within the adrenal cortex utilize cholesterol as the com-
mon precursor. For cells that produce polypeptide hormones, large amounts of mature hormones 
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FiGURe 1 | Human and rodent adrenal steroidogenic pathways. In the adrenal, upon stimulation, cholesterol esters (CE) from the LDL endocytic pathway 
(human) or the SR-B1 selective pathway (rodents) are hydrolyzed by hormone-sensitive lipase (HSL) to release free cholesterol (FC) as the common precursor for 
steroidogenesis. FC, which can also be synthesized de novo within the ER, traffics to the outer mitochondrial membrane and is then transported into the inner 
mitochondrial membrane by StAR, where it is cleaved by CYP11A to pregnenolone, a common precursor for all other steroid hormones. The adrenal cortex is the 
site of steroid hormone synthesis and different steroidogenic enzymes are expressed in cells located within different zones of the adrenal cortex, resulting in different 
classes of steroid hormones being released from different layers. The cells of the zona glomerulosa synthesize aldosterone, the cells of the zona fasciculata 
synthesize cortisol, and the cells of the zona reticularis produce androgens. In rodents, there is a very low level of CYP17; consequently, corticosterone is the 
dominant glucocorticoid produced.

2

Shen et al. Adrenal SR-B1

Frontiers in Endocrinology | www.frontiersin.org May 2016 | Volume 7 | Article 42

can be stored ready for rapid release; however, there is very little 
steroid hormone storage in steroidogenic cells. Therefore, upon 
stimulation, there is a rapid response from the steroidogenic cells 
to synthesize new steroids (3, 4), and with this a requirement for 
a constant supply of the precursor cholesterol to be converted to 
steroid hormones. The precursor cholesterol for steroidogenesis 
can be derived from a combination of sources (5–7): (1) de novo 
cellular cholesterol synthesis, (2) the mobilization of CEs stored 
in LDs, and (3) lipoprotein-derived CEs delivered through endo-
cytic uptake, which is mediated by the LDL receptor or “selective” 
cellular uptake via the scavenger receptor, class B type 1 (SR-B1).

SR-B1 has been shown to be a HDL receptor and can mediate 
selective uptake of lipoprotein (HDL)-derived CEs both in vitro 
and in  vivo (8–11). In the selective CE uptake pathway that is 
mediated by SR-B1, CE-rich lipoproteins bind on the cell surface 
and deliver the CEs from the hydrophobic core of the lipoproteins 
to the inside of the cells. The lipoprotein particles remain intact 
at the cell surface and can be further recycled to deliver more 
CEs to the cells (12). In contrast, CEs delivered via LDL receptor-
mediated lipoprotein uptake are hydrolyzed by lysosomal acid 
lipase, releasing unesterified free cholesterol (FC) from lysosomes 

that traffics to the ER and plasma membrane (PM) and is then 
available to traffic to mitochondria (13, 14). CEs delivered via 
SR-B1 appear to be incorporated directly into LDs (15, 16) and 
must be hydrolyzed to FC before being used in steroidogenesis. 
Upon ACTH treatment, adrenal CE stores within LDs are rapidly 
depleted (17) through the action of hormone-sensitive lipase 
(HSL), the major neutral cholesteryl ester hydrolase expressed in 
the adrenal gland (18). This newly released FC from stored LDs 
is the preferred source of cholesterol. Following LD depletion, 
lipoprotein-derived CEs delivered via SR-B1 become the domi-
nant source of cholesterol for steroidogenesis in rodents (19–21).

Adrenal fasciculata–reticularis cell steroidogenesis is under 
the regulation of tropic hormone ACTH and is subject to both 
acute (14, 22–25) and chronic regulation (14, 26–29). ACTH 
binds to its G protein-coupled receptors, leading to the activa-
tion of adenylate cyclase, which generates cAMP and activates 
cAMP-dependent protein kinase (PKA) (30–33). Stimulation 
of the cAMP–PKA signaling cascade exerts both acute and 
chronic effects on the regulation of steroid hormone production 
(Figure  2). On the other hand, angiotensin (AII) stimulates 
aldosterone biosynthesis in adrenal glomerulosa cells, and its 
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FiGURe 2 | ACTH regulation of steroidogenesis in the adrenal.
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actions are primarily mediated by the protein kinase C  signaling 
cascade, whereas potassium can also stimulate aldosterone 
production through Ca2+-calmodulin-dependent kinase (34). 
Both acute and chronic ACTH treatments can modulate SR-B1, 
including its expression levels as well as its phosphorylation 
status, dimerization, and the interaction with other protein 
partners, all of which result in changes of SR-B1 function. Here, 
we aim at providing a review of the most recent findings relevant 
to these aspects.

ACTH STiMULATiON ReGULATeS 
THe eXPReSSiON OF SR-B1

Initial studies established a functional correlation between SR-B1 
expression, HDL-CE uptake, and the ability of steroidogenic 
cells to produce steroid hormones (8, 35–40). Also, in both lower 
vertebrates (i.e., turtle) and the fruit fly, there is an increase in 
SR-B1 expression that correlates with the peak cholesterol flux 
required during their developmental stages (41). Follow-up stud-
ies revealed that the bulk of the cholesterol for steroidogenesis is 
provided from the selective uptake pathway, which is mediated 
by SR-B1.

Both rodent and human adrenals express exceptionally high 
levels of SR-B1; indeed, the highest expression level of SR-B1 
per gram of tissue has been reported for rodent adrenals (42, 
43). In vivo treatment of rats and mice and in vitro treatment of 
cultured rodent adrenocortical cells with ACTH increased SR-B1 
expression both at the mRNA level and that of SR-B1 protein  
(8, 44). In one of our recent studies, the level of SR-B1 protein in rat 
adrenals shows a trend for increased SR-B1 expression as early as 
1 h after treatment with ACTH (45). Similar stimulation of SR-B1 
expression and regulation by ACTH was also demonstrated for 
cultured human adrenal cells (8, 43, 46, 47). Indeed, low levels of 
SR-B1 mRNA expression seen in normal adrenal tissue adjacent 

to adenomas causing Cushing’s syndrome, where plasma 
ACTH levels are reduced, is consistent with the notion that the 
regulation of human SR-B1 is possibly similar to that reported 
for rodents (43).

Much of the regulation of SR-B1 expression is at the level of 
transcriptional control. The promoter region of both human and 
rat SR-B1 contains binding sites for steroidogenic factor-1 (SF-1) 
(48), which is one of the major transcription factors involved 
in cAMP regulation of the SR-B1 gene (49). In addition, the rat 
promoter has two sterol-responsive elements (SREs) that can 
bind sterol-responsive element-binding protein (SREBP)-1a and 
regulate SR-B1 gene expression in response to altered intracel-
lular sterol levels (50).

Further studies demonstrated that the promoter region of 
SR-B1 contains sites that can bind both positive and negative 
regulators. For the expression of SR-B1 in liver and adipose tissue, 
transcription factors, such as the liver X receptors α and β (LXRα 
and LXRβ) and the peroxisome proliferator-activated receptor α 
(PPARα), have been shown to positively regulate the expression 
of the human SR-B1 gene in response to oxysterols and fibrates, 
respectively (51, 52). Other positive regulators include the liver 
receptor homolog 1 (LRH-1) (53) as well as the estrogen receptors 
α and β (ERα and ERβ), which bind to three different estrogen-
responsive elements on the rat SR-B1 promoter and regulate its 
activity in response to estrogens (54). The negative regulators of 
SR-B1 include the nuclear receptor dorsal-sensitive sex adrenal 
hypoplasia congenital critical region on the X chromosome gene 
1 (DAX-1), a protein that plays an important role in adrenal 
development (49), the Yin Yang 1 (YY1) transcription factor, 
which represses the activity of the SR-B1 promoter by inhibit-
ing the binding of SREBP-1a (55), and the pregnane X receptor, 
which represses the human SR-B1 promoter activity in response 
to the pregnane X receptor agonists rifampicin and lithocholic 
acid (56). Most of the binding sites for these transcription factors 
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reside within the 2.2 kb proximal 5′-flanking region of the SR-B1 
promoter.

In steroidogenic tissues, SR-B1 expression was shown to be 
upregulated by ACTH (8, 44, 46, 57–59). As mentioned above, 
SF-1 was shown to mediate the regulation of SR-B1 gene expres-
sion through the cAMP–PKA pathway by binding to the promoter 
region of SR-B1. The SF-1 binding site in the human SR-B1 pro-
moter (5′-CCAAGGCT-3′) resides 77 bp upstream of the tran-
scription start site, and the SF-1 binding site (5′-TCAAGGCC-3′) 
in the rat SR-B1 promoter is located at −645 bp upstream of the 
translation start site. These two sites share 75% identity (48, 49). 
Both the human and rat SR-B1 promoters were shown to be active 
in mouse adrenocortical tumor Y1 cells, and mutagenesis analysis 
confirmed the involvement of SF-1 in regulating their promoter 
activity. The SF-1 binding motif in the rat SR-B1 promoter was 
shown to be involved in both basal and cAMP-induced regula-
tion of SR-B1 gene expression. Further analysis of the functional 
domains in SF-1 revealed that both amino acids 448–461 and 
phosphorylation at Ser430 by PKA are involved in regulating the 
binding to the consensus sequence in the rat SR-B1 promoter. 
A recent report showed that when glucocorticoid levels are 
elevated, SR-B1 expression can also be inhibited by feedback 
regulation by glucocorticoid (60). In corticosterone-insufficient 
corticotrophin-releasing hormone knockout Crh (−/−) mice, 
there is an increase of SR-B1 mRNA levels in adrenal, and oral 
administration of corticosterone inhibited SR-B1 gene expres-
sion. Further studies reveal that the glucocorticoid receptor (GR) 
can suppress SR-B1 promoter activity. The region between −201 
and −62 of the human SR-B1 promoter was shown to contain 
putative binding sites for transcriptional repressors that are 
involved in mediating glucocorticoid regulation of SR-B1 expres-
sion. However, examination into the mechanism of suppression 
suggested that GR suppression of SR-B1 in adrenal cells occurs 
through an indirect mechanism since no direct binding of GR to 
the SR-B1 promoter was observed. This was the first report show-
ing that by suppressing SR-B1-mediated HDL cholesterol uptake, 
steroidogenic tissues maintain steroid hormone homeostasis 
when the endogenous levels of glucocorticoids are elevated.

Recently, in the search for the cellular and molecular mecha-
nisms involved in the regulation of SR-B1 expression and function 
in steroidogenic cells, we demonstrated that two microRNAs, 
miRNA-125a and miRNA-455, can bind to specific sites in the 
3′ UTR of SR-B1 mRNA and regulate the expression of SR-B1 
(61). The expression of miRNA-125a and miRNA-455 is detected 
in steroidogenic tissue/cells, including adrenal, primary ovarian 
granulosa cells, and model Leydig cell lines. Both ACTH and 
cAMP downregulate the expression of miRNA-125a and miRNA-
455. When either miRNA-125a or miRNA-455 is overexpressed 
or inhibited, the amount of SR-B1 protein expressed on the cell 
surface is decreased or increased, respectively, leading to SR-B1-
mediated selective HDL uptake and SR-B1-supported steroid 
hormone synthesis being inhibited and stimulated, respectively. 
Therefore, our findings suggest that miRNA-125a and miRNA-
455, in response to ACTH stimulation, act as SR-B1 attenuators to 
negatively regulate SR-B1 expression and SR-B1-mediated selec-
tive delivery of lipoprotein cholesterol in steroidogenic cells and, 
consequently, inhibition of SR-B1-supported steroidogenesis.

MODULATiON OF SR-B1 PROTeiN 
FUNCTiON BY ACTH

SR-B1 facilitates HDL-CE selective uptake in two separate 
independent steps: binding of the lipid-rich lipoprotein to the 
extracellular domain (ECD) of SR-B1 and the delivery of the 
CEs from the hydrophobic core of the lipoprotein to the PM 
(62, 63). A specialized cell surface structure, termed “microvil-
lar channels,” was reported to be induced by SR-B1 and shown 
to facilitate selective lipid transfer to inside the cell (64–67). 
Studies using electron microscopy demonstrated the presence of 
microvillar membrane domains in rat ovarian luteal, testicular 
Leydig, and adrenocortical cells. These domains form channels 
at the PM and various lipoproteins, including HDL, get trapped 
within the channels. Immunostaining using specific antibodies 
for SR-B1 revealed that SR-B1 is preferentially localized on these 
domains (65, 66). SR-B1 was also shown to be able to facilitate the 
formation of specific lipid rafts, hence change the properties of 
the PM and, in turn, affect the flux of free cholesterol (67). These 
lipid rafts were indicated to be necessary for the formation of the 
membrane microvillar channels, which are considered a trap for 
HDL particles for enhancing the efficiency of the selective uptake 
of HDL-CE. Interestingly, expression of SR-B1 and microvilli 
are under hormonal regulation; ACTH treatment increases, 
whereas dexamethasone treatment decreases, SR-B1 expression. 
Furthermore, the steady-state levels of adrenal microvilli are dic-
tated by SR-B1. In response to SR-B1 deficiency, mouse adrenal 
microvilli become disorganized, and microvillar channels show a 
disrupted appearance along with substantially reduced binding of 
HDL particles to the cell surface (64–67).

In addition, experiments utilizing mutational analysis of 
SR-B1 or chimeras of CD36/SR-B1 have demonstrated that high 
affinity binding of lipoproteins to the ECD of SR-B1 is important, 
but not sufficient to mediate efficient lipid uptake (68). However, 
at the same time the ECD of SR-B1 does influence the efficient 
transfer of lipid by SR-B1 (69). This dichotomy is highlighted by 
the findings that some chemicals can increase lipoprotein bind-
ing to SR-B1 while actually blocking lipid transfer (70). Further 
studies show that the dominant characteristic of lipoprotein 
binding to SR-B1 involves protein–protein interactions between 
ligand and receptor. Many of the CE donors (HDL, apoA-I/phos-
pholipid bilayer disks, and lipid-free apoA-I) for SR-B1 all share 
class A amphipathic helices that could be the structural feature 
to which SR-B1 is binding (68, 69). In addition, SR-B1 occurs as 
a multimeric complex with itself or other membrane proteins on 
the cell surface to facilitate lipid transfer, and the ECD of SR-B1 
is essential for efficient CE transfer. ACTH has been shown to 
induce changes in the oligomeric status as well as protein interac-
tion of SR-B1 and hence modulates SR-B1 protein function.

ACTH Stimulation Modulates  
the Oligomerization of SR-B1
In response to ACTH stimulation, SR-B1 changes its oligomeric 
status to facilitate CE uptake (for simplicity, here, we use the 
term dimerization to include the multiple forms of the SR-B1 
protein; i.e., dimers and higher order oligomers). In one of the 
earliest direct demonstrations of protein–protein interactions 
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involving SR-B1, SR-B1 was shown to exist as homodimers 
in PMs isolated from rat adrenals stimulated with 17α-ethinyl 
estradiol (70). Subsequently, dimeric and higher order oligomeric 
forms of SR-B1 were shown to exist in all cells and tissues that 
display HDL-CE selective uptake activity (65, 71, 72). In normal 
rat adrenal tissue, SR-B1 exists primarily in a monomeric form 
with some dimer formation. Upon ACTH stimulation, there 
is a significant increase in the dimerization/oligomerization of 
SR-B1 along with increased selective CE uptake. On the other 
hand, dexamethasone-mediated suppression of ACTH leads to 
dramatic loss of SR-B1, SR-B1 dimers/oligomers, and HDL-CE 
selective uptake activity. When combined with the substantial 
architectural alterations of the cell surface as related to microvil-
lar formation, these findings indicate that SR-B1 dimer/oligomer 
formation appears to have significant implications for the expres-
sion of the functional properties of SR-B1.

Studies in adrenal cells and other steroidogenic tissues 
have established a strong correlation between the levels of 
SR-B1 dimers and enhanced HDL-CE selective uptake activity. 
Co-immunoprecipitation with differentially epitope-tagged 
SR-B1s further confirmed that SR-B1 can exist as homodimers 
(71). In addition, in both native steroidogenic cell lines (endog-
enous) and in a heterologous insect cell overexpressing SR-B1, 
dimers/oligomers of SR-B1 were seen when cross-linking agents 
were added to the cell lysates (65). When cellular extracts from 
SR-B1 transfected HEK-293 cells or ACTH-treated Y1-BS1 cells 
were analyzed by size-exclusion chromatography and sucrose 
density centrifugation, a significant portion of SR-B1 eluted at 
peaks that correlate with the size of dimeric and oligomeric forms 
of SR-B1. Immunoelectron microscopy was used as an independ-
ent means for confirming the homodimerization of SR-B1. For 
these experiments, differentially epitope-tagged-SR-B1 proteins 
were co-expressed in HEK-293 cells, and the epitope-tagged 
proteins were subsequently immunostained and identified 
using two differently sized gold particles. The observed mixing 
and clustering of gold particles suggested that the proteins were 
localized to the same regions of the cell and that many of the 
gold particles were in extremely close proximity, i.e., within a 
distance for protein–protein interactions, as detected by fluores-
cent resonance energy transfer (FRET) technique. Similar results 
were obtained when Y1-BS1 mouse adrenocortical cells were 
transfected with differentially epitope-tagged-SR-B1 constructs. 
Interestingly, transfection of Y1-BS1 cells with SR-B1 in these 
experiments resulted in substantial architectural changes with 
the formation of microvillar structures. Gold-labeled secondary 
antibodies localized SR-B1 to these sites and revealed substantial 
dimer formation of this protein – shown by close contact between 
gold particles (71, 72).

Further investigations concentrated on the contribution of the 
cysteine residues in the ECD of SR-B1 either independently or in 
cooperation with the C-terminal domain on SR-B1 dimerization. 
SR-B1 contains a total of eight cysteine (C) residues (C21, C251, 
C280, C321, C323, C334, C384, and C470) and six of them are 
located in the ECD. Mutagenesis studies showed that C280, C321, 
C323, and C334 residues in the ECD are necessary for preserving 
normal SR-B1 (HDL) binding activity, selective CE uptake, and/or 
cell surface expression. Interestingly, mutation of any of these four 

cysteine residues to serine resulted in a robust induction of SR-B1 
dimer formation, but, in contrast to normal SR-B1, these SR-B1 
mutants lost their ability to mediate HDL-CE selective uptake. 
These results indicate that these cysteine residues are most likely 
essential for optimal HDL binding and selective CE uptake (73).

ACTH Stimulation Regulates SR-B1 
interaction with Accessory Proteins
Adrenocorticotropic hormone treatment activates the cAMP–
PKA signaling cascade, and we have recently shown that the 
expression of salt-inducible kinase 1 (SIK1), a serine/threonine 
kinase that belongs to the stress- and energy-sensing AMPK fam-
ily of kinases, is also rapidly induced in Y1 adrenal cells in response 
to ACTH via the cAMP–PKA signaling cascade. Previously, it had 
been suggested that an increased level of SIK1 expression inhibits 
adrenal steroidogenesis by repressing the cAMP-dependent tran-
scription of steroidogenic proteins, CYP11A1 and StAR, by atten-
uating CREB transcriptional activity (74). In contrast, we showed 
that SIK1 stimulates adrenal steroidogenesis by modulating the 
selective HDL-CE transport activity of SR-B1. Overexpression 
of SIK1 increases cAMP-stimulated and SR-B1-mediated selec-
tive HDL-BODIPY-CE uptake in cell lines without impacting 
SR-B1 protein levels, whereas knockdown of SIK1 attenuated 
cAMP-stimulated selective HDL-BODIPY-CE uptake. SIK1 
forms a complex with SR-B1 by interacting with its cytoplasmic 
C-terminal domain, and in  vitro kinase activity measurements 
indicate that SIK1 can phosphorylate the C-terminal domain of 
SR-B1. Among potential phosphorylation sites, SIK1-catalyzed 
phosphorylation of Ser496 is critical for SIK1 stimulation of 
the selective CE transport activity of SR-B1. Mutational studies 
further demonstrated that both the intact catalytic activity of 
SIK1 and its PKA-catalyzed phosphorylation are essential for 
SIK1 stimulation of SR-B1 activity. Finally, overexpression of 
SIK1 caused time-dependent increases in SR-B1-mediated and 
HDL-supported steroid production in Y1 cells; however, these 
effects were lost with knockdown of SR-B1. It should be noted 
that, as opposed to these stimulatory effects of SIK1 on SR-B1 
function, we confirmed that SIK1 does suppress CREB activity, 
which could contribute to the inhibition of steroidogenesis under 
some conditions. Taken together, these studies establish a role 
for SIK1 in the positive regulation of selective HDL-CE transport 
function of SR-B1 and steroidogenesis and suggest a potential 
mechanism for SIK1 signaling in modulating SR-B1-mediated 
selective CE uptake and associated steroidogenesis.

Many studies have also indicated that accessory proteins 
are crucial for the proper cellular expression of SR-B1 and 
SR-B1-mediated HDL-CE transport as well as other functions 
(75–83). For example, it has been shown that PDZK1/NHERF3 
regulates hepatic SR-B1 stability and steady-state protein levels. 
Interestingly, PDZK1/NHERF3 is neither expressed nor essential 
for SR-B1 abundance or its cellular localization in steroidogenic 
cells of the adrenal gland, ovary, and testis (77). Recently, we 
have shown that two other NHERF family members, NHERF1 
and NHERF2, negatively regulate the expression and function 
of SR-B1 in steroidogenic cells of the adrenal and gonads in 
response to ACTH (84). Specifically, we showed that ACTH 
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FiGURe 3 | ACTH regulation of SR-B1 in the adrenal. ACTH binds to its G protein-coupled receptor, leading to the activation of adenylate cyclase, which 
generates cAMP and activates cAMP-dependent protein kinase (PKA). The cAMP–PKA signaling cascade can regulate SR-B1 expression and function at different 
levels. (I) Transcriptional control: PKA increases the phosphorylation of transcription factors, such as SF1, leading to increased promoter activity of SR-B1. (II) 
Posttranscriptional control: PKA increases the expression of miRNA-125a and miRNA-455, which can bind to the 3′ UTR of SR-B1 mRNA and negatively regulate 
SR-B1 expression. (III) Posttranslational control: PKA induces the oligomerization of SR-B1 and stimulates an interaction with SIK1, leading to phosphorylation of 
SR-B1, both events resulting in increased SR-B1 protein function. PKA can also increase the interaction of SR-B1 with NHERF1 and NHERF2, which negatively 
regulate SR-B1 function.
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treatment decreases NHERF1 and NHERF2 protein levels in rat 
adrenals and increases SR-B1 function. Co-immunoprecipitation, 
colocalization, bimolecular fluorescence complementation, and 
mutational analysis all indicated that NHERF1 and NHERF2 
form complexes with SR-B1 protein and, as a result, inhibit 
SR-B1-mediated selective CE transport and steroidogenesis. 
Moreover, we demonstrated that the structural components 
required for NHERF1/2 to interact with SR-B1 included an intact 
COOH-terminal PDZ recognition motif (EAKL) in SR-B1 as well 
as the PDZ1 or PDZ2 domain of NHERF1, the PDZ2 domain 
of NHERF2, or the MERM domains of NHERF1/2. The de novo 
synthesis of SR-B1 was also inhibited by both NHERF1 and 
NHERF2 (84). In contrast to NHERF1 and NHERF2, NHERF4 
had no effect on selective HDL-CE uptake or steroidogenesis. 
Altogether, these experiments demonstrated that NHERF1 and 
NHERF2 bind SR-B1 and negatively regulate SR-B1 expression, 
selective CE transport, and steroidogenesis (84).

ACTH AND ReGULATiON OF SR-B1 
UNDeR PATHOPHYSiOLOGiCAL 
CONDiTiONS

Since ACTH tightly regulates SR-B1 gene transcription, it should be 
expected that any pathophysiological conditions that affect ACTH 
levels would also impact SR-B1 gene expression in an identical 

manner. However, there is the possibility that altered SR-B1 func-
tion may represent an adaptive response to cope with stressful 
conditions. Indeed, results from studies of mice that underwent 
chronic psychosocial stress exhibited an exaggerated adrenal cor-
ticosterone response along with elevated SR-B1 protein levels (85). 
On the other hand, since adrenal cholesterol uptake is required for 
the production of anti-inflammatory glucocorticoids, gene deletion 
of functional SR-B1 in adrenals results in impaired steroid synthe-
sis (86). Other studies using SR-B1 knockout mice demonstrated 
that SR-B1 can protect mice against endotoxemia (87). There is an 
uncontrolled robust inflammatory cytokine response in the SR-B1 
deficient animals, and they exhibit higher lethality when chal-
lenged with LPS-doses that induce endotoxic shock. Furthermore, 
these animals also exhibit a dysregulated adrenal glucocorticoid-
mediated stress response to fasting. In addition, fasting-induced 
elevated levels of serum ACTH were the consequence of adrenal 
glucocorticoid insufficiency in SR-B1 knockout mice (86). Finally, 
when SR-B1 was only selectively deleted in adrenocortical cells in 
a tissue-specific manner, the animals had impaired rates of gluco-
corticoid secretion in response to stress, especially when they were 
subjected to an endotoxin challenge; these animals with SR-B1 
ablated only in adrenocortical cells showed enhanced local and 
systematic inflammatory response, blunted activation of atrophy 
genes in skeletal muscle, and have a high incidence of mortality (88). 
In the setting of acute stress, where the release of corticosterone in 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


7

Shen et al. Adrenal SR-B1

Frontiers in Endocrinology | www.frontiersin.org May 2016 | Volume 7 | Article 42

ReFeReNCeS

1. McKenna T, Fearon U, Clarke D, Cunningham S. A critical review of the 
origin and control of adrenal androgens. Baillieres Clin Obstet Gynecol (1997) 
11:229–48. doi:10.1016/S0950-3552(97)80035-1 

2. Miller W. Androgen biosynthesis from cholesterol to DHEA. Mol Cell 
Endocrinol (2002) 198:7–14. doi:10.1016/S0303-7207(02)00363-5 

3. Davis WW, Garren LD. On the mechanism of action of adrenocorticotropic 
hormone. The inhibitory site of cycloheximide in the pathway of steroid 
biosynthesis. J Biol Chem (1968) 243:5153–7. 

4. Garren LD, Ney RL, Davis WW. Studies on the role of protein synthesis 
in the regulation of corticosterone production by adrenocorticotropic 
hormone in vivo. Proc Natl Acad Sci U S A (1965) 53:1443–50. doi:10.1073/
pnas.53.6.1443 

5. Andersen JM, Dietschy JM. Relative importance of high and low density 
lipoproteins in the regulation of cholesterol synthesis in the adrenal gland, 
ovary, and testis of the rat. J Biol Chem (1978) 253:9024–32. 

6. Gwynne JT, Strauss JF III. The role of lipoproteins in steroidogenesis and 
cholesterol metabolism in steroidogenic glands. Endocr Rev (1982) 3:299–329. 
doi:10.1210/edrv-3-3-299 

7. Kraemer FB. Adrenal cholesterol utilization. Mol Cell Endocrinol (2007) 
26(5–266):42–5. doi:10.1016/j.mce.2006.12.001 

8. Rigotti A, Edelmann E, Seifert P, Iqbal S, DeMattos R, Temel R, et  al. 
Regulation by adrenocorticotropic hormone of the in  vivo expression of 
scavenger receptor class B type I (SR-BI), a high density lipoprotein recep-
tor, in steroidogenic cells of the murine adrenal gland. J Biol Chem (1996) 
271:33545–9. doi:10.1074/jbc.271.52.33545 

9. Connelly M, Klein S, Azhar S, Abumrad N. Comparison of class B scavenger 
receptors, CD36, and scavenger receptor BI (SR-BI), shows that both receptors 
mediate high-density lipoprotein-cholesteryl ester selective uptake bu SR-BI 
exhibits a unique enhancement of cholesteryl ester uptake. J Biol Chem (1999) 
274:41–7. doi:10.1074/jbc.274.1.41 

10. Stangl H, Cao G, Wyne KL, Hobbs HH. Scavenger receptor, class B, type 
I-dependent stimulation of cholesterol esterification by high density 

lipoproteins, low density lipoproteins, and nonlipoprotein cholesterol. J Biol 
Chem (1998) 273:31002–8. doi:10.1074/jbc.273.47.31002 

11. Swarnakar S, Temel RE, Connelly MA, Azhar S, Williams DL. Scavenger 
receptor class B, type I, mediates selective uptake of low density lipo-
protein cholesteryl ester. J Biol Chem (1999) 274:29733–9. doi:10.1074/
jbc.274.42.29733 

12. Simpson E, Lauber M, Demeter M, Means G, Mahendroo M, Kilgore 
M, et  al. Regulation of expression of the genes encoding steroidogenic 
enzymes in the ovary. J Steroid Biochem Mol Biol (1992) 41:409–13. 
doi:10.1016/0960-0760(92)90366-Q 

13. Faust JR, Goldstein JL, Brown MS. Receptor-mediated uptake of low density 
lipoprotein and utilization of its cholesterol for steroid synthesis in cultured 
mouse adrenal cells. J Biol Chem (1977) 252:4861–71. 

14. Miller WL, Bose HS. Early steps in steroidogenesis: intracellular cholesterol 
trafficking thematic review series: genetics of human lipid diseases. J Lipid Res 
(2011) 52:2111–35. doi:10.1194/jlr.R016675 

15. Connelly MA, Kellner-Weibel G, Rothblat GH, Williams DL. SR-BI-directed 
HDL-cholesteryl ester hydrolysis. J Lipid Res (2003) 44:331–41. doi:10.1194/
jlr.M200186-JLR200 

16. Kraemer FB, Shen WJ, Harada K, Patel S, Osuga J, Ishibashi S, et  al. 
Hormone-sensitive lipase is required for high-density lipoprotein cholesteryl 
ester-supported adrenal steroidogenesis. Mol Endocrinol (2004) 18:549–57. 
doi:10.1210/me.2003-0179 

17. Vahouny GV, Chanderbhan R, Hinds R, Hodges VA, Treadwell CR. ACTH-
induced hydrolysis of cholesteryl esters in rat adrenal cells. J Lipid Res (1978) 
19:570–7. 

18. Kraemer FB, Shen WJ, Natu V, Patel S, Osuga J, Ishibashi S, et al. Adrenal 
neutral cholesteryl hydrolase: identification, subcellular distribution 
and sex differences. Endocrinology (2002) 143:801–6. doi:10.1210/
endo.143.3.8693 

19. Kraemer FB, Shen WJ, Patel S, Osuga J, Ishibashi S, Azhar S. The LDL receptor 
is not necessary for acute adrenal steroidogenesis in mouse adrenocortical 
cells. Am J Physiol Endocrinol Metab (2007) 292:E408–12. doi:10.1152/
ajpendo.00428.2006 

rodents or cortisol in humans peaks rapidly and declines quickly, it 
is likely that posttranslational regulation of SR-B1, such as protein 
phosphorylation and dimerization, could be more important in 
the regulation of steroidogenesis than transcriptional control. In 
contrast, under chronic stress conditions, mechanisms regulating 
SR-B1 at the transcriptional level and/or through miRNAs would 
appear to be more relevant.

Some of the adrenal steroid hormones, i.e., glucocorticoids, 
display robust daily variations in circulation under the circadian 
control by ACTH, and their rhythmic activity is considered to 
play important roles in whole body health and disease (89, 
90). Ablation of one of the genes involved in circadian control, 
BMAL1, results in loss of circadian regulation of glucocorticoids. 
The BMAL1-deficient animals showed impaired response to 
ACTH regulation of adrenal function and downregulation of 
genes involved in cholesterol transport, such as StAR and LDLR, 
in adrenals (89). There is a well-accepted concept of the adrenal 
clock, with evidence of differential responses between males and 
females (91). While studies have shown a circadian variation in 
the expression of several genes involved in regulating the steroid 
production, no publications have specifically examined whether 
SR-B1 expression and/or function displays a circadian rhythm, but 
this is likely in view of the known regulation of SR-B1 by ACTH.

In summary, through binding to its G protein-coupled recep-
tors, leading to the activation of adenylate cyclase, which generates 
cAMP and activates PKA, ACTH exerts tight regulation of SR-B1 
function in the adrenal at three different levels. As illustrated in 

Figure 3, increased cAMP–PKA signaling can increase the phos-
phorylation of transcription factors, such as SF1, and stimulate 
promoter activity of SR-B1. ACTH can increase the expression 
of miRNA-125 and miRNA-455, which can bind to the 3′ UTR 
of SR-B1 and result in suppressed expression and function of 
SR-B1 protein. Increased cAMP–PKA signaling can induce 
oligomerization of SR-B1 as well as stimulate phosphorylation of 
SIK1, which, in turn, increases the phosphorylation of SR-B1 and 
results in increased function of SR-B1 protein. Meanwhile, ACTH 
can also induce the expression of NHERF1 and NHERF2, both of 
which can bind to SR-B1 and negatively regulate SR-B1 function. 
Altered SR-B1 function may represent an adaptive response to 
cope with stressful conditions, as demonstrated by ablation of 
SR-B1 resulting in disturbed anti-inflammatory glucocorticoid 
homeostasis and impaired steroid synthesis.

AUTHOR CONTRiBUTiONS

All authors listed, have made substantial, direct and intellectual 
contribution to the work, and approved it for publication.

FUNDiNG

This work was supported by the Office of Research and 
Development, Medical Service, Department of Veterans 
Affairs and by the National Institutes of Health, NHLBI, grant 
2R01HL33881.

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive
http://dx.doi.org/10.1016/S0950-3552(97)80035-1
http://dx.doi.org/10.1016/S0303-7207(02)00363-5
http://dx.doi.org/10.1073/pnas.53.6.1443
http://dx.doi.org/10.1073/pnas.53.6.1443
http://dx.doi.org/10.1210/edrv-3-3-299
http://dx.doi.org/10.1016/j.mce.2006.12.001
http://dx.doi.org/10.1074/jbc.271.52.33545
http://dx.doi.org/10.1074/jbc.274.1.41
http://dx.doi.org/10.1074/jbc.273.47.31002
http://dx.doi.org/10.1074/jbc.274.42.29733
http://dx.doi.org/10.1074/jbc.274.42.29733
http://dx.doi.org/10.1016/0960-0760(92)90366-Q
http://dx.doi.org/10.1194/jlr.R016675
http://dx.doi.org/10.1194/jlr.M200186-JLR200
http://dx.doi.org/10.1194/jlr.M200186-JLR200
http://dx.doi.org/10.1210/me.2003-0179
http://dx.doi.org/10.1210/endo.143.3.8693
http://dx.doi.org/10.1210/endo.143.3.8693
http://dx.doi.org/10.1152/ajpendo.00428.2006
http://dx.doi.org/10.1152/ajpendo.00428.2006


8

Shen et al. Adrenal SR-B1

Frontiers in Endocrinology | www.frontiersin.org May 2016 | Volume 7 | Article 42

20. Verschoor-Klootwyk AH, Verchoor L, Azhar S, Reaven GM. Role of exoge-
nous cholesterol in regulation of adrenal steroidogenesis in the rat. J Biol Chem 
(1982) 257:7666–71. 

21. Xie C, Richardson JA, Turley SD, Dietschy JM. Cholesterol substrate pools and 
steroid hormone levels are normal in the face of mutational inactivation of 
NPC1 protein. J Lipid Res (2006) 47:953–63. doi:10.1194/jlr.M500534-JLR200 

22. Pon LA, Hartigan JA, Orme-Johnson NR. Acute ACTH regulation of adrenal 
corticosteroid biosynthesis. Rapid accumulation of a phosphoprotein. J Biol 
Chem (1986) 261:13309–16. 

23. Pon LA, Orme-Johnson NR. Acute stimulation of corpus luteum cells by 
gonadotrophin or adenosine 3′,5′-monophosphate causes accumulation 
of a phosphoprotein concurrent with acceleration of steroid synthesis. 
Endocrinology (1988) 123:1942–8. doi:10.1210/endo-123-4-1942 

24. Epstein L, Orme-Johnson N. Regulation of steroid hormone biosynthesis: 
identification of precursors of a phosphoprotein targeted to the mitochon-
drion in stimulated rat adrenal cortex cells. J Biol Chem (1991) 266:19739–45. 

25. Stocco D, Clark B. Regulation of the acute production of steroids in ste-
roidogenic cells. Endocr Rev (1996) 17:221–44. doi:10.1210/er.17.3.221 

26. Miller WL. Molecular biology of steroid hormone synthesis. Endocr Rev 
(1988) 9:295–318. doi:10.1210/edrv-9-3-295 

27. Simpson ER, Waterman MR. Regulation of the synthesis of steroidogenic 
enzymes in adrenal cortical cells by ACTH. Annu Rev Physiol (1988) 
50:427–40. doi:10.1146/annurev.ph.50.030188.002235 

28. Payne AH, Youngblood GL, Sha L, Burgos-Trinidad M, Hammond SH. Hormonal 
regulation of steroidogenic enzyme gene expression in Leydig cells. J Steroid 
Biochem Mol Biol (1992) 43:895–906. doi:10.1016/0960-0760(92)90317-C 

29. LaVoie H, King S. Transcriptional regulation of steroidogenic genes: STARD1, 
CYP11A1 and HSD3B. Exp Biol Med (Maywood) (2009) 234:880–907. 
doi:10.3181/0903-MR-97 

30. JM M. The role of cyclic AMP in gonadal arteroidogenesis. Biol Reprod (1976) 
14:30–53. doi:10.1095/biolreprod14.1.30 

31. Simpson E, Waternan M. Regulation by ACTH of steroid hormone bio-
synthesis in the adrenal cortex. Can J Biochem Cell Biol (1983) 61:692–707. 
doi:10.1139/o83-088 

32. Sanorn B, Heindel J, Robinson G. The role of cyclic nucleotides in the repro-
ductive processes. Ann Rev Physiol (1980) 42:37–57. doi:10.1146/annurev.
ph.42.030180.000345 

33. Strauss J, Golos T, Silavin S, Soto E, Takagi K. Involvement of cyclic AMP in 
the functions of granulosa and luteal cells: regulation of steroidogenesis. Prog 
Clin Biol Res (1988) 267:177–200. 

34. Spat A, Hunyady L. Control of aldosterone secretion: a model for convergence 
in cellular signaling pathways. Physiol Rev (2004) 84:489–539. doi:10.1152/
physrev.00030.2003 

35. Reaven E, Spicher M, Azhar S. Microvillar channels: a unique plasma 
membrane compartment for concentrating lipoproteins on the surface of rat 
adrenal cortical cells. J Lipid Res (1989) 30:1551–60. 

36. Plump AS, Erickson SK, Weng W, Partin JS, Breslow JL, Williams DL. 
Apolipoprotein A-I is required for cholesteryl ester accumulation in 
steroidogenic cells and for normal adrenal steroid production. J Clin Invest 
(1996) 97:2660–71. doi:10.1172/JCI118716 

37. Landschulz K, Pathak R, Rigotti A, Krieger M, Hobb H. Regulation of scav-
enger receptor, class B, type I, a high density lipoprotein receptor, in liver and 
steroidogenic tissues of the rat. J Clin Invest (1996) 98:984–5. doi:10.1172/
JCI118883 

38. Azhar S, Nomoto A, Leers-Sucheta S, Reaven E. Simultaneous induction of 
an HDL receptor protein (SR-BI) and the selective uptake of HDL-cholesteryl 
esters in a physiologically relevant steroiodgenic cell model. J Lipid Res (1998) 
39:1616–28. 

39. Gwynne JT, Hughes T, Hess B. Characterization of high density lipoprotein 
binding activity in rat adrenocortical cells. J Lipid Res (1984) 25:1059–71. 

40. Gwynne JT, Hess B. The role of high density lipoproteins in rat adrenal cho-
lesterol metabolism and steroidogenesis. J Biol Chem (1980) 255:10875–83. 

41. Duggan A, Marie R, Callard I. Expression of SR-BI (scavenger receptor class 
B type I) in turtle (Chrysemys picta) tissues and other nonmammalian verte-
brates. J Exp Zool (2002) 292:430–4. doi:10.1002/jez.10067 

42. Acton S, Rigotti A, Landschultz K, Xu S, Hobs H, Krieger M. Identification of 
scavenger receptor SR-BI as a high density lipoprotein receptor. Science (1996) 
271:518–20. doi:10.1126/science.271.5248.518 

43. Liu J, Voutilainen R, Heikkila P, Kahri AI. Ribonucleic acid expression of the 
CLA-1 gene, a human homolog to mouse high density lipoprotein receptor 
SR-BI, in human adrenal tumors and cultured adrenal cells. J Clin Endocrinol 
Metab (1997) 82:2522–7. doi:10.1210/jcem.82.6.3968 

44. Wang N, Weng W, Breslow JL, Tall AR. Scavenger receptor BI (SR-BI) is 
up-regulated in adrenal gland in apolipoprotein A-I and hepatic lipase knock-
out mice as a response to depletion of cholesterol stores. In vivo evidence that 
SR-BI is a functional high density lipoprotein receptor under feedback control. 
J Biol Chem (1996) 271:21001–4. 

45. Hu Z, Hu J, Shen WJ, Kraemer FB, Azhar S. A novel role of salt-inducible kinase 
1 (SIK1) in the post-translational regulation of scavenger receptor class B type 
1 activity. Biochemistry (2015) 54:6917–30. doi:10.1021/acs.biochem.5b00147 

46. Sun Y, Wang N, Tall AR. Regulation of adrenal scavenger receptor-BI expres-
sion by ACTH and cellular cholesterol pools. J Lipid Res (1999) 40:1799–805. 

47. Martin G, Pilon A, Albert C, Valle M, Hum DW, Fruchart JC, et  al. 
Comparison of expression and regulation of the high-density lipoprotein 
receptor SR-BI and the low-density lipoprotein receptor in human adre-
nocortical carcinoma NCI-H295 cells. Eur J Biochem (1999) 261:481–91. 
doi:10.1046/j.1432-1327.1999.00296.x 

48. Cao G, Garcia CK, Wyne KL, Schultz RA, Parker KL, Hobbs HH. Structure 
and localization of the human gene encoding SR-BI/CLA-1. Evidence 
for transcriptional control by steroidogenic factor 1. J Biol Chem (1997) 
272:33068–76. doi:10.1074/jbc.272.52.33068 

49. Lopez D, Sandhoff TW, McLean MP. Steroidogenic factor-1 mediates cyclic 
3′,5′-adenosine monophosphate regulation of the high density lipoprotein 
receptor. Endocrinology (1999) 140:3034–44. doi:10.1210/en.140.7.3034 

50. Lopez D, McLean MP. Sterol regulatory element-binding protein-1a binds to 
cis elements in the promoter of the rat high density lipoprotein receptor SR-BI 
gene. Endocrinology (1999) 140:5669–81. doi:10.1210/endo.140.12.7220 

51. Malerod L, Juvet LK, Hanssen-Bauer A, Eskild W, Berg T. Oxysterol-activated 
LXRalpha/RXR induces hSR-BI-promoter activity in hepatoma cells and 
preadipocytes. Biochem Biophys Res Commun (2002) 299:916–23. doi:10.1016/
S0006-291X(02)02760-2 

52. Lopez D, McLean MP. Activation of the rat scavenger receptor class B type 
I gene by PPARalpha. Mol Cell Endocrinol (2006) 251:67–77. doi:10.1016/j.
mce.2006.02.011 

53. Schoonjans K, Annicotte JS, Huby T, Botrugno OA, Fayard E, Ueda Y, et al. 
Liver receptor homolog 1 controls the expression of the scavenger receptor 
class B type I. EMBO Rep (2002) 3:1181–7. doi:10.1093/embo-reports/
kvf238 

54. Lopez D, Sanchez MD, Shea-Eaton W, McLean MP. Estrogen activates the 
high-density lipoprotein receptor gene via binding to estrogen response 
elements and interaction with sterol regulatory element binding protein-1A. 
Endocrinology (2002) 143:2155–68. doi:10.1210/endo.143.6.8855 

55. Shea-Eaton W, Lopez D, McLean MP. Yin yang 1 protein negatively regulates 
high-density lipoprotein receptor gene transcription by disrupting binding 
of sterol regulatory element binding protein to the sterol regulatory element. 
Endocrinology (2001) 142:49–58. doi:10.1210/endo.142.4.8075 

56. Sporstol M, Tapia G, Malerod L, Mousavi SA, Berg T. Pregnane X recep-
tor-agonists down-regulate hepatic ATP-binding cassette transporter A1 
and scavenger receptor class B type I. Biochem Biophys Res Commun (2005) 
331:1533–41. doi:10.1016/j.bbrc.2005.04.071 

57. Temel RE, Trigatti B, DeMattos RB, Azhar S, Krieger M, Williams DL. 
Scavenger receptor class B, type I (SR-BI) is the major route for the delivery of 
high density lipoprotein cholesterol to the steroidogenic pathway in cultured 
mouse adrenocortical cells. Proc Natl Acad Sci U S A (1997) 94:13600–5. 
doi:10.1073/pnas.94.25.13600 

58. Cao G, Zhao L, Stangl H, Hasegawa T, Richardson J, Parker K, et  al. 
Developmental and hormonal regulation of murine scavenger receptor, class 
B, type 1. Mol Endocrinol (1999) 13:1460–73. doi:10.1210/mend.13.9.0346 

59. Vieira-van Bruggen D, Kalkman I, van Gent T, van Tol A, Jansen H. 
Induction of adrenal scavenger receptor BI and increased high density 
 lipoprotein-cholesteryl ether uptake by in  vivo inhibition of hepatic lipase. 
J Biol Chem (1998) 273:32038–41. doi:10.1074/jbc.273.48.32038 

60. Mavridou S, Venihaki M, Rassouli O, Tsatsanis C, Kardassis D. Feedback 
inhibition of human scavenger receptor class B type I gene expression by glu-
cocorticoid in adrenal and ovarian cells. Endocrinology (2010) 151:3214–24. 
doi:10.1210/en.2009-1302 

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive
http://dx.doi.org/10.1194/jlr.M500534-JLR200
http://dx.doi.org/10.1210/endo-123-4-1942
http://dx.doi.org/10.1210/er.17.3.221
http://dx.doi.org/10.1210/edrv-9-3-295
http://dx.doi.org/10.1146/annurev.ph.50.030188.002235
http://dx.doi.org/10.1016/0960-0760(92)90317-C
http://dx.doi.org/10.3181/0903-MR-97
http://dx.doi.org/10.1095/biolreprod14.1.30
http://dx.doi.org/10.1139/o83-088
http://dx.doi.org/10.1146/annurev.ph.42.030180.000345
http://dx.doi.org/10.1146/annurev.ph.42.030180.000345
http://dx.doi.org/10.1152/physrev.00030.2003
http://dx.doi.org/10.1152/physrev.00030.2003
http://dx.doi.org/10.1172/JCI118716
http://dx.doi.org/10.1172/JCI118883
http://dx.doi.org/10.1172/JCI118883
http://dx.doi.org/10.1002/jez.10067
http://dx.doi.org/10.1126/science.271.5248.518
http://dx.doi.org/10.1210/jcem.82.6.3968
http://dx.doi.org/10.1021/acs.biochem.5b00147
http://dx.doi.org/10.1046/j.1432-1327.1999.00296.x
http://dx.doi.org/10.1074/jbc.272.52.33068
http://dx.doi.org/10.1210/en.140.7.3034
http://dx.doi.org/10.1210/endo.140.12.7220
http://dx.doi.org/10.1016/S0006-291X(02)02760-2
http://dx.doi.org/10.1016/S0006-291X(02)02760-2
http://dx.doi.org/10.1016/j.mce.2006.02.011
http://dx.doi.org/10.1016/j.mce.2006.02.011
http://dx.doi.org/10.1093/embo-reports/kvf238
http://dx.doi.org/10.1093/embo-reports/kvf238
http://dx.doi.org/10.1210/endo.143.6.8855
http://dx.doi.org/10.1210/endo.142.4.8075
http://dx.doi.org/10.1016/j.bbrc.2005.04.071
http://dx.doi.org/10.1073/pnas.94.25.13600
http://dx.doi.org/10.1210/mend.13.9.0346
http://dx.doi.org/10.1074/jbc.273.48.32038
http://dx.doi.org/10.1210/en.2009-1302


9

Shen et al. Adrenal SR-B1

Frontiers in Endocrinology | www.frontiersin.org May 2016 | Volume 7 | Article 42

61. Hu Z, Shen W, Kraemer F, Azhar S. MicroRNAs 125a and 455 repress lipo-
protein-supported steroidogenesis by targeting scavenger receptor class B 
type I in steroidogenic cells. Mol Cell Biol (2012) 32:5035–45. doi:10.1128/
MCB.01002-12 

62. Rigotti A, Miettinen H, Krieger M. The role of the high-density lipoprotein 
receptor SR-BI in the lipid metabolism of endocrine and other tissues. Endocr 
Rev (2003) 24:357–87. doi:10.1210/er.2001-0037 

63. Gu X, Trigatti B, Xu S, Acton S, Babitt J, Krieger M. The efficient cellular 
uptake of high density lipoprotein lipids via scavenger receptor class B type I 
requires not only receptor-mediated surface binding but also  receptor-specific 
lipid transfer mediated by its extracellular domain. J Biol Chem (1998) 
273:26338–48. doi:10.1074/jbc.273.41.26338 

64. Reaven E, Zhan L, Nomoto A, Leers-Sucheta S, Azhar S. Expression and 
microvillar localization of scavenger receptor class B, type I (SR-BI) and 
selective cholesteryl ester uptake in Leydig cells from rat testis. J Lipid Res 
(2000) 41:343–56. 

65. Reaven E, Leers-Sucheta S, Nomoto A, Azhar S. Expression of scavenger 
receptor class B type 1 (SR-BI) promotes microvillar channel formation and 
selective cholesteryl ester transport in a heterologous reconstituted system. 
Proc Natl Acad Sci U S A (2001) 98:1613. doi:10.1073/pnas.98.4.1613 

66. Williams DL, Wong JS, Hamilton RL. SR-BI is required for microvillar channel 
formation and the localization of HDL particles to the surface of adrenocorti-
cal cells in vivo. J Lipid Res (2002) 43:544–9. 

67. Peng Y, Akmentin W, Connelly M, Lund-Katz S, Phillips M, Williams D. 
Scavenger receptor BI (SR-BI) clustered on microvillar extensions suggests 
that this plasma membrane domain is a way station for cholesterol trafficking 
between cells and high-density lipoprotein. Mol Biol Cell (2004) 15:384–96. 
doi:10.1091/mbc.E03-06-0445 

68. Bocharov A, Baranova I, Vishnyakova T, Remaley A, Csako G, Thomas F, 
et al. Targeting of scavenger receptor class B type I by synthetic amphipathic 
alpha-helical-containing peptides blocks lipopolysaccharide (LPS) uptake and 
LPS-induced pro-inflammatory cytokine responses in THP-1 monocyte cells. 
J Biol Chem (2004) 279:36072–82. doi:10.1074/jbc.M314264200 

69. Thuahnai S, Lund-Katz S, Anantharamaiah G, Williams D, Phillips M.  
A quantitative analysis of apolipoprotein binding to SR-BI: multiple binding 
sites for lipid-free and lipid-associated apolipoproteins. J Lipid Res (2003) 
44:1132–42. doi:10.1194/jlr.M200429-JLR200 

70. Azhar S, Nomoto A, Reaven E. Hormonal regulation of adrenal microvillar 
channel formation. J Lipid Res (2002) 43:861–71. 

71. Reaven E, Nomoto A, Cortez Y, Azhar S. Consequences of over-expression 
of rat scavenger receptor, SR-BI, in an adrenal cell model. Nutr Metab (Lond) 
(2006) 3:43. doi:10.1186/1743-7075-3-43 

72. Reaven E, Cortez Y, Leers-Sucheta S, Nomoto A, Azhar S. Dimerization of 
the scavenger receptor class B type I: formation, function, and localization 
in diverse cells and tissues. J Lipid Res (2004) 45:513–28. doi:10.1194/jlr.
M300370-JLR200 

73. Hu J, Zhang Z, Shen W, Nomoto A, Azhar S. Differential roles of cysteine resi-
dues in the cellular trafficking, dimerization, and function of the high-density 
lipoprotein receptor, SR-BI. Biochemistry (2011) 50:10860–75. doi:10.1021/
bi201264y 

74. Spiga F, Liu Y, Aguilera G, Lightman SL. Temporal effect of adrenocorticotrophic 
hormone on adrenal glucocorticoid steroidogenesis: involvement of the trans-
ducer of regulated cyclic AMP-response element-binding protein activity. 
J Neuroendocrinol (2011) 23:136–42. doi:10.1111/j.1365-2826.2010.02096.x 

75. Ikemoto M, Arai H, Feng D, Tanaka K, Aoki J, Dohmae N, et al. Identification 
of a PDZ-domain-containing protein that interacts with the scavenger recep-
tor class B type I. Proc Natl Acad Sci U S A (2000) 97:6538–43. doi:10.1073/
pnas.100114397 

76. Silver D. A carboxyl-terminal PDZ-interacting domain of scavenger receptor 
B, type I is essential for cell surface expression in liver. J Biol Chem (2002) 
277:34042–7. doi:10.1074/jbc.M206584200 

77. Kocher O, Yesilaltay A, Cirovic C, Pal R, Rigotti A, Krieger M. Targeted 
disruption of the PDZK1 gene in mice causes tissue-specific depletion of the 
high density lipoprotein receptor scavenger receptor class B type I and altered 

lipoprotein metabolism. J Biol Chem (2003) 278:52820–5. doi:10.1074/jbc.
M310482200 

78. Komori H, Arai H, Kashima T, Huby T, Kita T, Ueda Y. Coexpression of 
CLA-1 and human PDZK1 in murine liver modulates HDL cholesterol 
metabolism. Arterioscler Thromb Vasc Biol (2008) 28:1298–303. doi:10.1161/
ATVBAHA.108.165845 

79. Robichaud J, Francis G, Vance D. A role for hepatic scavenger receptor class B, 
type I in decreasing high density lipoprotein levels in mice that lack phospha-
tidylethanolamine N-methyltransferase. J Biol Chem (2008) 283:35496–506. 
doi:10.1074/jbc.M807433200 

80. Zhu W, Saddar S, Seetharam D, Chambliss K, Longoria C, Silver D, et  al. 
The scavenger receptor class B type I adaptor protein PDZK1 maintains 
endothelial monolayer integrity. Circ Res (2008) 102(4):480–7. doi:10.1161/
CIRCRESAHA.107.159079 

81. Fenske S, Yesilaltay A, Pal R, Daniels K, Barker C, Quiñones V, et al. Normal 
hepatic cell surface localization of the high density lipoprotein receptor, scav-
enger receptor class B, type I, depends on all four PDZ domains of PDZK1. 
J Biol Chem (2009) 284:5797–806. doi:10.1074/jbc.M808211200 

82. Eyre N, Drummer H, Beard M. The SR-BI partner PDZK1 facilitates hep-
atitis C virus entry. PLoS Pathog (2010) 6:e1001130. doi:10.1371/journal.
ppat.1001130 

83. Kocher O, Krieger M. Role of the adaptor protein PDZK1 in controlling 
the HDL receptor SR-BI. Curr Opin Lipidol (2009) 20:236–41. doi:10.1097/
MOL.0b013e32832aee82 

84. Hu Z, Hu J, Zhang Z, Shen W, Yun C, Berlot C, et al. Regulation of expression and 
function of scavenger receptor class B, type I (SR-BI) by Na+/H+ exchanger 
regulatory factors (NHERFs). J Biol Chem (2013) 2013(288):11416–35. 
doi:10.1074/jbc.M112.437368 

85. Fuchsl AM, Uschold-Schmidt N, Reber SO. Chronic psychosocial stress in 
male mice causes an up-regulation of scavenger receptor class B type 1 protein 
in the adrenal glands. Stress (2013) 16:461–8. doi:10.3109/10253890.2013.79
3303 

86. Hoekstra M, Meurs I, Koenders M, Out R, Hildebrand RB, Kruijt JK, et al. 
Absence of HDL cholesteryl ester uptake in mice via SR-BI impairs an ade-
quate adrenal glucocorticoid-mediated stress response to fasting. J Lipid Res 
(2008) 49:738–45. doi:10.1194/jlr.M700475-JLR200 

87. Cai L, Ji A, de Beer FC, Tannock LR, van der Westhuyzen DR. SR-BI protects 
against endotoxemia in mice through its roles in glucocorticoid production 
and hepatic clearance. J Clin Invest (2008) 118:364–75. doi:10.1172/JCI31539 

88. Gilibert S, Galle-Treger L, Moreau M, Saint-Charles F, Costa S, Ballaire R, 
et al. Adrenocortical scavenger receptor class B type I deficiency exacerbates 
endotoxic shock and precipitates sepsis-induced mortality in mice. J Immunol 
(2014) 193:817–26. doi:10.4049/jimmunol.1303164 

89. Leliavski A, Shostak A, Husse J, Oster H. Impaired glucocorticoid production 
and response to stress in Arntl-deficient male mice. Endocrinology (2014) 
155:133–42. doi:10.1210/en.2013-1531 

90. Kil IS, Lee SK, Ryu KW, Woo HA, Hu MC, Bae SH, et al. Feedback control 
of adrenal steroidogenesis via H2O2-dependent, reversible inactivation of 
peroxiredoxin III in mitochondria. Mol Cell (2012) 46:584–94. doi:10.1016/j.
molcel.2012.05.030 

91. Kloehn I, Pillai SB, Officer L, Klement C, Gasser PJ, Evans JA. Sexual dif-
ferentiation of circadian clock function in the adrenal gland. Endocrinology 
(2016):en20151968. doi:10.1210/en.2015-1968 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2016 Shen, Azhar and Kraemer. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License (CC BY). The use, 
distribution or reproduction in other forums is permitted, provided the original 
author(s) or licensor are credited and that the original publication in this journal 
is cited, in accordance with accepted academic practice. No use, distribution or 
reproduction is permitted which does not comply with these terms.

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive
http://dx.doi.org/10.1128/MCB.01002-12
http://dx.doi.org/10.1128/MCB.01002-12
http://dx.doi.org/10.1210/er.2001-0037
http://dx.doi.org/10.1074/jbc.273.41.26338
http://dx.doi.org/10.1073/pnas.98.4.1613
http://dx.doi.org/10.1091/mbc.E03-06-0445
http://dx.doi.org/10.1074/jbc.M314264200
http://dx.doi.org/10.1194/jlr.M200429-JLR200
http://dx.doi.org/10.1186/1743-7075-3-43
http://dx.doi.org/10.1194/jlr.M300370-JLR200
http://dx.doi.org/10.1194/jlr.M300370-JLR200
http://dx.doi.org/10.1021/bi201264y
http://dx.doi.org/10.1021/bi201264y
http://dx.doi.org/10.1111/j.1365-2826.2010.02096.x
http://dx.doi.org/10.1073/pnas.100114397
http://dx.doi.org/10.1073/pnas.100114397
http://dx.doi.org/10.1074/jbc.M206584200
http://dx.doi.org/10.1074/jbc.M310482200
http://dx.doi.org/10.1074/jbc.M310482200
http://dx.doi.org/10.1161/ATVBAHA.108.165845
http://dx.doi.org/10.1161/ATVBAHA.108.165845
http://dx.doi.org/10.1074/jbc.M807433200
http://dx.doi.org/10.1161/CIRCRESAHA.107.159079
http://dx.doi.org/10.1161/CIRCRESAHA.107.159079
http://dx.doi.org/10.1074/jbc.M808211200
http://dx.doi.org/10.1371/journal.ppat.1001130
http://dx.doi.org/10.1371/journal.ppat.1001130
http://dx.doi.org/10.1097/MOL.0b013e32832aee82
http://dx.doi.org/10.1097/MOL.0b013e32832aee82
http://dx.doi.org/10.1074/jbc.M112.437368
http://dx.doi.org/10.3109/10253890.2013.793303
http://dx.doi.org/10.3109/10253890.2013.793303
http://dx.doi.org/10.1194/jlr.M700475-JLR200
http://dx.doi.org/10.1172/JCI31539
http://dx.doi.org/10.4049/jimmunol.1303164
http://dx.doi.org/10.1210/en.2013-1531
http://dx.doi.org/10.1016/j.molcel.2012.05.030
http://dx.doi.org/10.1016/j.molcel.2012.05.030
http://dx.doi.org/10.1210/en.2015-1968
http://creativecommons.org/licenses/by/4.0/

	ACTH Regulation of Adrenal SR-B1
	Acth Stimulation Regulates The expression of SR-B1
	Modulation of SR-B1 Protein Function by Acth
	ACTH Stimulation Modulates 
the Oligomerization of SR-B1
	ACTH Stimulation Regulates SR-B1 Interaction with Accessory Proteins

	ACTH and Regulation of SR-B1 under Pathophysiological Conditions
	Author Contributions
	Funding
	References


