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Abstract: Intestinal bacteria are crucial for the healthy aquaculture of Litopenaeus vannamei, and
the coastal areas of China are important areas for concentrated L. vannamei cultivation. In this
study, we evaluated different compositions and structures, key roles, and functional potentials of
the intestinal bacterial community of L. vannamei shrimp collected in 12 Chinese coastal cities and
investigated the correlation between the intestinal bacteria and functional potentials. The dominant
bacteria in the shrimp intestines included Proteobacteria, Bacteroidetes, Tenericutes, Firmicutes, and
Actinobacteria, and the main potential functions were metabolism, genetic information processing,
and environmental information processing. Although the composition and structure of the intestinal
bacterial community, potential pathogenic bacteria, and spoilage organisms varied from region
to region, the functional potentials were homeostatic and significantly (p < 0.05) correlated with
intestinal bacteria (at the family level) to different degrees. The correlation between intestinal bacteria
and functional potentials further suggested that L. vannamei had sufficient functional redundancy
to maintain its own health. These findings help us understand differences among the intestinal
bacterial communities of L. vannamei cultivated in different regions and provide a basis for the disease
management and healthy aquaculture of L. vannamei.

Keywords: Litopenaeus vannamei; intestinal bacterium; functional potential; potential pathogenic
bacteria and spoilage organisms; Chinese coastal areas

1. Introduction

Litopenaeus vannamei has a thin shell, substantial meat and provides an excellent
source of nutrients such as protein, nonprotein nitrogen compounds (amino acids), and
unsaturated fatty acids. Therefore, customers widely favor L. vannamei is widely [1–3]. L.
vannamei is one of the most cultivated species worldwide and the most commonly culti-
vated marine organism in China [4,5] with numerous advantages such as rapid growth,
short maturation period, low nutritional requirements and strong adaptability to the envi-
ronment. However, for the continued expansion of the aquaculture scale [6], improvements
in intensive aquaculture are needed [7]. However, the rapid deterioration of aquaculture
environments [8–10] and frequently occurring aquaculture diseases [11–13] are important
factors in restricting and hindering the development of the aquaculture industry [14]. The
safety of L. vannamei products is closely related to human health [12,13,15,16]. For example,
aquatic catches, such as L. vannamei, may deteriorate during fishing and sales, affecting the
quality of the associated products and causing potential food health risks [1,17]. Therefore,
frequent disease occurrence and food safety in L. vannamei aquaculture have received
increased attention [1].
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Understanding the mechanisms and causes of aquaculture diseases is crucial to ensure
food health and avoid food safety risks during L. vannamei preservation. L. vannamei
diseases are primarily caused by bacteria and viruses [18], but fungi, parasites, Rickettsiella,
and other pathogens also cause disease in L. vannamei [14,19]. For example, white spot
syndrome virus (WSSV) [11], yellow head virus (YHV) [20], monodon baculovirus (MBV) [21,22],
Taura syndrome virus (TSV) [23], hepatopancreatic parvovirus (HPV) [24], infectious hypodermal,
and hematopoietic necrosis virus (IHHNV) [24] are viruses of Penaeus. Notably, some clinical
pathogenic Vibrio species, such as Vibrio cholerae [25], Vibrio parahaemolyticus [12,13] and
Vibrio vulnificus [26,27], which exist in or parasitize the tissues of L. vannamei, are also
important human pathogenic bacteria [28–32]. Many studies have shown that intesti-
nal bacteria influence several aspects of animal health [33], including feeding, growth,
pathogen defense, energy metabolism, reproduction, immunity, and aging [34], in crucial
ways. Specifically, the intestinal microbiota plays an important role in attaining essential
nutrient resources for arthropods [35,36]. Functional and biological characteristics also
vary with changes in intestinal microbial community composition [37–39]. Therefore, most
of the conditional pathogens that parasitize the intestine [31] are symbiotic with other
beneficial bacteria of L. vannamei, including normal microflora [40], which may play a
dominant role in ensuring that the intestinal ecosystem possesses sufficient functional
redundancy to maintain gastrointestinal health [36,41,42]. However, the biological envi-
ronment of L. vannamei is affected when the environment and culture mode is changed or
destroyed [43]; the balance of the symbiosis between opportunistic pathogenic bacteria
and other beneficial bacteria is disrupted, leading to various diseases of L. vannamei [44].
The microbial system, especially the intestinal microbial system of L. vannamei, varies with
the living environment and conditions, including changes in the region, feed, and species,
leading to different degrees of spoilage and food quality degradation even under the same
storage mode [45–47]. As a result, the safety and storage methods for L. vannamei deriving
from different regions and cultured under different environmental conditions are also
very different [48]. Therefore, it is necessary to understand the differences between and
composition of L. vannamei intestinal microorganisms deriving from different regions and
cultured under different environmental conditions to provide new strategies for safe and
healthy aquaculture and the preservation and consumption of L. vannamei. The output
of L. vannamei cultured in seawater from the coastal areas of China, an important area of
concentrated L. vannamei aquaculture, reached 1.14 million tons in 2019 [49]. Some of the
bacteria associated with shrimp diseases are of concern [12,50,51]. Conversely, studies
on the intestinal microflora of healthy L. vannamei under different culture conditions and
growth stages have also been performed [52,53]. However, the differences in and compar-
isons between the intestinal microflora of healthy L. vannamei in coastal areas of China are
not known.

The intestinal bacterial community structure, composition, and differences in the
commercial and healthy L. vannamei cultivated in 12 Chinese coastal cities were investigated
using bacterial 16S rRNA gene high-throughput sequencing. Furthermore, the distribution
and existence of pathogenic bacteria and spoilage organisms were examined in the intestine
of L. vannamei shrimp from 12 different regions. The findings help elucidate the distribution
of intestinal bacterial communities of L. vannamei in coastal areas of China and provide a
theoretical basis for microecologically healthy aquaculture and consumption of L. vannamei.

2. Materials and Methods
2.1. L. vannamei Procurement and Intestinal Sample Collection

L. vannamei was obtained from local aquaculture farms from 12 cities along the coast
of China across nine Chinese provinces during September 2020 (accessions provided in
Table S1). The seawater temperature was relatively stable at 22.6–30.4 ◦C, and the pH
value ranged from 7.7–8.3 (Table S2). Several evenly sized (11.0 ± 0.2 cm) and healthy L.
vannamei shrimp were collected from each city and quickly frozen at −40 ◦C after being
caught. They were frozen overnight, then shipped individually with dry ice and ice bags to
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the laboratory. The frozen L. vannamei shrimp naturally thawed at 0 ◦C, and each thawed
shrimp was dissected using sterile forceps and tweezers to obtain intact intestines under
sterile conditions. The intestinal sample was used for intestinal microbial analysis to
determine the interindividual variation in intestinal microbiota. The intestines of three
shrimp were pooled as one sample, with three samples in total per group. For each city,
three dissected intestines were placed into a 2 mL Eppendorf tube and set as one repeat
intestinal sample. Each intestinal samples used three replicates, resulting in a total of
36 samples for the 12 cities. The resulting intestinal samples were preserved at −80 ◦C
until DNA extraction.

2.2. L. vannamei Intestinal DNA Extraction

Total DNA was extracted from intestinal samples using a FastDNA Spin Kit for Feces
(MP Biomedicals, Illkirch, France), and the DNA isolation procedure was generally per-
formed according to the manufacturer’s instructions. Briefly, the intestinal samples were
successively homogenized by FastPrep-24™ 5G (MP Biomedicals, Illkirch, France), and
proteins were precipitated using a PPS solution in a refrigerated centrifuge. The DNA was
attached to a SPIN™ filter tube (MP Biomedicals, Illkirch, France), and the SPIN™ filter
column was washed and dried. Immediately after this procedure, the extracted intestinal
DNA was eluted using 100 µL of DES solution, and the concentration and quality of ex-
tracted DNA were checked using 1.0% agarose gel electrophoresis and spectrophotometric
analysis (Nanodrop ND-1000, Thermo Fisher Scientific, Waltham, MA, USA). The extracted
DNA was stored at −20 ◦C for further analysis.

2.3. 16S rRNA Gene Amplification, Illumina Sequencing and Bioinformatics Analysis

To target the hypervariable V3−V4 region of the bacterial 16S rRNA gene, the uni-
versal primers 341F (5′-CCT AYG GGR BGC ASC AG-3′) and 806R (5′-GGA CTA CNN
GGG TAT CTA AT-3′) were used to amplify the intestinal DNA samples. A 20 µL reac-
tion, containing 4 µL of 5× Fast Pfu Buffer, 2 µL of 2.5 mM dNTPs, 0.8 µL of forward
primer (5 µM), 0.8 µL of reverse primer (5 µM), 0.4 µL of FastPfu Polymerase, 0.2 µL of
BSA, and 10 ng of template DNA and ultraclean water, was performed in a PCR System
(GeneAmp®9700, ABI) under the following conditions: initial enzyme activation for 3 min
at 95 ◦C; 29 amplification cycles of denaturation for 30 s at 95 ◦C, annealing for 30 s at
53 ◦C and an extension for 45 s at 72 ◦C; a final extension for 10 min at 72 ◦C, and a 10 ◦C
step maintained until halted by the user. The PCR products were checked and purified
using 2.0% agarose gel electrophoresis and a Universal DNA Purification Kit (Tiangen,
Beijing, China). The purified PCR products were submitted for sequencing on an Illumina
MiSeq platform (Shanghai Majorbio Bio-pharm Technology Co., Ltd., Shanghai, China).
The Quantitative Insights into Microbial Ecology (QIIME) process was used to analyze the
high-throughput sequencing data and select the operational taxonomic units (OTUs) at
the 97% similarity level (Usearch (v.7.1 http://drive5.com/uparse/, accessed on 8 April
2021)). The taxonomy of each representative sequence was assigned via the RDP Classifier
based on the Silva v.132 16S rRNA gene database (http://www.arb-silva.de, accessed on
14 April 2021).

2.4. Statistical Analysis

A total of nine L. vannamei specimens were selected from each region, and one sample
used three L. vannamei intestines with three replicates, resulting in a total of 36 intestinal
DNA samples from 12 cities along the coast of China. All the data were calculated using
Microsoft Excel and represented the mean value ± standard error (SE), as shown in the
Figures. R v.4.0.5 with vegan 2.5–7 calculated and described the alpha diversity (Chao1
richness estimator and Shannon index) of the intestinal bacteria of L. vannamei. The Adonis
test and principal coordinates analysis (PCoA) were used to compare the beta diversity of
different samples. IBM SPSS v.25 analyzed differences among the samples and associated
OTUs using single-factor analysis of variance (ANOVA), the least significant difference
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(LSD) test, Bayesian model-based moderated tests, and t-tests. Significant differences were
detected at the 0.05 level. R v.4.0.5 with Tax4Fun2 1.1.3 was used to predict functional
profiles and identify the functions of intestinal bacteria based directly on 16S rRNA gene
information. OriginPro v.9.8.0.200 (OriginLab Corporation, Northampton, MA, USA)
generated the bar charts, presented the correlations of intestinal bacteria (at the family
level), and predicted gut microbial functions (relative abundance) based on Pearson’s
correlation. This analysis should further expand the understanding of intestinal microbial
ecology [54]. R v.4.0.5 with pheatmap 1.0.12 was used to draw heatmaps of intestinal
bacterial composition at the family level.

3. Results
3.1. Diversity of the Intestinal Bacterial Community of L. vannamei from Different Regions

After 16S rRNA high-throughput sequencing, a total of 1,370,304 high-quality se-
quences were obtained from 36 samples, and 38,064 OTUs were identified based on the
QIIME process at the 97% similarity level. Rarefaction curves (Figure S1a) presented
the richness of all the samples (label: 0.03) and the Shannon-Wiener index (Figure S1b)
assessed diversity.

The intestinal bacterial community diversity of L. vannamei was analyzed by the Chao
1 estimator (Figure 1a) and the Shannon index (Figure 1b). The results showed that the
intestinal bacterial community richness and diversity varied in different areas on the coast
of China. For example, there were significant differences (p < 0.001) in intestinal bacterial
diversity among different samples (LN-YK vs. TJ-XQ, LN-YK vs. JS-LYG, TJ-XQ vs. FJ-XM,
TJ-XQ vs. HN-WC). PCoA of the intestinal bacterial community at the OTU level was used
to visualize differences in the intestinal bacterial community of L. vannamei from 12 different
regions of China’s coastal area (Figure 2). Samples of LN-YK, FJ-XM, and HN-WC, samples
of GX-FCG, JS-LYG, TJ-XQ, and JS-NT, and samples of ZJ-NB and GD-ZJ were separated
into clusters. The SD-QD samples were significantly clustered together and differed from
the other regional samples (Adonis test, p < 0.001). The diversity and similarity distribution
of intestinal bacterial communities from different coastal areas were not significantly related
to the geographical location. In addition, although the pH of seawater (Table S2) in was
different between the regions, there was no significant correlation between L. vannamei
intestinal microflora and pH value (as determined by ANOVA, p = 0.30, R = 0.18).
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Figure 2. Beta diversity (PCoA of the intestinal bacterial community at the OTU level) of intestinal
bacteria among different samples.

3.2. Composition of the Intestinal Bacterial Community of L. vannamei from Different Regions
3.2.1. Composition of the Gut Microbiota

High-throughput sequencing showed that the intestinal bacterial community composi-
tion and structure at the phylum level varied from region to region (Figure S2). The changes
and differences in the relative abundances of Proteobacteria, Bacteroidetes, Tenericutes, Firmi-
cutes, and Actinobacteria were the most significant among different areas. The dominant
phyla in the intestine of L. vannamei shrimp from different regions also showed differences.
For example, Tenericutes was the dominant phylum in JS-NT and JS-LYG (35.4–38.1%);
Firmicutes was the dominant phylum in TJ-XQ and JS-LYG (38.0–53.4%), and Actinobacteria
was the dominant phylum in SD-QD (31.9%).

At the family level, the composition of the intestinal bacteria varied more apparently
among regions (Figure 3a). As shown by the heat map of the top 50 abundant families in
the intestinal bacterial communities (Figure 3b), the composition and relative abundances
of dominant taxa in the different samples were also different. Although Vibrionaceae,
Mycoplasmataceae, Erysipelotrichaceae, and Flavobacteriaceae were the most abundant taxa
and played a certain dominant role in the intestinal bacterial community of all the samples,
Rhodobacteraceae (12.0%), Clostridiales JTB215 (25.7%), Bogoriellaceae (17.4%), Flavobacteriaceae
(14.9%), Erysipelotrichaceae (17.8%), and Cyanobiaceae (14.3%) were the dominant taxa in the
LN-YK, TJ-XQ, SD-QD, FJ-ZZ, GD-DG, and GX-FCG samples, respectively. Notably, the
relative abundance of Mycoplasmataceae was the highest in JS-LYG, JS-NT, and HN-WC,
reaching 35.4–38.1%. The relative abundance of Vibrionaceae in ZJ-NB and GD-ZJ reached
69.2–85.0% (Table S3).

Among all the intestinal samples of L. vannamei from 12 coastal cities of China, 20
common taxa were found (Table S4). When the bacterial composition at the family level of
all samples was compared, only Gammaproteobacteria EV818SWSAP88 uncultured bacterium,
RsaHF231 uncultured bacterium, and Gammaproteobacteria MBMPE27 uncultured bacterium,
with low relative abundances, were found in TJ-XQ, GD-DG, GX-FCG, and HN-WC, re-
spectively. Schekmanbacteria Other was uniquely present in the FJ-ZZ sample, and seven
unique taxa, namely, Acidimicrobiia IMCC26256 uncultured bacterium, Chitinophagaceae, Sph-
ingobacteriaceae, Simkaniaceae, Roseiflexaceae, Wohlfahrtiimonadaceae, and Cellvibrionaceae, were
found only in the JS-NT samples (Figure S3).
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an average relative abundance >1% are shown here (see Table S1 for abbreviations). The relative
abundance of each family in the same group is indicated by color intensity. (b) Heat map showing
the distribution of the top 50 abundant families in the intestinal bacterial communities. Relative
abundance percentage values for the bacterial families are indicated by color intensity.
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3.2.2. Potential Pathogen and Spoilage Organisms in the Intestine of L. vannamei

The microbial system, especially the intestinal microbial system of L. vannamei, varies
based on the living environment and conditions, including region, feed, and species [45–47].
The potential pathogenic bacteria and spoilage organisms parasitizing the intestine reflect
the microecological health of the culture and may become standards for food health sub-risk
assessment of L. vannamei [44].

Potential pathogenic bacteria and spoilage organisms, which are often considered
and investigated in the tissues of L. vannamei [31,51], were also present at relatively high
abundances in all the samples and were screened and analyzed statistically (Figure 4a for
potential pathogenic bacteria and Figure 4b spoilage organisms). The samples from each
area contained a certain amount of potential pathogenic bacteria and spoilage organisms,
and the composition and relative abundances of these organisms in the intestine of L.
vannamei varied among different regions. The relative abundance of potential pathogenic
bacteria in most samples was above 10%. Vibrionaceae was dominant in the ZJ-NB and GD-
ZJ samples, and the relative abundance of this taxon reached above 60%. The proportion
of Mycoplasmataceae in the TJ-XQ, JS-LYG, and JS-NT samples was greater than that of
Vibrionaceae. The composition of dominant spoilage organisms also differed among regions,
and the relative abundance of potential spoilage organisms (at the family level) was
above 10% in the SD-QD, JS-NT, ZJ-NB, and FJ-ZZ samples. However, Spongiimonas was
dominant (2.3–3.3%) in LN-YK, and FJ-XM, and Shewanella was dominant (1.5–4.4%) in
TJ-XQ and JS-NT.
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Figure 4. Relative abundances (at the genus level) of potential pathogenic bacteria (a) and spoilage organisms (b) in the
intestine of L. vannamei (mean, n = 3).

3.3. Prediction of Gut Microbial Functions

The potential functions of the microbial community in the intestine of L. vannamei were
predicted using Tax4Fun2 based on the KEGG database. The major functions predicted
were involved in organismal systems (1.47–1.98%), metabolism (79.28–84.89%), human
diseases (1.99–3.45%), genetic information processing (5.40–8.45%), environmental informa-
tion processing (3.85–7.97%) and cellular processes (0.96–2.73%) (Figure 5a and Figure S4).
There were eight pathways for organismal systems, twelve pathways for metabolism,
eleven pathways for human diseases, four pathways for genetic information processing,
three pathways for environmental information processing, and four pathways for cellular
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processes. Generally, the abundances of these individual functional categories and groups
were close to each other among the twelve coastline cities in China, which suggests a
relatively stable survival and adaptation strategy for microbial community function during
the growth and transport of L. vannamei.
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Figure 5. Predictive functional profiling of the bacterial communities in the gut of L. vannamei
analyzed by Tax4Fun based on the KEGG database (mean, n = 3). (a) Only genes with an average
relative abundance (at level 2) >1% are shown here. (b) Heat map showing the predictive functional
profiling of the top 50 KEGG pathways (at level 3). Relative percentage values for the KEGG pathways
are indicated by color intensity.
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For the metabolism category, global and overview maps (41.3–42.9%), carbohydrate
metabolism (10.0–11.6%), and amino acid metabolism (7.4–8.6%) were the abundant path-
ways. Frequently occurring gene types in environmental information processing were
involved in membrane transport and signal transduction, and the gene types in genetic
information processing were involved in replication, repair and translation.

For the SD-QD samples, the relative abundances of genes related to RNA degradation,
biosynthesis of antibiotics, biosynthesis of secondary metabolites, tryptophan metabolism,
lysine degradation, nitrogen metabolism, fatty acid degradation, fatty acid metabolism,
propanoate metabolism, valine, leucine, and isoleucine degradation and fatty acid biosyn-
thesis, were the most abundant (Figure 5b). The potential functional profiles also showed
clustering phenomena in Zhanjiang, Guangdong, and Ningbo, Zhejiang. The relative
abundances of genes associated with two-component systems, ABC transporters, bacterial
secretion systems, and arginine and proline metabolism were relatively high.

3.4. Correlation of Intestinal Bacteria and the Predicted Functional Profile

The relationship between the major KEGG pathways (at level 3) and the dominant
flora (at the family level) was analyzed by a correlation plot (OriginPro 2021) (“*”, p < 0.05)
(Figure 6). Although the bacterial community had functional redundancy, there was a
strong positive correlation between the community function and the bacterial community
as a whole (red indicates a large proportion). Some flora components had very simi-
lar functionally related structures, such as Hyphomicrobiaceae, Rhizobiales Incertae Sedis,
Rhodobacteraceae, Desulfobulbaceae, Desulfobacteraceae, Halieaceae, Chromatiaceae, Gammapro-
teobacteria Incertae Sedis Unknown Family, Milano-WF1B-44 uncultured, Chthoniobacteraceae,
Thermoanaerobaculaceae, Actinomarinales uncultured, and Chloroflexi KD4-96 uncultured.
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Figure 6. Correlations of intestinal bacteria (at the family level) and predicted gut microbial functions (relative abundances)
based on Pearson’s correlation coefficients (p < 0.05). The red circles represent a positive correlation, the blue circles represent
a negative correlation, and the circle sizes reflect the absolute value of the correlation coefficient.
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A major finding was that several functions showed significant correlations, such
as cell cycle—Caulobacter within cell growth and death, citrate cycle (TCA cycle), and
glyoxylate and dicarboxylate metabolism within carbohydrate metabolism, carbon fixation
pathways in prokaryotes and oxidative phosphorylation within energy metabolism, and
2-oxocarboxylic acid metabolism, carbon metabolism, and fatty acid metabolism within
global and overview maps.

4. Discussion

The relationship between intestinal microorganisms and the host has attracted much
attention due to its specific products or for disease prevention. The differences in in-
testinal microbiota structure and composition may affect many important physiological
activities of the host, such as nutrient processing, energy balance, immune function, and
development [35–39]. Specifically, intestinal microflora is closely related to physiological
processes and plays an important role in the growth of L. vannamei, an important factor in
maintaining the stability of the intestinal environment [55,56]. L. vannamei relies mainly
on various types of nonspecific immune factors to recognize alien organisms and resist
environmental stress and infection by various pathogens due to the lack of an acquired
immune system [57]. Therefore, the structure and function of the normal intestinal bacterial
community enhances the body’s immune function and provides a powerful barrier for the
prevention and control of pathogenic bacteria with the intestinal mucosa, which further
hinders invasion by pathogenic bacteria and maintains the stability of the organismal
environment. The diversity, structure, composition, and functional potential of the intesti-
nal microbial community may vary based on the environment, such as the organic and
inorganic compounds in water, nutrients in feed, parasites, and microorganisms in the
culture environment [36,58]. Therefore, high-throughput sequencing and bioinformatics
analysis showed that the diversity, structure, and composition of the intestinal microbial
community of L. vannamei from 12 Chinese coastal cities all varied from region to region
and were not significantly related to geographical location. However, the species specificity
of microorganisms enables closely related bacteria from the same taxa and different taxa to
form communities in a particular environment via quorum sensing due to their similar or
complementary functions [59]. Therefore, the functional potentials were relatively similar
among all of the samples. This relationship may represent the functional redundancy
formed by L. vannamei to resist different environmental stresses and ensure their own
gastrointestinal health [36].

The intestinal microorganisms of L. vannamei species are complex, variable, and crucial
to the health and physiological activities of the host. They play a pivotal role in growth,
digestion, absorption, immune disease prevention, and other processes in these organisms.
The complex and variable intestinal flora is a balanced system formed by interactions
among the host, environment, and microorganisms [60]. However, the intestinal microbial
dynamic balance of L. vannamei is affected by many factors, including host factors (genetics,
physiology, growth, development, etc.) and nonhost factors (feed, aquaculture environment
conditions, exogenous microorganisms or compounds, etc.) [61,62]. For host factors, there
are some genetic differences in L. vannamei that may lead to different tissue structures and
functional habitats. The structure and function of bacteria adhering to the intestinal mucosa
and parasitizing the intestine may differ due to differences in physicochemical properties
and nutrients in the intestinal environment [63,64]. Regarding nonhost factors, the water
environment, food, and exogenous material also strongly affect the intestinal microbial
community of aquatic animals [53,65]. No significant correlation between the intestinal
microflora and the pH value of water quality further proved that the intestinal microflora
was affected by a variety of factors. For L. vannamei, these host and nonhost factors cause
differences in the intestinal microorganisms at different developmental stages and lead to
differences in the intestinal microorganisms in different culture areas. These differences be-
tween L. vannamei shrimp from different regions ensure that the intestinal micro-organisms
complete signal transduction and physiological metabolic functions. Although there were
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differences in the relative abundance of L. vannamei intestinal microorganisms from 12
Chinese coastal cities, there were also commonalities in the structure and composition of
the microbial communities (Figure 3 and Figure S3). Proteobacteria, Bacteroidetes, Tenericutes,
Firmicutes, and Actinobacteria dominated the L. vannamei intestinal microbiota, similar to
previous reports [66,67].

As previously reported, potential pathogenic bacteria primarily cause bacterial dis-
eases in L. vannamei [68,69], and disease outbreaks persist despite many preventive ef-
forts [70,71]. Some clinical pathogenic Vibrio species, such as V. cholerae [25], V. para-
haemolyticus [12,13], and V. vulnificus [26,27], which parasitize or live in the tissues of L.
vannamei, are also important human pathogenic bacteria [28–32]. The spoilage organisms
that parasitize the intestine of L. vannamei should also be considered for their potential
threat to food health in humans and product quality [32,72,73]. As previously reported, the
structure and abundance of intestinal microorganisms remain in dynamic balance under
normal physiological conditions. However, imbalance may occur when normal flora is
stimulated by the host’s physical, chemical, biological, or other factors, causing abnormal
proliferation of pathogenic bacteria or opportunistic pathogens that lead to bacterial dis-
eases in L. vannamei [61,62]. During storage, the abundance of spoilage organisms also
increases, leading to different degrees of spoilage and food quality degradation [45–47].
The relative abundance of potential pathogenic bacteria and spoilage organisms may help
estimate their potential proliferation in farming and storage [53]. The relative abundance
of potential pathogenic bacteria in the L. vannamei intestine varied according to different
developmental stages and culture modes; however, these bacteria belonged to a relatively
high abundance of bacteria [74]. In particular, Mycoplasmataceae, Aeromonadaceae, and She-
wanella were the indicator groups in the mariculture model [75]. The relative abundance
of Vibrionaceae and Enterobacteriaceae in the intestines of wild L. vannamei accounted for
approximately 50% [52]. This result is consistent with results specifying that the proportion
of potential pathogenic bacteria in some areas was high. However, the increase in potential
pathogenic bacteria in the digestive system of L. vannamei cultured in seawater was related
to the risk of disease outbreaks [52,74]. Therefore, intestinal samples of L. vannamei from
12 Chinese coastal cities with a high relative abundance of potential pathogenic bacteria
and spoilage organisms warrants more attention. As shown in Figure 4, the relative abun-
dance of potential pathogenic bacteria was greater than 28.2% in the GD-ZJ, ZJ-NB, JS-LYG,
JS-NT, GD-DG, and TG-XQ samples and greater than 11.1% in the ZJ-NB, FJ-ZZ, JS-NT,
and SD-QD samples. The breeding and preservation of L. vannamei shrimp from these
areas should be of particular concern; although, there are many possible reasons for the
observed result, including drug use, scale of farming, and water quality conditions [61,62].

Although the composition and structure of the intestinal microbiota may vary due
to environmental and nonenvironmental factors, the structure and function of the nor-
mal intestinal flora play a more prominent role in the development of L. vannamei [60].
This relationship mainly reflects nutritional functions that provide necessary nutrition for
the growth of L. vannamei and assists in digestion to improve the ability of nutritional
metabolism, including intestinal microbes, immune function, and barrier function, which
protect L. vannamei from the harmful effects of pathogenic bacteria and exogenous sub-
stances [76]. For immune function and barrier function, intestinal microorganisms enhance
the body’s immune function and form a powerful barrier for preventing and controlling
pathogenic infection with the intestinal mucosa jointly resisting the invasion by pathogenic
microorganisms and maintaining the stability of the internal environment [77,78]. The
main potential functions of the microbial community in the intestine of L. vannamei include
metabolism, genetic information processing, and environmental information processing (at
level 1). As previously reported, ABC transporters are the key to ensuring enzyme activity
in cells. The bacterial secretion system is perceived as necessary for the secretion of protec-
tive molecules that enable bacteria to withstand harsh conditions and use DNA replication
as a recovery function. These functions are crucial for the ecological balance of the intesti-
nal microbiota and the body’s survival in harsh environmental conditions [79]. Amino
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acid metabolism, carbohydrate metabolism, energy metabolism, and lipid metabolism
are putative functions associated with normal functioning and ensure the metabolism of
organic matter by intestinal microorganisms and gain of energy by L. vannamei [80]. Some
intestinal microorganisms of L. vannamei also secrete enzymes or other active substances to
ensure the healthy development of the body and access to nutrients [76]. At level 3, these
potential functions, including ABC transporters, bacterial secretion systems, DNA repli-
cation, cysteine and methionine metabolism, the citrate cycle (TCA cycle), and oxidative
phosphorylation, showed different degrees of correlation with intestinal bacteria (Figure 6).
Energy metabolism and lipid metabolism were significantly and positively correlated with
most intestinal microorganisms, whereas ABC transporters and the bacterial secretion
system were significantly and positively correlated with Pseudoalteromonadaceae and Vibri-
onaceae but significantly and negatively correlated with Burkholderiaceae. This result also
suggests that the intestinal microbiota is actively involved in the intestinal metabolism and
environmental adaptation process of L. vannamei. These results indicated that the intestinal
microbiota of healthy L. vannamei respond differently to different environments and have
relatively stable survival and adaptation strategies during the culture process. Therefore,
energy gain and healthy growth were guaranteed despite the different culture environ-
ments. This result further demonstrated sufficient functional redundancy in intestinal
metabolism in L. vannamei, despite some differences in the intestinal bacterial composition
and structure of L. vannamei shrimp from 12 coastal cities in China.

In general, our investigation into the intestinal bacteria of healthy L. vannamei shrimp
from 12 coastal areas of China detected some differences in intestinal bacterial composition
and structure, especially in the composition of potential pathogenic bacteria and spoilage
organisms. Although the regions were different, the potential functions of the intestinal
bacterial community were similar and correlated with intestinal bacteria. However, only
the intestinal bacteria of healthy L. vannamei shrimp were investigated. The relationship
between diseases, environmental and nonenvironmental factors, changes in intestinal
bacterial composition and the potential functions of L. vannamei found in China’s coastal
areas are not known. Subsequent research will focus on this area and provide insights into
the healthy cultivation and management of L. vannamei.

5. Conclusions

In this study, we investigated the intestinal bacterial community structure, composi-
tion, and differences in commercial L. vannamei shrimp cultivated in 12 Chinese coastal
cities. For all samples, the intestinal bacterial community structure and composition varied
among different regions, and the potential intestinal bacterial functions were similar and
stable. These results indicate that different environmental factors in the 12 regions may
play a major role in the structure of intestinal microflora of L. vannamei. The variation and
differences between aquatic microflora in these areas over time may also be important
influential factors. Therefore, it is necessary to investigate the influence of environmental
and nonenvironmental factors and establish their relationship with the intestinal bacterial
community in the future.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/microorganisms9091793/s1, Table S1: Abbreviation of twelve cities spanning nine provinces
along the coastline of China, Table S2: Culture conditions of L. vannamei along the coastline of China,
Table S3: Common species of intestinal bacterial community (at the family level) of L. vannamei
among different samples, Table S4: The top five species of relative abundance in the gut of shrimp
among different regions; Figure S1: Rarefaction curves for all the samples (label: 0.03). (a) Richness,
(b) Shannon–Wiener; Figure S2: Common taxa of intestinal bacterial community (at the family level)
of L. vannamei among different samples, Figure S3: The relative abundance (at the phylum level) of
intestinal bacterial community of L. vannamei (mean, n = 3); Figure S4: Predictive functional profiling
(at KEGG pathway levels 1 and 2) of the bacterial communities in the gut of L.vannamei analyzed by
Tax4Fun based on the KEGG database (mean, n = 3).
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