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Abstract

Cancer is a genetic disease that develops through a series of somatic mutations, a subset of which drive cancer progression.
Although cancer genome sequencing studies are beginning to reveal the mutational patterns of genes in various cancers,
identifying the small subset of ‘‘causative’’ mutations from the large subset of ‘‘non-causative’’ mutations, which accumulate
as a consequence of the disease, is a challenge. In this article, we present an effective machine learning approach for
identifying cancer-associated mutations in human protein kinases, a class of signaling proteins known to be frequently
mutated in human cancers. We evaluate the performance of 11 well known supervised learners and show that a multiple-
classifier approach, which combines the performances of individual learners, significantly improves the classification of
known cancer-associated mutations. We introduce several novel features related specifically to structural and functional
characteristics of protein kinases and find that the level of conservation of the mutated residue at specific evolutionary
depths is an important predictor of oncogenic effect. We consolidate the novel features and the multiple-classifier approach
to prioritize and experimentally test a set of rare unconfirmed mutations in the epidermal growth factor receptor tyrosine
kinase (EGFR). Our studies identify T725M and L861R as rare cancer-associated mutations inasmuch as these mutations
increase EGFR activity in the absence of the activating EGF ligand in cell-based assays.
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Introduction

Cancer is a complex disease in which healthy cells undergo a

series of genetic changes, eventually becoming cancerous, growing

uncontrollably and spreading throughout the body [1]. Identifi-

cation of the specific genetic changes that promote cancer traits

within a cell can yield clues into potential treatments for the

disease. Large-scale cancer genome sequencing studies have thus

been initiated in order to catalog the mutations observed in human

cancers [2–6].

Not all mutations have equal influence on the disease state of a

cell, however. Certain mutations, called ‘‘drivers,’’ are known to

have a causative effect, driving the transformation of a cell from

healthy to cancerous, often by promoting cell growth or

inhibiting apoptosis (programmed cell death) [1]. In contrast,

the majority of mutations do not significantly affect the cancer

characteristics of a cell, and can be considered relatively benign

‘‘passengers’’ in a tumor cell [7]. Mutated driver genes are

worthwhile targets for drug discovery, because counteracting the

mutation’s effects can potentially slow or reverse cancer

progression in individual patients [8,9]. To fully realize this

potential, however, there is a need to develop computational

approaches that can (i) distinguish causative from non-causative

mutations, and (ii) identify key causative mutations for experi-

mental studies and clinical targeting.

Indeed, several previous studies have proposed methods to

predict causative mutations in cancer genomes (reviewed in [6]).

These methods fall into three major categories: (i) frequency-based

approaches, (ii) structure-based methods and (iii) statistical and

machine learning methods. Frequency-based approaches are

based on the assumption that the mutations that occur in multiple

patient samples are likely to be those that are causative [10].

Although such assumptions are valid for some recurrent mutations

such as the L858R mutation in epidermal growth factor receptor

(EGFR) in lung cancer [11] and V600E in BRAF in melanoma

[12,13], there is emerging evidence that rare mutations can be

drivers [7,14–16]. Moreover, a comprehensive analysis of several

breast and colorectal cancer genomes revealed that the genomic

landscapes of these cancers are dominated by a large number of

rare gene mutations rather than recurrent oncogene mutations

[17].

Structure-based methods offer a powerful way of predicting the

impact of mutations by taking into account the three-dimensional

context of the mutated residues [18–21]. However, such
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approaches are not applicable on a genome-wide scale because of

the lack of experimental structure information for several

oncogenes.

Because a wide variety of factors play into the oncogenic effect

of any given mutation, machine learning approaches have become

a method of choice to predict causative mutations based on a

variety of contextual information [18,22–30]. In general, super-

vised machine learning approaches learn from the features of

known cancer-associated and benign mutations to classify

unknown mutations. (Note that the term ‘‘cancer-associated’’

refers to mutations that are predicted to have direct or indirect

oncogenic effect, while the term ‘‘driver’’ refers to confirmed

causative mutations.) Although several machine learning-based

methods have been proposed previously, there still remains a need

to improve the sensitivity and efficacy of existing methods [28].

For example, most existing approaches use standard features of

mutated residues for training the classifier and do not take into

account gene- or family-specific features that can improve

prediction accuracy [28]. Furthermore, existing approaches use

one or two common machine learning algorithms and do not

consider the biases introduced by these algorithms. Finally,

existing approaches typically provide a binary ‘‘yes’’ or ‘‘no’’

classification for disease association, which does not solve the

problem of prioritizing candidate mutations for follow-up exper-

imental studies [31].

Here we apply a novel machine learning approach to predict

and prioritize cancer-associated mutations in protein kinases, a

class of proto-oncogenes frequently mutated in human cancers.

Our approach differs in three major ways from previous

approaches. First, we introduce new kinase-specific features,

beyond those used in previous methods [28,32,33], to improve

prediction accuracy. Mutations in the kinase domain, and

particularly those at functional sites, have been shown to be more

likely to be oncogenic [34], typically through mechanisms that

constitutively activate the kinase [35]. Second, we use a multiple

classifier approach (ensemble method), which by combining

multiple machine learning algorithms (individual classifiers),

overcomes the biases introduced by each method. Finally, we

use our combined classifier to produce a numerical ranking of

cancer-associated mutations in EGFR and test the impact of

predicted mutations on EGFR kinase activity using cell-based

assays. Our studies identify T725M and L861R as rare cancer-

associated mutations in that EGFR kinase harboring these

mutations display constitutive kinase activity.

Methods

Data sources
The data sources used for training and evaluating the classifiers

consist of a ‘‘positive’’ set of known cancer-associated mutations, a

‘‘negative’’ set of known benign mutations, and several attributes

of proteins and amino acids, which we drew from several

databases. The parameter settings used and detailed results for

construction and evaluation of each classifier are described in

detail in Supplementary Text S1.

Positive mutation set: Oncogenic mutations. As the basis

for our ‘‘positive’’ set we used the Catalogue of Somatic Mutations

in Cancer (COSMIC), a database of somatic mutations observed

in cancer samples gathered from published literature sources and

provided by the Wellcome Trust Sanger Institute’s Cancer

Genome Project (CGP) [2,36]. The mutations from the COSMIC

database (versions 50 and 57) were each filtered by gene name for

human protein kinases as identified in KinBase [37]. We then

filtered these mutations for those occurring in the protein kinase

domain, as identified by ProKinO [38], yielding 1451 distinct

point mutations in 224 protein kinase genes. Each kinase gene was

therefore associated with several mutations; EGFR kinase, for

example, has 278 mutations in the protein kinase domain.

As COSMIC is a catalog of somatic mutations observed in

clinical samples, it potentially contains both causative and non-

causative mutations. Somatic mutations cover a small portion of

the overall genome; it is thus relatively rare that the same somatic

mutation occurs in two or more patient samples unless the

mutation is associated with the patients’ shared phenotype, in this

case cancer. We therefore selected a subset of mutations which

have been observed more than once in COSMIC, as an initial list

of 226 likely causative mutations to use as the ‘‘positive’’ (disease)

set in our classification.

Negative mutation set: Benign polymorphisms. The

‘‘negative’’ (benign, non-disease) set consisted of the 331 non-

synonymous mutations in protein kinase genes obtained from

SNP@Domain, an online database of naturally occurring single

nucleotide polymorphisms (SNPs) within protein domain struc-

tures and sequences [39], which was itself originally derived from

dbSNP [40]. We consider commonly occurring polymorphisms to

be effectively benign because the polymorphisms were originally

sampled from healthy individuals, an approach previously used by

others (e.g. [26]).

Protein features. Features of the mutations used for training

the classifiers were retrieved from several sources. The hierarchical

classification of protein kinases into major groups and families is

according to KinBase [37]. Amino acid properties, such as

hydrophobicity and molecular weight, were taken as listed in the

data files included with EMBOSS [41]. Protein sequence

annotations were retrieved from the UniProtKB database [42].

We also used protein sequences from the UniRef90 database [43]

in our own calculations of amino acid conservation. Position of

mutation in the kinase domain and subdomain location of the

mutation were also used (see section ‘‘Feature preprocessing’’

below).

Author Summary

Cancer progresses by accumulation of mutations in a
subset of genes that confer growth advantage. The 518
protein kinase genes encoded in the human genome,
collectively called the kinome, represent one of the largest
families of oncogenes. Targeted sequencing studies of
many different cancers have shown that the mutational
landscape comprises both cancer-causing ‘‘driver’’ muta-
tions and harmless ‘‘passenger’’ mutations. While the
frequent recurrence of some driver mutations in human
cancers helps distinguish them from the large number of
passenger mutations, a significant challenge is to identify
the rare ‘‘driver’’ mutations that are less frequently
observed in patient samples and yet are causative. Here
we combine computational and experimental approaches
to identify rare cancer-associated mutations in Epidermal
Growth Factor receptor kinase (EGFR), a signaling protein
frequently mutated in cancers. Specifically, we evaluate a
novel multiple-classifier approach and features specific to
the protein kinase super-family in distinguishing known
cancer-associated mutations from benign mutations. We
then apply the multiple classifier to identify and test the
functional impact of rare cancer-associated mutations in
EGFR. We report, for the first time, that the EGFR mutations
T725M and L861R, which are infrequently observed in
cancers, constitutively activate EGFR in a manner analo-
gous to the frequently observed driver mutations.

Rare Oncogenic Mutations in the Cancer Kinome
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Of the 518 protein kinases in the human genome, several are

‘‘atypical’’ kinases which lack sequence similarity to the other

kinases. Thus, certain features could not be calculated for the

atypical kinases, leaving 503 distinct protein kinase genes for

which we successfully extracted features for machine learning.

Feature preprocessing
Mutations are uniquely identified by the gene name, protein

sequence position, wild-type amino acid, and mutant amino acid

type. We extract features related to biochemical, structural,

functional and evolutionary properties, which in the end generated

29 features in total, as follows.

Of these 29 features, 23 were previously explored by others,

including amino acid biochemical properties, sequence conserva-

tion, and kinase subdomain [25,27,44,45]. Our novel features are

the protein kinase classification terms (group and family) and the

conservation levels of the wild type and consensus type within

alignments of all, group– and family-specific kinase sequences.

Comparative. The protein kinase superfamily constitutes a

diverse range of enzymes which can be classified hierarchically

into 8 major groups (plus the ‘‘other’’ and ‘‘atypical’’ categories)

and multiple families within each group, each with distinct

mechanisms and interacting partners [46]. To account for these

potential differences, we tracked the names of each kinase’s group

and family, per KinBase. Additionally, we calculated the

evolutionary conservation of the wild-type or consensus amino

acid type among diverse eukaryotic species at each position within

the protein kinase domain. This approach considers the evolu-

tionary process as ‘‘nature’s laboratory’’: over the course of over 2

billion years since the divergence of eukaryotes, each type of

mutation at each position in the protein kinase gene has occurred

many times, simply by chance as part of a random mutational

process. The mutations that do not alter the overall functioning of

the protein are tolerated, and are likely to be observed in extant

species, while substantially deleterious mutations are more likely to

be eliminated from the gene pool of surviving organisms.

Since the association between evolutionary conservation and

disease-causing mutations in protein kinases is not yet fully

understood, we calculated conservation at three evolutionary

depths: within the same PK family (close evolutionary relatives),

within the same PK major group (greater evolutionary distance),

and among all eukaryotic protein kinases (ancient divergence,

preserving only the overall fold of the protein structure). While

conservation of amino acid types has been considered in previous

studies, our distinction between depths of divergence at the family

and group levels is novel. In addition, we calculate conservation

relative to both the wild-type residue and the ‘‘consensus’’ residue

type in an alignment. The conservation value at a given alignment

site is the frequency of the wild-type or consensus-type residue in

the alignment column. The calculations are performed on large

multiple-sequence alignments using sequences from UniRef90 and

aligned using the MAPGAPS program [47] and HMMer 3.0 [48].

Amino acid properties. These features describe the prop-

erties of individual amino acids in the sequence of both the

healthy, normally occurring ‘‘wild-type’’ protein and the mutant,

as well as the difference between the two where this can be

quantified. The properties are the hydropathy index (hydropho-

bicity), charge, polarity, van der Waals volume, molecular mass,

and naturally occurring residue frequency. We also include the

BLOSUM62 amino acid substitution matrix values [49] as a

measure of the overall similarity between the wild-type and mutant

residues.

Structural and functional. We introduced features that

captured the structural and functional location of mutations. The

eukaryotic protein kinases can be identified by a set of 11

structural regions, known as subdomains, which are conserved

across the entire superfamily [50]. We identified the sequence

locations of these subdomains in each of the 503 typical protein

kinases in the human genome, using a Gibbs motif sampler with

curated motif models for each subdomain, similar to the method

described in [28]. Mapping the position of each mutation onto

these regions allowed us to identify which sub-domain the

mutation belongs to, if any. Two additional features describe

functional roles of amino acids: whether a position is a binding site

(e.g. for ATP or another protein), and the post-translational

modification of the residue, if any (e.g. phosphorylation, which has

been shown to have a significant effect on protein stability and

function [51]).

Feature selection
Feature selection serves two purposes: to choose a smaller, more

computationally tractable subset of meaningful features which can

be used to effectively predict the target attribute (causative or non-

causative), and to understand the relative usefulness or contribu-

tion of each feature toward predicting the target [52]. With

emphasis on the latter, we independently applied five feature

selection algorithms, namely OneR algorithm [53], relief-based

selection [54], chi-square selection, a gain-ratio-based filter

approach [55] and correlation-based selection [56], to evaluate

our attributes.

Evaluation was performed on the combined positive and

negative data sets, with the positive set also including COSMIC

mutations that occur only once, in order to obtain a larger data set

for this step. The detailed feature selection results obtained from

the five selection methods with 10-fold cross-validation are given

in Table S2.

We used the 10-fold cross-validation routine implemented in

Weka [57] to select the most relevant features from all the

attributes we considered. As with other parts of the learning cycle,

10-fold cross-validation randomly splits the data up into 10 disjoint

subsets. However, in the feature selection evaluation routine only

the training folds are used, and there is no testing as such [58].

Feature selection is run on each training fold (90% of the data) in

turn and the results are summarized. In the case of single-attribute

evaluators (in our case OneR, Chi-Square, Relief, and Gain-

Ratio), the output shows the average merit and average rank of

each attribute over the 10 folds along with their respective

standard deviations. In the case of subset evaluators such as

Correlation-based feature selection in our case, the output shows,

for each attribute, in how many folds it was part of the final best

subset selected. In both these cases the aim is to provide some

measure of robustness as well as stability of the feature with respect

to small changes in the distribution of input attribute values.

The attributes were ranked in terms of effectiveness as a

predictor according to each selection method. Those attributes

selected by at least 3 out of 5 (60%) of the selection methods were

retained, yielding a final feature subset of 17 selected features

(from the original 29) which we used as input for the training

process in subsequent analysis (Table 1). We also determined a

score indicating the usefulness of each selected feature by taking

the arithmetic mean of the feature’s ordinal ranking across all 5

selection algorithms. This ‘‘average rank’’ score enables a

complete ranking of the selected features, with scores ranging

from 1.4 to 13 (Table 1).

Machine learning methods
To classify point mutations in human protein kinase sequences

as either cancer-associated or non-causative, we applied 11

Rare Oncogenic Mutations in the Cancer Kinome
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machine learning methods to our dataset. The machine learning

methods are J48 (Tree) [59,60], Random Forest [61], NB Tree

[62], Functional Tree [63], Decision Table [64], DTNB [65],

LWL (J48+KNN) [66], Bayes Net [67], Naive Bayes [68], SVM

[69,70], and Neural Network [71].

The detailed results of evaluation of each classifier as well as

several alternative approaches are described in Supplementary

Text S1.

Cross-validation. To account for the possibility of over-

fitting or bias resulting from small sample sizes, we applied 10-fold

cross-validation [72,73] to train all of the models presented in this

article. Cross-validation is a robust approach to validate the

training methods as it repeatedly tests different trained models on

‘‘unseen’’ data [72]. In 10-fold cross-validation, the training set is

randomly split into 10 equal subsets (folds) and the algorithm is

repeatedly trained on nine subsets and tested on the remaining

subset, which is a set of ‘‘unseen’’ data. This ensures each instance

is included into the testing set once. The final results are the

average of the 10 independent training models.
Evaluation. We compared the performance of the 11

machine learning algorithms in classifying the mutations in the

positive and negative set. Due to the highly imbalanced dataset in

certain experiments, a meta-learner, Cost Sensitive Classifier, is

used to define the confusion matrix to optimize the learning

process [74].

We evaluated the performance of the classifiers in terms of

accuracy, precision and F-measure (or F1 score), a measurement

index which is more robust to highly imbalanced datasets than

accuracy [55]. The F-measure is defined as a harmonic mean of

precision and recall:

F-measure~
2|recall|precision

recallzprecision

where precision, or positive predictive value, is the proportion

of true positives in the accepted set (TP/(TP+FP)) and recall,

also known as sensitivity or true positive rate, is the proportion

of all positives that were included in the accepted set (TP/(TP+
FN)).

Combining multiple classifiers to prioritize EGFR
mutations

Having evaluated the 11 trained models that are described

in the previous section, we selected the models trained on the

combined well-performing positive sets — mutations that

appear more than once in the COSMIC dataset — for further

application. We focused on the gene EGFR, a protein kinase

that is frequently mutated in lung cancer, and used the

previously trained models to evaluate the EGFR mutations

that appear only once in the COSMIC dataset, as these

mutations were excluded from the initial training set. Since

these mutations have not been replicated in other tumor

samples, it is more likely that some of them are not significantly

associated with cancer. Thus, we use the following approach to

combine the predictions of the trained classifiers to sort

these EGFR mutations by their likelihood to be cancer-

associated.

For each of the non-synonymous point mutations in the

kinase domain of EGFR that were observed only once in

COSMIC, we calculated a numerical score for the likelihood

of a given mutation to be cancer-associated using two different

approaches: a simple majority voting approach with one

‘‘vote’’ per classifier, and a more sophisticated approach in

which each classifier’s ‘‘vote’’ is weighted by its accuracy as

previously estimated by cross-validation. Mutations that have

been classified as cancer-associated by more classifiers are

considered more likely to be true positives, whereas

fewer ‘‘votes’’ indicate a mutation is less likely to be

cancer-associated.

Table 1. Selected protein features.

Feature Votes AvgRank

Protein kinase family 5 1.40

Protein kinase group 5 1.80

Amino acid type, WT 5 8.00

BLOSUM62 pairwise score 5 8.20

Side-chain polarity, mutant 5 11.00

Conservation of wild type in all kinases 5 11.60

Conservation of consensus type in kinase group 5 11.60

Conservation of consensus type in all kinases 5 13.00

Conservation of consensus type in kinase family 4 5.75

Kinase subdomain 4 6.00

Average mass of amino acid, WT 4 7.50

Is a binding site? 4 8.25

Van der Waals volume, WT 4 8.75

Site modification type (if any) 4 9.25

Amino acid type, mutant 4 10.75

Side-chain polarity, WT 4 11.50

Is in protein kinase domain? 3 11.67

The ‘‘Votes’’ column indicates how many feature selection algorithms cast a vote for that particular feature during the 10-fold cross-validation selecting procedure; the
‘‘Avg Rank’’ column describes the averaged rank of a particular feature within the selected algorithms.
doi:10.1371/journal.pcbi.1003545.t001

Rare Oncogenic Mutations in the Cancer Kinome
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Majority voting approach. In this approach, each of the 11

trained classifiers predicts whether a given mutation is cancer-

associated, and a positive prediction is counted as one ‘‘vote’’. The

votes are then counted to produce a score in the range of 0 to 11:

Ranki~
X

j

fclass~D(Max(ClassDist
j,D
i ,ClassDist

j,ND
i ))

in which i is the number of instances, j is the number of classifiers,

D is disease, ND is non-disease, function fclass~D equal to 1 if the

Max classification distribution is disease (ClassDist
j,D
i ). To

distinguish between cancer-associated and benign mutations with

this score, we chose a simple majority-vote cutoff (i.e. 6 or more

votes is treated as a positive prediction).

Weighted voting approach. The majority ranking approach

places equal weight on the predictions made by each of the 11

classifiers. To account for the differences in predictive ability

between individual classifiers, we produced an alternative ranking

in which each classifier’s ‘‘vote’’ is weighted by its accuracy (as

determined previously by 10-fold cross-validation). The vote here

is the sum of the probability of instance i being classified as

causative, weighted by the accuracy of corresponding classifier.

The sum is then normalized by dividing by the sum of the

accuracies of the 11 classifiers

Probability Rank Scorei~

X
i

Pr
j,D
i |Accuracyj

� �

X
j

Accuracyj

The result is a decimal score between 0 and 1 where values above

0.5 indicate a positive prediction.

Experimental characterization of EGFR mutations
Mutational analysis, transfection and immunoblotting. To

test the impact of mutations, CHO cells were transiently

transfected with GFP-tagged WT or mutant-EGFR plasmids

(pEGFP-N1-EGFR plasmid was a kind gift from Dr. Graham

Carpenter). Point mutations were generated by using Quik

Change II site-directed mutagenesis kit (Stratagene) and con-

firmed by DNA sequencing. Cells were grown in high-glucose

Dubecco’s Modified Eagle Medium (DMEM) (Cellgro, Manassas,

VA, USA) with 10% fetal bovine serum (Bioexpress, UT, USA)

without antibiotics. Transient transfection was performed using

lipofectamine-2000 (Invitrogen, Carlsbad, CA) according to

manufacturers protocol with wild type and mutant EGFR.

To detect auto-phosphorylation of WT/mutant EGFR, tran-

sient transfected cells were serum starved in Hams F-12 media for

18 hours. EGF stimulation was carried out using 100 ng/mL

human EGF (Sigma, St Louis, MO) for five minutes. Cells were

washed with 16PBS and immediately lysed in lysis buffer (50 mM

Tris-HCL, pH 7.4, 150 mM NaCl, 10% glycerol, 1 mM EDTA,

10% Triton X-100, 1 mM PMSF, and 16 Protease Inhibitor

Cocktail Set V, EDTA-free). Western blotting was done using

GFP, pY1173, pY1068, pY845, pY1045, pY1086 (Cell Signaling,

Danvers, MA), and tubulin (Millipore, Billerica, MA) antibodies.

Results

Conservation and kinase-specific features contribute to
the classification of cancer-associated mutations

We first sought to determine a subset of features that show high

predictive value in distinguishing cancer-associated from benign

mutations, and to evaluate the contribution of the kinase-specific

features we introduced in this study, namely the hierarchical

protein kinase classification levels (group, family) and the

conservation levels at each evolutionary depth (all kinases, group

and family).

We applied 5 different feature selection algorithms (see

Methods), each of which selected a subset of the full feature set,

to produce a ranking of the 29 features, 17 of which met our

criteria for inclusion in the final feature subset used for training the

classifiers (Table 1). All 5 selection algorithms selected the features

‘‘Protein kinase family’’ and ‘‘Protein kinase group’’, and each

individual algorithm ranked these two features at the top. The

features ‘‘amino acid type (WT)’’, ‘‘BLOSUM62 score’’, and ‘‘side

chain polarity (Mutant)’’ were also selected by all 5 algorithms and

ranked highly by individual algorithms. Conservation scores of the

wild-type residue among all kinases, and of the alignment

consensus type among all kinases, among the major groups and

among major families, were also ranked highly, indicating that

they extensively contribute to the prediction of the target attribute,

a result that supports the importance of our novel proposed

features.

To further test the contribution of the new features, we re-

ran our classification experiments after removing the novel

kinase-specific features from the 17 features identified through

the feature selection process. Notably, the performance (as

indicated by accuracy values in Supplementary Dataset S1)

reduces substantially when the kinase-specific features are

removed. We then performed a chi-squared test of the number

of correct and incorrect predictions made by each of these two

classifiers on the 557 mutations in our final training set:

551 correct and 6 incorrect versus 498 and 59 for the full

and reduced feature sets, respectively. This statistical

test confirmed that the decrease in accuracy when the

novel features are removed is significant at p,.001

(x2(1)~45:8932, p~2:999|10{11, simulated p~10{5 based

on 100,000 replicates).

It is also interesting to note that the performance of the

combined classifier is much less degraded when the kinase-specific

features were removed compared to the single classifier (Dataset

S1), suggesting that the multiple classifier approach contributes to

stability and robustness.

Combining multiple classifiers improves the prediction of
cancer-associated mutations

We used a weighted voting approach to combine 11 single

classifiers to be a more robust ensemble classifier.

Table 2 and Table 3 present the in silico experimental results in

terms of confusion matrix and several other measurement indexes

which quantify the performance of the individual classifiers. All 11

classifiers performed fairly well, with recall rates at least 95.6% and

False Positive (FP) rates at most 10.6% (Table 3). Of the individual

classifiers, SVM performed the best on most metrics. However, the

combined classifier performs better than the individual classifiers,

reaching 98.7% for both precision and recall.

An alternative metric is the ‘‘F-Measure’’, a harmonic mean of

precision and recall, on which all single classifiers achieved a score

of at least 0.919 (Table 3), a result consistent with previous studies

[27]. The high F-measure score of 0.989 for the combined

classifier also vouches for the stability of our feature set on the

relatively small training dataset. Furthermore, the competitive

performance of the 11 single classifiers suggests that they each

contribute to the improved performance of the multiple (ensemble)

classifier.

Rare Oncogenic Mutations in the Cancer Kinome
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We used two separate 10-fold cross-validation loops, one for

feature selection and another for training and testing. Using

the cross-validation terminology described in [58], our

approach is considered an OUT method (in which feature

selection is done outside the training/testing loop) rather than

an IN method (in which feature selection is in the same loop as

training and testing). This may have caused a problem called

‘‘information leak’’ [58] due to the fact that the full data set

was exposed to the feature selection methods before the

training/testing cross-validation loop. However, the potential

information leak is partially compensated for by the robust and

comprehensive approach we used for feature selection, using

multiple feature selection methods and cross-validation loops

for each of them (see Methods). In the design of this study, it

was necessary to use a single, fixed set of features for both

supervised and unsupervised learning (discussed below).

Furthermore, the OUT method does not affect the relative

performance of the different classifiers [58], which is more

important in this study than the absolute accuracy of each

classifier. Nevertheless, the performance evaluation of the 11

single classifiers and the combined classifier shown in Table 3

should be interpreted with caution given the potential for bias

due to information leak.

Validation of positive and negative sets by combined
supervised and unsupervised clustering

Since there exists a level of uncertainty in the labels (‘‘cancer-

associated’’ and ‘‘benign’’) in our dataset, the predictive model that

is trained by the supervised learning approach, resulting in the

combined classifier, might be biased. In this section, we denote the

prediction of the combined classifier as the Supervised score (S-

Score). We introduce another unsupervised learning module to

help reduce the label uncertainty. The unsupervised module

performs clustering using Euclidean distance in the space of the 17

Table 2. Confusion matrix of individual classifier performance.

Algorithms TP FN TN FP

J48 (Tree) 221 5 318 13

Random Forest 216 10 320 11

NB Tree 217 9 311 20

Functional Tree 217 9 323 8

Decision Table 222 4 296 35

DTNB 219 7 321 10

LWL(J48+KNN) 220 6 316 15

Bayes Net 221 5 313 18

Naive Bayes 218 8 309 22

SVM 219 7 323 8

Neural Network 218 8 321 10

Combined (0.5) 223 3 328 3

All in silico experiments were evaluated with 10-fold cross-validation. TP means an instance in the positive set (COSMIC) was correctly classified as causative, TN means
an instance in the negative set (dbSNP) was correctly classified as non-causative.
doi:10.1371/journal.pcbi.1003545.t002

Table 3. Comparison of performance of individual and combined classifiers.

Algorithm TP Rate FP Rate Accuracy Precision Recall F-Measure

J48 (Tree) 0.978 0.039 0.968 0.944 0.978 0.961

Random Forest 0.956 0.033 0.962 0.952 0.956 0.954

NB Tree 0.960 0.060 0.948 0.916 0.960 0.937

Functional Tree 0.960 0.024 0.969 0.964 0.960 0.962

Decision Table 0.982 0.106 0.930 0.864 0.982 0.919

DTNB 0.969 0.030 0.969 0.956 0.969 0.963

LWL(J48+KNN) 0.973 0.045 0.962 0.936 0.973 0.954

Bayes Net 0.978 0.054 0.959 0.925 0.978 0.951

Naive Bayes 0.965 0.066 0.946 0.908 0.965 0.936

SVM 0.969 0.024 0.973 0.965 0.969 0.967

Neural Network 0.965 0.030 0.968 0.956 0.965 0.960

Combined (0.5) 0.987 0.009 0.989 0.987 0.987 0.987

Each algorithm trained using selected features and evaluated with 10-fold cross-validation. Values are average of the metrics evaluated with respect to the positive and
negative classes.
doi:10.1371/journal.pcbi.1003545.t003
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selected features, without considering the labels, and the labels are

only used for the computation of the Unsupervised Score (U-

Score), which measures cancer-association based on clustering in

the feature space. We conducted further analysis on our dataset by

combining and comparing both S-Score and U-Score (see section

‘‘Learning Methods’’ in Supplementary Text S1) because such

comparisons can potentially reveal suspicious mutations labeled

incorrectly. Mutations with both S-Score and U-Score above 0.5

are considered cancer-associated while mutations with both U and

S-scores below 0.5 are considered benign. All other mutations are

considered uncertain, or suspicious.

Our analysis reveals that majority of cancer-associated and

benign mutations fall into ‘‘Expected’’ clusters. Specifically, 219

out of 226 instances (<97%) labeled as cancer-associated fall

into the ‘‘Expected’’ category, and 255 out of 331 instances

(<77%) labeled as benign fall into the ‘‘Expected’’ category (see

section ‘‘Identifying Suspicious Mutations in COSMIC-FG1

v.57’’ in Supplementary Text S1).

Application of an ensemble classifier to predict rare
variants in EGFR

We combined the 11 classifiers to effectively identify and

prioritize rare EGFR mutations for experimental studies. We

ranked the unconfirmed mutations in EGFR using the combined

classifier (Table 4). The detailed results and log files of the

computational experiments are given in Table S3.

Selection of mutations for in vitro experiments. Based on

our prioritization as ranked by the weighted voting approach, we

selected four mutations from the top 30 ranked mutations for further

investigation. The selected mutations are L861R and G724S (ranked

#1 and #2), and two slightly lower-ranked sites, T725M (ranked #21)

and L858Q (ranked #25). Additionally, we selected a fifth mutation

Table 4. Top predicted unconfirmed mutations.

Rank Priority Score Position WT Mutant

1* 0.97699 861 L R

2* 0.97649 724 G S

3 0.97644 721 G S

4 0.97577 858 L K

5 0.97566 721 G D

6 0.97559 861 L P

7 0.97558 862 L P

8 0.97509 719 G A

9 0.97507 721 G A

10 0.97483 729 G R

11 0.97369 857 G E

12 0.97365 719 G V

13 0.97185 854 T A

14 0.97110 735 G S

15 0.97023 856 F S

16 0.96854 856 F L

17 0.96507 729 G E

18 0.96462 855 D G

19 0.96399 779 G S

20 0.96291 858 L A

21* 0.96238 725 T M

22 0.96210 858 L W

23 0.96034 779 G C

24 0.95998 723 F S

25* 0.95649 858 L Q

26 0.95400 858 L M

27 0.95381 731 W R

28 0.95333 799 L R

29 0.95268 720 S P

30 0.95253 838 L P

…

161* 0.61788 746 E K

Probability scores and rankings of the top predicted mutations. Scores were calculated with the multiple classifier trained on COSMIC v.50 data. Asterisks indicate the
five mutations selected for cell-based assays.
doi:10.1371/journal.pcbi.1003545.t004
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that was not strongly predicted to be either cancer-associated or

benign, E746K (ranked #161). The choice of lower-ranked mutations

for experimental studies was based on a variety of factors including

crystal structure analysis, as described below.

Rare variants identified as potentially causative. We

looked at the features associated with each of the highly ranked

mutations to understand how the combined classifier predicted

these mutations to be cancer-associated (Table 5). The predicted

mutation sites were visualized on a solved crystal structure of

EGFR [PDB:1JIU] using PyMOL [75] to view the structural

context of each mutation (Figure 1).

The two top-scoring rare EGFR mutations are L861R and

G724S. L861R (rank #1) occurs at the same site as another known

driver, L861Q [76], in the activation segment of the kinase

domain. L861Q is a frequently observed mutation in EGFR in

lung cancer and this mutation is known to activate EGFR [77];

however, the functional impact of the rare L861R is not well

understood.

G724S (rank #2) alters a conserved GxGxxG motif in the

glycine-rich loop. However, it is the least conserved among the

three glycines and does not directly participate in phosphoryl

transfer [78,79]. We note that there are other naturally occurring,

active kinases which also have a serine at this position, such as 3-

phosphoinositide dependent protein kinase-1 (PDPK1), calcium/

calmodulin-dependent protein kinases (CAMK1a, CAMK2b),

casein kinase II (CK2a, CK2b), mitogen-activated protein kinase

kinase kinase 1 (MAP3K1), dual-specificity testis-specific protein

kinase (TESK1, TESK2) and Tousled kinase 1 (TLK1) and 2

(TLK2).

In addition to the two high-scoring mutations we also chose

additional mutations for experimental analysis (T725M, E746K

and L858Q). Specifically, we chose mutations whose impact on

EGFR structure and function was not obvious from crystal

structure analysis.

T725M (rank #21) is another mutation in kinase subdomain I,

in the b2 strand adjacent to the glycine-rich loop. From a

Figure 1. Structural location of selected EGFR mutation sites.
Protein crystal structure [PDB:2JIU] shown as cartoon, with sites G724,
T725, L858 and L861 shown as spheres. Structural regions highlighted
in yellow are kinase subdomain I and the activation loop. The structure
image was generated using PyMOL [75].
doi:10.1371/journal.pcbi.1003545.g001

Table 5. Feature values of selected mutations.

Mutation E746K L861R L858Q G724S T725M

Protein Family EGFR EGFR EGFR EGFR EGFR

Protein Group TK TK TK TK TK

Wildtype amino acid E L L G T

Blosum62 1 22 22 0 21

Side Chain Polarity Mut 1 1 1 1 0

Conservation AllKinase Wild 0.049284 0.12363 0.409919 0.545306 0.122923

Conservation Group 0.392157 0.215686 0.803922 0.94902 0.380392

Conservation AllKinase 0.186021 0.070003 0.51031 0.716841 0.146852

Conservation Family 0.454545 0.818182 0.818182 1 0.909091

Sub domain II VIb VIb I I

Avg Mass 146.18934 174.20274 146.14594 105.09344 149.20784

binding site NA NA NA NA NA

Van der Waals Volume Wild 109 124 124 48 93

modification NA NA NA NA Phosphorylation

snp amino acid K R Q S M

Side Chain Polarity Wild 1 0 0 0 1

Is Pk Domain 0 0 0 0 0

doi:10.1371/journal.pcbi.1003545.t005
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structural perspective this prediction is surprising, given that the

residue is solvent-exposed, oriented away from the kinase ATP-

binding pocket and does not occur in the active site (Figure 1). The

mutation type is not particularly drastic (BLOSUM62 score -1),

and the conservation of this site is not strong outside across the

protein kinase superfamily. It is unclear how mutation of this

threonine to a methionine could impact kinase activity. However,

the site is strongly conserved within the EGFR family (91%), and is

a potential phosphorylation site [80,81]. The trained classifiers

appear to have used these features to assign a high probability of

this mutation to be causative.

L858Q (rank #25) occurs in the kinase activation loop, like

L861R (above), and is the site of another frequently observed lung

cancer mutation, L858R [11].

E746K (rank #161) occurs in subdomain II but is spatially close

to T725, C-terminal to the kinase-conserved VAIK motif, and also

solvent-exposed in the EGFR structure (Figure 1). Although the

ranking is low among other EGFR mutations, the priority score is

0.6178, indicating that it is predicted as more likely than not to be

cancer-associated.

T725M, E746K and L861R are activating EGFR mutations
EGFR point mutations T725M, E746K and L861R showed

increased auto-phosphorylation compared to WT as shown in

Figure 2. T725M and L861R resulted in hyper-phosphorylation at

almost all the sites examined, i.e. Y1086, Y1045, Y845, Y1173 and

Y1068. E746K, however, showed enhanced phosphorylation at

Y1068, Y845, Y1173 and Y1068. The mutations G724S and

L858Q, ranked 2 and 25 respectively (Table 4), did not show

significant difference in C-terminal tail autophosphorylation com-

pared to wild-type EGFR (Figure 2; Figure 3). However, G724S and

L858Q showed elevated levels of AKT phosphorylation in the

presence of EGF compared to WT and other mutants (Figure 2).

Discussion

In this study, we reported novel features and a multiple classifier

approach for identifying cancer-associated mutations in the cancer

kinome. Our studies revealed that: (i) the depth of conservation of

the mutated residue is a useful, novel feature for predicting cancer-

associated mutations; (ii) combining multiple classifiers can

improve prediction accuracies; and (iii) our novel features and

multiple classifiers can be effectively applied in the identification of

rare mutations in EGFR.

Mutational activation of EGFR is implicated in many cancers

including lung, head and neck cancer, and clinical and cancer

genome sequencing studies have identified hundreds of mutations

in the protein kinase domain. However, much of the focus thus far

has been on a handful of frequently observed mutations such as

L858R and L861Q, while relatively little is known about the many

rare mutations in EGFR such as T725M. The scoring scheme and

multiple classifier approach we have introduced here help identify

key rare mutations for follow-up experimental studies.

In particular, our studies suggest T725M as a likely cancer-

associated mutation because it increases EGFR auto-phosphory-

lation activity in comparison to wild-type and other activating

mutations such as L858R. The impact of the T725M mutation

cannot be predicted by existing structural or functional informa-

tion alone, and clinical samples do not currently highlight this as a

highly recurrent mutation, as it appears only once in COSMIC

v.50 and twice in COSMIC v.57. T725, however, is predicted to

be a likely phosphorylation site [80,81]. Thus, it is possible that the

T725M mutation activates the kinase through loss of an inhibitory

phosphorylation site. Indeed, mutational gain or loss of phosphor-

ylation sites has been previously noted in cancer datasets [82,83].

The frequently observed mutation L861Q is known to activate

EGFR, but the impact of the rare L861R is not known. Here we

showed that L861R activates EGFR in the absence of

the activating EGF ligand, suggesting that it is also likely to be

cancer-associated.

L858Q and G724S are two predicted mutants that do show

appreciable change in EGFR autophosphorylation (Figure 2;

Figure 3). This does not necessarily mean that these mutations are

not causative, as these mutations can alter other aspects of EGFR

signaling not considered in our studies. For example, recent studies

showed that cancer mutations alter the temporal regulation and

phosphorylation rates of the C-terminal tail tyrosines in EGFR

[84]. Such changes in temporal regulation can contribute to

abnormal downstream signaling without appreciable change in the

level of C-terminal tail phosphorylation. Consistent with this view,

the G724S and L858Q mutants increase phosphorylation of AKT

despite little or no change in EGFR autophosphorylation

(Figure 2). Although these observations must be further investi-

gated through in vitro studies, the machine learning approach

appears have used multiple correlative features to predict the

causativeness of these mutants (see Table 5).

L858R is a recurrent lung cancer mutation which activates

EGFR and also impacts drug binding [11]. This information

perhaps contributed to the classification of L858Q as cancer-

associated. However, our mutational experiments revealed that

the L858Q mutation does not significantly alter the levels of

EGFR autophosphorylation. However, as mentioned above,

L858Q does alter downstream AKT phosphorylation (Figure 2).

The context of L858Q suggests that the activation loop of EGFR is

a frequent site of activating mutations; however, the L858Q

Figure 2. Auto-phosphorylation of wild-type and mutant EGFR
and impact of mutations on downstream EGFR signaling. The
blot shows phosphorylation of the four C-terminal tail tyrosines (Y1086,
Y1045, Y845, Y1173 and Y1068) in EGFR, and two downstream proteins,
ERK1/2 and AKT, in the presence (+) and absence(2) of EGF. ‘‘Un’’
indicates untransfected CHO cells. Total levels of EGFR (GFP), ERK1/2,
AKT and tubulin (control) are also shown.
doi:10.1371/journal.pcbi.1003545.g002
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mutation appears to alter downstream signaling in a manner

distinct from L858R.

As our catalog of known drivers improves we can further

improve our prediction system, using additional features such

as protein dynamics and atomic details, and machine learning

techniques such as semi-supervised learning [85] and cluster-

ing [86] to build a more sophisticated model to differentiate

between causative and non-causative mutations in cancer.

Moreover, our work could be extended to a prediction tool

with clinical value, as well as provide a basis for further

investigation into the relationship between protein evolution

and disease.

Supporting Information

Dataset S1 Detailed experiment records and results.
Complete data sets, outputs and log files for all computational

experiments. These files can be loaded in Weka [26] to reproduce

the results presented in this paper.

(ZIP)

Table S1 Descriptions of experiment designs and
corresponding records. Descriptions of the underlying data

sets for each computational experiment, including an index for the

raw data in Supplementary Dataset S1.

(XLSX)

Table S2 Feature selection results. The detailed feature

selection results obtained from the 5 selection methods with 10-

fold cross-validation.

(XLSX)

Table S3 Ranking of 177 single-observation EGFR
mutations in COSMIC v50.
(CSV)

Table S4 Ranking of 165 single-observation EGFR
mutations in COSMIC v57.
(CSV)

Table S5 Ranking of the 71 single-observation EGFR
mutations in COSMIC v50 that were observed more
than once in COSMIC v57.
(CSV)

Text S1 Supplementary description of methods. Detailed

description of methods and alternative approaches.

(PDF)

Figure 3. Quantified tyrosine auto-phosphorylation levels of wild-type and mutant-type EGFR. Quantified phosphorylation levels are
shown in the form of histograms. Quantification was done using Image J.
doi:10.1371/journal.pcbi.1003545.g003
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