
animals

Article

Validation of the Prediction Accuracy for 13 Traits in Chinese
Simmental Beef Cattle Using a Preselected Low-Density
SNP Panel

Ling Xu †, Qunhao Niu †, Yan Chen, Zezhao Wang, Lei Xu, Hongwei Li, Lingyang Xu, Xue Gao, Lupei Zhang ,
Huijiang Gao, Wentao Cai, Bo Zhu * and Junya Li *

����������
�������

Citation: Xu, L.; Niu, Q.; Chen, Y.;

Wang, Z.; Xu, L.; Li, H.; Xu, L.; Gao,

X.; Zhang, L.; Gao, H.; et al.

Validation of the Prediction Accuracy

for 13 Traits in Chinese Simmental

Beef Cattle Using a Preselected

Low-Density SNP Panel. Animals

2021, 11, 1890. https://doi.org/

10.3390/ani11071890

Academic Editor: Monique Rijnkels

Received: 24 May 2021

Accepted: 15 June 2021

Published: 25 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of
Agricultural Sciences, Beijing 100193, China; jiujiuyake@sina.com (L.X.); nqh_5195@163.com (Q.N.);
chenyan0204@163.com (Y.C.); wangzezhao1@163.com (Z.W.); xuleirock@163.com (L.X.);
lihongweicaas@163.com (H.L.); xulingyang@163.com (L.X.); gaoxue76@126.com (X.G.);
zhanglupei@caas.cn (L.Z.); gaohj111@sina.com (H.G.); caiwentao@caas.cn (W.C.)
* Correspondence: zhubo@caas.cn (B.Z.); lijunya@caas.cn (J.L.); Tel.: +86-10-62812769 (B.Z.)
† These authors contributed equally to this work.

Simple Summary: To reduce the breeding costs and promote the application of genomic selection
(GS) in Chinese Simmental beef cattle, we developed a customized low-density single-nucleotide
polymorphism (SNP) panel consisting of 30,684 SNPs. When comparing the predictive performance
of the low-density SNP panel to that of the BovineHD Beadchip for 13 traits, we found that this ~30 K
panel achieved moderate to high prediction accuracies for most traits, while reducing the prediction
accuracies of six traits by 0.04–0.09 and decreasing the prediction accuracy of one trait by 0.2. For the
remaining six traits, the usage of the low-density SNP panel was associated with a slight increase in
prediction accuracy. Our studies suggested that the low-density SNP panel (~30 K) is a feasible and
promising tool for cost-effective genomic prediction in Chinese Simmental beef cattle, which may
provide breeding organizations with a cheaper option and greater returns on investment.

Abstract: Chinese Simmental beef cattle play a key role in the Chinese beef industry due to their
great adaptability and marketability. To achieve efficient genetic gain at a low breeding cost, it
is crucial to develop a customized cost-effective low-density SNP panel for this cattle population.
Thirteen growth, carcass, and meat quality traits and a BovineHD Beadchip genotyping of 1346
individuals were used to select trait-associated variants and variants contributing to great genetic
variance. In addition, highly informative SNPs with high MAF in each 500 kb sliding window
and in each genic region were also included separately. A low-density SNP panel consisting of
30,684 SNPs was developed, with an imputation accuracy of 97.4% when imputed to the 770 K
level. Among 13 traits, the average prediction accuracy levels evaluated by genomic best linear
unbiased prediction (GBLUP) and BayesA/B/Cπ were 0.22–0.47 and 0.18–0.60 for the ~30 K array
and BovineHD Beadchip, respectively. Generally, the predictive performance of the ~30 K array
was trait-dependent, with reduced prediction accuracies for seven traits. While differences in terms
of prediction accuracy were observed among the 13 traits, the low-density SNP panel achieved
moderate to high accuracies for most of the traits and even improved the accuracies for some traits.

Keywords: genomic prediction; prediction accuracy; low-density SNP panel; Chinese Simmental
beef cattle

1. Introduction

Genomic prediction (GP), which uses genome-wide markers to predict direct genomic
estimated breeding values (DGVs), has been widely studied in breeding programs for
plants [1–3] and domestic animals [4–6]. Recently, advances in high-throughput genotyping
technology and the availability of population-scale whole-genome sequencing (WGS)
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have contributed to the identification of millions of genetic variants. Theoretically, the
accuracy of GP depends on the degree of linkage disequilibrium (LD) between markers
and quantitative trait loci (QTLs). In real-world contexts, the true QTLs are unknown,
and markers must be selected as proxies to explain genetic variance [7,8]. In this setting,
increasing the available markers could allow all QTLs in LD to be linked with at least one
marker, which in turn would be beneficial for the GP. The application of high-density SNP
arrays (770 K) for GP in cattle has been gaining increasing popularity because the high
number of markers may improve the prediction accuracy of DGVs [9–12]. Previous studies
have demonstrated that the usage of high-density markers (~770 K) can contribute to an
improvement of prediction accuracy in comparison with moderate- (~50 K) or low-density
(~30 K) markers [5,9,13,14]. However, this increase is limited compared with the high
cost of genotyping. In fact, a moderate marker density (like 50 K) is enough for routine
genomic predictions and can achieve satisfactory accuracy [15,16]. The BovineSNP50
Beadchip is one of the most popular SNP arrays used in the genomic prediction of dairy
cattle [17,18]. Calus et al. (2008) demonstrated that 30,000 markers were sufficient to obtain
accurate DGVs in a Holstein–Friesian cattle population where the mean LD (r2) between
adjacent SNPs was 0.2 at approximately 100 kb. Vazquez et al. (2010) found that using
10,000 markers resulted in great prediction ability for production traits in Holstein cattle,
and that the prediction ability was not improved as the number of markers continued to
increase [19].

Many studies have been performed to develop a low-density SNP chip for cost-
effective prediction in cattle [20–23], sheep [24], and chicken [25]. These studies can be
roughly divided into two categories. One is to develop a low-density SNP chip by the
selection of SNPs with nearly equal spacing, high minor allele frequency (MAF), or above
a LD threshold, followed by the imputation of the low-density genotype to high-density
genotype for GP [20]. The performance of these low-density SNP chips heavily relies on the
imputation accuracy. Nevertheless, the imputation accuracy is influenced by many factors,
including size of reference population for imputation, minor allele frequency (MAF) of
the imputed SNPs, LD, and the relationship between reference and candidate population.
Another strategy is to develop a trait-specific low-density panel by selecting a subset of
SNPs on the basis of whole-genome regression analysis [21–23]. However, the number of
preselected SNPs is small, ranging from tens to hundreds, since only one or two traits are
used for the panel’s development. The loss of prediction accuracy would be large when
using it for GP. In addition, the trait-specific panel could only be applied for a limited
number of traits, unless the preselected SNPs for various traits are integrated to form a
comprehensive low-density SNP chip. For these studies, the main hurdle for the application
of these low-density SNP chips in GP is that they only focus on one purpose for low-density
SNP chip development, i.e., either imputation-based or trait-specific cost-effective GP.

In China, the efficient genetic improvements brought about by GP and trends related
to decreasing genotyping costs in contrast to increasing expenses for phenotyping have
encouraged the application of GP to beef cattle. However, the cost of genotyping is still
very high for breeding organizations in China; for instance, the cost of genotyping of
BovineHD Beadchip is around 150 USD per animal. However, the cost of the low-density
SNP chip is only 30 USD per sample. Chinese Simmental beef cattle play a dominant
role in the Chinese beef industry because of their high adaptability and marketability.
Simmental cattle and their crossbreeds account for more than 60% of the total cattle breeding
stock across the country [26]. The primary breeding objective of Chinese Simmental beef
cattle is to improve beef production and meat quality. The Genomic China Beef Index,
which contains the official selection criteria for beef cattle breeding, consists of several
genomic estimated genomic breeding values associated with economical traits, including
calving difficulty, weaning weight, average daily gain during fattening, carcass weight,
and dressing percentage. To reduce the breeding costs and promote the application of
GP in Chinese Simmental beef cattle, it is necessary to develop a special low-density SNP
panel which can achieve satisfactory prediction accuracy. Breeding organizations would
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then have access to the low-density SNP panel, which would provide them with a cheaper
option with greater returns on investment. In this study, 13 growth, carcass, and meat
quality traits and BovineHD Beadchip genotyping of 1346 individuals were combined to
develop a customized low-density SNP panel for Chinese Simmental beef cattle via four
variant selection strategies. Overall, the objectives of this study were to achieve accurate
prediction of DGVs for economic traits of Chinese Simmental beef cattle by using the
customized low-density SNP panel (~30 K) and to reduce the breeding costs by promoting
the cost-effective GP.

2. Materials and Methods
2.1. Ethics Statement

All the animals used in the study were treated in accordance with the guidelines
established by the Council of China Animal Welfare. The protocols of the experiments
were approved by the Science Research Department of the Institute of Animal Sciences,
Chinese Academy of Agricultural Sciences (CAAS) (Beijing, China). The approval ID and
permit numbers are SYXK (Beijing) 2008-007 and SYXK (Beijing) 2008-008, respectively.

2.2. Animals and Phenotypic Data

A total of 1346 Simmental cattle born between 2008 and 2015 were collected. Of the
sample, 1114 animals were bulls. All individuals were collected from farms in Ulgai, Xilin-
gol League, and Inner Mongolia of China, and they were transferred to Beijing Jinweifuren
Farm for fattening under the same feeding conditions and measured for growth traits every
3 months. Then, a slaughter experiment was performed for various phenotype measure-
ments when the cattle reached an average age of 20 months. A more detailed description of
the management processes was reported in previous studies [27,28]. This study analyzed
the following 13 traits: (1) growth traits: average daily gain (ADG; kg), live weight (LW;
kg); (2) carcass traits: hot carcass weight (CW; kg), dressing percentage (DP; %), lean meat
percentage (LMP; %), and weight of retail beef cuts, including striploin (ST; kg), spencer
roll (SR; kg), chuck roll (CR; kg), and tenderloin (TD; kg), and retail meat weight (RMW);
(3) meat quality: eye muscle area at the 12th rib (EMA12, cm2), eye muscle area at the 13th
rib (EMA13, cm2), and marbling (MB). The ADG was the rate of weight gain per day over
the fattening duration. LW was measured before slaughter after fasting for 24 h. MB was
visually scored on a seven-point scale depending on the degree of marbling on the cut
surface of the 12th rib. In terms of the rib eye area (REA), a piece of the meat about 3 cm
thick between the 12th and 13th rib was cut from the carcass. The rib eye area of both sides
of the meat was measured as the area in square inches using a grid like the one pictured,
and the two measurements were termed EMA12 and EMA13, respectively. Carcass traits
and meat quality traits were measured in strict accordance with the guidelines proposed
by the Institutional of Meat Purchase Specifications and GB/T 27643-2011 after slaughter.

2.3. Genotyping and Population Structure

DNA was extracted from blood samples via routine procedures and genotyped using
the Illumina BovineHD Genotyping Beadchip. Raw genotype data were processed using
PLINK (v1.90) before statistical analysis [29,30]. Individuals and autosomal SNPs that
failed in any of the following criteria were discarded, resulting in 1331 individuals and
671,204 SNPs left: SNPs call rate >0.90; minor allele frequency (MAF) >0.01; p-value of
Hardy–Weinberg equilibrium (HWE) chi-squared test >10−6; individual call rate >0.90.
Alongside the quality control, missing genotypes were imputed using BEAGLE v4.1 soft-
ware [31]. The SNP configuration was coded as the number of copies of the minor alleles,
i.e., 0, 1, and 2 for the first homozygote, the heterozygote, and the second homozygote,
respectively. To capture the population structure, we performed the principal component
analysis (PCA) and linkage disequilibrium (LD) analysis using the PLINK (v1.90).



Animals 2021, 11, 1890 4 of 17

2.4. Genetic Parameter Estimation

The genetic heritability was estimated via the single-trait animal model in ASREML
(v4.1). The genetic correlations and phenotypic correlations of 13 traits were estimated
using the bivariate animal model in ASREML (v4.1) [32]. The bivariate animal model used
for genetic correlation is described below.[

y1
y2

]
=

[
X1 0
0 X2

][
b1
b2

]
+

[
Z1 0
0 Z2

][
a1
a2

]
+

[
e1
e2

]
, (1)

where y1 and y2 are the vectors of phenotypes for trait 1 and trait 2, respectively, b1 and
b2 are the vectors of fixed effects for two traits, including sex, year, and the covariates of
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vectors of random residuals for two traits, where I is the identity matrix and σ2
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√

σ2
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, where rP and

rG are phenotypic and genetic correlation coefficients, respectively, σ2
P1

and σ2
P2

are the
phenotypic variance of trait X and trait Y, respectively, σ2

P1
and σ2

P2
are the additive genetic

variance of trait 1 and trait 2, respectively, and covP12 and covG12 are the phenotypic and
genetic covariance, respectively.

2.5. Preselection of Low-Density SNP Panel

Four separate strategies were implemented to select candidate SNPs separately, includ-
ing genome-wide association study (GWAS), whole-genome regression (BayesB), sliding
window, and gene annotation. Before the GWAS and BayesB analyses, the cattle population
was split into training (n = 1199) and validation (n = 132) datasets using birth year before
and after 2014, respectively, following the analysis in [9]. Phenotypes of the training dataset
were used for variant preselection in GWAS and BayesB analyses for the low-density SNP
panel. The phenotypes of the validation dataset were used for the downstream assessment
of the predictive performance of the low-density SNP panel. This allowed the validation
phenotypes to be independent from the training dataset when predicting direct genomic
estimated breeding values (DGVs) for individuals in the validation dataset and allowed
analyses to be unbiased. The minor allele frequency (MAF) of 671,204 SNPs after quality
control was calculated via PLINK (v1.90), which was used in the sliding window and
gene annotation strategies. After completing these four analyses, the candidate SNPs
detected by each strategy were merged and deduplicated. Details of the four strategies are
described below.

To identify the significantly trait-associated variants, the mixed model-based single
locus regression analysis (MMRA) applied to perform GWAS for each trait was as follows:

y = Xβ+ Sα+ Zµ+ e, (2)

where y is a vector of the phenotypes, β is a vector of the fixed effects including the same
effects as in Equation (1), α is vector of the fixed genetic effect of a single SNP, µ is a vector
of the residual polygenic effect, e is a vector of random residuals, and X, S, and Z are the
incidence matrices. Here, we added the top three principal components into β to avoid
GWAS being confounded by the population stratification, even if not significant. This
analysis was implemented via the R package GenABEL [33]. Lastly, the top 0.1% of SNPs
with the lowest p-values for each trait were chosen as the potential trait-associated SNPs.

SNPs contributing to a comparatively large proportion of genetic variance were
selected by using whole-genome regression (BayesB), which uses autosomal markers to
predict SNP effects simultaneously [8]. BayesB assumes a large number of loci with zero
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genetic variance and only a small proportion of loci with variance not equal to zero [8].
The statistical model for BayesB is as follows:

y = Xβ+ Mg + e, (3)

where y, β, X, and e are as defined in Equation (2), g is the m × 1 vector of the SNP effect,
gi~N

(
0, σ2

gi

)
, σ2

gi
is the variance of the i-th SNP effect, and M is the genotype matrix of

the training dataset with values equal to 0, 1, or 2. The marker effect variance σ2
gi

was
assigned a prior mixture distribution as follows:

σ2
gi

{
= 0 with probability π

∼ x−2
(

vg, s2
g

)
with probability (1 − π)

, where i = 1, . . . , m. (4)

σ2
gi
> 0 follows a scaled inverse chi-squared distribution with a probability of (1−π),

where the degrees of freedom is a fixed value (v = 4.234) [8] and the scale parameter (s2
g)

is derived from the equation s2
g =

E
(
σ2

gi

)
(vg −2)

vg
. In this study, π was set to 0.999 so that

about 100–150 SNPs contributed to additive genetic variance. The Monte Carlo Markov
chain (MCMC) algorithm of BayesB consists of running a Gibbs chain. The MCMC chain
was run for 50,000 cycles, and the first 10,000 cycles were discarded as burn-in. When
obtaining the SNP effects gi, the percentage of genetic variance explained by each SNP was

calculated by the equation Vi =
2pi(1 − pi)gi

σ2
a

, where Vi is the proportion of additive genetic
variance explained by the i-th SNP, pi is the MAF of the i-th SNP, gi is the absolute average
substitution effect of the i-th SNP, and σ2

a is the additive genetic variance. The analysis was
implemented via the C language complied software from [27]. The top 0.1% of SNPs were
then selected as the affected SNPs.

Similarly to [20], the highly informative SNPs with a high MAF and uniform spacing
across the genome were included by setting a 500 kb sliding window. Specifically, the
ARS-UCD1.2 bovine genome assembly was used to define the window over the autosomes
to achieve regular spacing, which led to two SNPs being included per Mb. In each window,
the SNP with the highest MAF, as well as a call rate >98%, was selected to ensure the
polymorphism and robust reproducibility. To avoid a lack of flanking information at the
start or end of each chromosome, we included SNP at each chromosomal end.

Given that recent studies have shown that the number of genome features (like genes)
that are represented by genetic markers may also influence the performance of GP [34,35],
we also added SNPs that were located in each gene region and had high MAF to the low-
density SNP panel. The latest bovine genome annotation (Bos_taurus.ARS-UCD1.2) was
downloaded from Ensemble (http://asia.ensembl.org/index.html; accessed on 22 October
2019). The SNPs from the BovineHD Beadchip were annotated to the corresponding gene
regions (including protein-coding genes, nonprotein-coding genes, and pseudogenes) using
bedtools [36]. Consequently, a separate SNP set was formed for each gene, and the SNP
with the highest MAF was selected for each set.

2.6. Genomic Prediction

We applied GBLUP [37], BayesA/B [8], and BayesCπ [38] to analyze the performance
of the preselected low-density SNP panel for the validation dataset, and the results were
compared with that of BovineHD Beadchip using fivefold cross validation.

For GBLUP, the prediction model used to estimate the direct genomic breeding values
(DGVs) was basically the same as in Equation (3); however, g ∼ N

(
0,σ2

gG
)

is the vector

of breeding values assumed to follow a multivariate normal distribution, where σ2
g is the

genetic variance and G is the genomic relatedness matrix calculated as G = (M − P)(M − P)′

2 ∑m
i=1 pi(1 − pi)

.
M denotes the (0,1,2) encoded genotype matrix, pi is the MAF of marker i, m denotes the
number of markers, and P is a matrix with columns equal to 2pi.

http://asia.ensembl.org/index.html
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For the three Bayesian approaches, the prediction model used was the same as in
Equation (3); however, they used a different prior distribution for gi and prior probability
for π. BayesA supposes that each SNP has its own effect; in other words, π = 0. These
effects differ from one SNP to another, and the variance σ2

gi
also follows a scaled inverse

chi-squared distribution with fixed vg (4.2). For BayesB, the method description was similar
to that described above, while the π was set to 0.995 here, since we supposed that candidate
QTLs were included in the low-density SNP panel. In comparison with BayesB, the SNP
effect variance σ2

gi
in BayesCπ was also assumed a priori to be zero with a probability of π

or to follow a scaled inverse chi-squared distribution with a probability of 1 − π, where
parameter vg is 4.2. However, each SNP effect has a common variance σ2

gi
= σ2

g (j = 1, . . . , m)
in BayesCπ, and π is treated as unknown with a uniform (0,1) prior distribution. The scale
parameter (s2

g) in BayesA/Cπ was also calculated using the above equation. The DGVs
were calculated as DGVj = ∑N

j=1 Zijgi, where DGVj is the genomic estimated breeding
value of the j-th individual of the validation dataset, gi is the estimated effect for the i-th
SNP obtained from BayesA/B/Cπ, Zij is the encoded genotype of SNP (0/1/2), and N is
the number of SNPs. The analyses were conducted using the software from [27].

2.7. Assessment of the Low-Density SNP Panel

The number and percentage of markers on each chromosome, and the pairwise marker
interval were investigated to ensure the approximately uniform distribution of the low-
density SNP panel across the autosomes. The correlation coefficient (r2) was used to
quantify the LD decay of the low-density SNP panel within the 2 Mb window. In addition,
to check the feasibility of using low-density marker panels for genotype imputation and
genomic prediction of Chinese Simmental beef cattle, we imputed this panel to the ~770 K
density using Beagle v4.1 [31]. Prior to this step, the cross-validation scenarios were used
to assess the accuracy of imputation, wherein different groups of animals were included
in the reference population to predict the DGVs of animals in validation set. The Chinese
Simmental beef cattle were split at random into five near-equal subsets. At each cross-
validation rotation, the reference and validation sets included around 1076 (four subsets)
and 260 animals (one subset), respectively. The accuracy of imputation was taken as the
proportion of genotypes that were correctly imputed. This process was then repeated
five times.

For the low-density SNP panel, the prediction accuracy was assessed only for the
validation datasets that included individuals born after 2014. For BovineHD Beadchip,
the accuracy of genomic prediction was assessed using fivefold cross-validation (CV),
which assigned animals randomly into five separate subsets of near-equal size. Each
subset was used as the validation set only once, with the phenotype masked, while the
remaining four subsets were treated as the training set. To reduce random sampling effects,
the CV layout described above was replicated 20 times, and a new randomization was
implemented for each replicate so that each of the subsets contained different individuals.
The prediction accuracies were calculated as the correlation between the DGVs and the
adjusted phenotypes in the validation set divided by the square root of the heritability. In
addition, to assess the extent of bias of genomic prediction, the linear regression coefficients
(b (y, DGV)) of the adjusted phenotypes (y) on the DGVs were calculated for the validation
dataset. Here, phenotypes were adjusted for the environmental fixed effects, including sex,
year, and the covariates of body weight upon entering the fattening farm, and the number
of fattening days, and the residuals were saved as the adjusted phenotype. Unbiased
models should not significantly deviate from 1, whereas values greater than 1 indicate a
biased deflation prediction of DGVs and values smaller than 1 indicate a biased inflation
prediction of DGVs.
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3. Results
3.1. Statistics and Population Structure

The statistical descriptions for each trait are summarized in Table 1. Regarding the
population structure of the Chinese Simmental beef cattle population, results showed
that this population could be separated into five clusters on the basis of the first two
principal components (Figure S1, Supplementary Materials); however, many individuals
were clustered together. The linkage disequilibrium (LD) of this population was quantified
via the r2 value with the 770 K chip after quality control. We found that the LD decreased
from 0.61 to 0.01 within the 2 Mb window (Figure 1). The LD dropped below 0.2 at distances
of 34 kb and remained steady when the SNP interval increased to 500 kb.

Table 1. Statistics and estimated heritability for studied traits in Chinese Simmental beef cattle.

Traits 1 The Number
of Phenotypes Mean (SD) h2 (SE) σ2

a σ2
e

Growth traits
ADG 1330 0.96 ± 0.22 0.37 ± 0.06 0.12 0.17
LW 1342 504.95 ± 70.22 0.38 ± 0.07 4586.61 7483.41

Carcass traits

CW 1346 270.67 ± 45.20 0.42 ± 0.05 314.05 433.69
DP 1341 53.56 ± 2.91 0.28 ± 0.06 2.04 5.23
LP 1338 45.47 ± 3.00 0.35 ± 0.07 3.00 5.57
ST 1342 8.55 ± 1.99 0.40 ± 0.05 0.75 1.13
TD 1341 3.97 ± 0.70 0.28 ± 0.07 2.04 5.24
SR 1341 10.57 ± 2.23 0.39 ± 0.07 0.12 0.19
CR 1334 11.47 ± 3.25 0.56 ± 0.06 1.98 1.56

RMW 1344 167.79 ± 30.15 0.39 ± 0.07 112.42 175.83

Meat quality
traits

EMA12 1343 85.53 ± 13.58 0.18 ± 0.06 21.20 96.59
EMA13 1203 85.21 ± 14.13 0.28 ± 0.06 26.19 67.35

MB 1343 5.14 ± 1.00 0.11 ± 0.05 0.27 2.18
1 Growth traits: average daily gain (ADG; kg) and live weight (LW; kg). Carcass traits: hot carcass weight (CW;
kg), dressing percentage (DP; %), lean meat percentage (LP; %), weight of retail beef cuts including striploin
(ST; kg), spencer roll (SR; kg), chuck roll (CR; kg), and tenderloin (TD; kg), and retail meat weight (RMW). Meat
quality traits: eye muscle area at the 12th rib (EMA12), eye muscle area at the 13th rib (EMA13), and marbling at
the 12th rib (MB).
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3.2. Estimation of Genetic Parameters

The heritability value of the 13 traits ranged from 0.11 to 0.56 (Table 1). Among these
traits, we found six traits had relatively high heritability, namely, CR (0.56), CW (0.42), ST
(0.41), RMW (0.39), TD (0.39), SR (0.39), and LW (0.38), and four traits displayed moderate
heritability, namely, LP (0.35), DP (0.29), EMA13 (0.28), and CR (0.28); the remaining two
traits, EMA12 (0.18) and MB (0.11), had low heritability (Table 1). Generally, growth and
carcass traits had moderate to high heritability. The genetic correlations (below diagonal)
and phenotypic correlations (above diagonal) are presented in Figure 2. The genetic
correlation for all pairwise traits was positive and ranged from 0.7 to 0.8. Nevertheless,
negative phenotypic correlations could be observed in the pairwise traits, and almost all
phenotypic correlations were lower than the corresponding genetic correlations. Among
all traits, two growth traits had high genetic correlations with most carcass traits and had
moderate genetic correlations with meat quality traits. A similar pattern was also observed
for phenotypic correlations.
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3.3. Features of the Low-Density SNP Panel

After the implementation of a genome-wide association study for 13 traits, SNPs
ranking in the top 0.1% were selected as trait-associated loci. A total of 671,204 SNPs
from the BovineHD Beadchip were kept after quality control. Approximately, 672 SNPs
ranking in the top 0.1% were selected for each trait. This contributed to a total of 6932 SNP
was included after filtering, with 1804 overlapping SNPs detected in at least two traits.
The GWAS results of 13 traits are summarized in Figure S2 (Supplementary Materials).
Similarly, 6421 SNPs that explained a comparatively large proportion of the genetic variance
were screened (672 for each trait) after omitting 2315 overlapping SNPs. In terms of the
informative SNPs with a high MAF, 5087 SNPs were kept by setting a 500 kb sliding
window across the genome. In addition, 16,286 genes entries of the reference genome were
annotated for the SNPs of BovineHD Beadchip, which accounted for 66.30% of the total
genes in the reference genome. Chromosomes 3, 7, 19, 5, 18, and 11 had comparatively
large proportions of the total gene entries, with values of 6.3%, 6.1%, 5.9%, 5.8%, 5.5%, and
4.7%, respectively (Table S1, Supplementary Materials). The SNP with the highest MAF
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value in each gene entry was screened out. Lastly, a low-density SNP panel consisting of
30,684 SNPs was formed by merging together all preselected SNPs from the above analyses
and deduplicating them (Table S2, Supplementary Materials).

Generally, SNPs in the low-density SNP panel had an approximately uniform distri-
bution across autosomes, with 10–20 SNPs per 1 Mb window (Figure S3, Supplementary
Materials), which was in accordance with the pattern showing that the number of SNPs
in the autosomes decreased as the length was reduced. In comparison with BovineHD
Beadchip, the percentage of SNPs from the low-density SNP panel increased in chromo-
somes 3, 5, 7, 11, 13, 15, 18, and 19 (Table S3, Supplementary Materials). The trait-associated
SNPs identified by GWAS were mainly clustered in above chromosomes. For example,
with respect to carcass traits, SNPs with low p-values were detected in chromosomes 5, 7,
and 11 (Figure S1, Supplementary Materials). Analogously, the whole-genome regression
found that the loci that contributed to the large proportion of the genetic variance were in
chromosomes 5, 7, and 11. Approximately 6% of the total SNPs characterized by GWAS and
BayesB were enriched in chromosome 11. In addition, many SNPs in these chromosomes
were selected on the basis of gene annotation strategies (Table S1, Supplementary Materi-
als). The mean and median values of the SNP interval of the low-density SNP panel were
81.8 kb and 37.7 kb, respectively, of which 88.6% of the SNP interval was less than 200 kb
and only 1.5% of the SNP interval was greater than 500 kb (Figure S3, Supplementary
Materials). Regarding the MAF of this panel, the mean and median value were 0.35 and
0.39, respectively (Figure S3, Supplementary Materials). The linkage disequilibrium (LD)
of the low-density SNP panel was investigated within the 2 Mb window (Figure 1), within
which this ~30 K panel had a similar LD decay pattern to the BovineHD Beadchip. When
the physical distance of the SNPs reached 2 Mb, the LD of the low-density SNP panel
dropped from 0.65 to 0.01, while the LD of BovineHD Beadchip analogously decreased
from 0.61 to 0.01. Both LD values remained steady when the SNP intervals increased to
500 kb, despite the slightly faster decay of LD in the BovineHD Beadchip. When imputing
the low-density SNP panel to the high-density level, the accuracy of imputation was similar
across the five cross-validations, with an average accuracy level of 97.4%, indicating that
the ~30 K panel is applicable for the cost-effective GP in Chinese Simmental beef cattle.

3.4. Prediction Accuracy of Low-Density SNP Panel

The prediction accuracy of DGVs for both SNP panels was evaluated using GBLUP
and BayesA/B/Cπ (Table 2). For the low-density SNP panel, the predictive accuracies of
the 13 traits ranged from 0.23 to 0.47 in GBLUP, and from 0.22 to 0.47, 0.23 to 0.43, and
0.23 to 0.44 in BayesA/B/Cπ, respectively. For the BovineHD Beadchip, the prediction
accuracies of the 13 traits were 0.21–0.61, 0.24–0.53, 0.23–0.53, and 0.22–0.54 in GBLUP
and BayesA/B/Cπ, respectively. For both SNP panels, RMW had the highest accuracy
across four methods; two growth traits (ADG and LW) had an approximately average
accuracy of 0.40; carcass traits (RMW, CR, SR, TD, ST, LP, and DP) had comparatively high
prediction accuracy, with an average value higher than 0.3, while the accuracies of meat
quality traits were lower than other two types of trait, with an average value of about
0.3. When comparing the accuracy of the low-density SNP panel with that of BovineHD
Beadchip, the accuracies for ST, RMW, SR, DP, ADG, CR, and LP decreased by 0.20, 0.09,
0.09, 0.07, 0.05, 0.04, and 0.03 on average, respectively. Notably, most traits showed a
decrease in accuracy of less than 0.07, except for ST and RMW. Nevertheless, the use of
a low-density SNP panel led to improvements in accuracies for some traits; specifically,
the accuracies of LW, TD, EMA12, EMA13, and MB were improved by 0.06, 0.04, 0.06, 0.06,
and 0.07 on average, respectively.
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Table 2. Predictive accuracy of GEBVs for the low-density SNP panel using different methods.

Traits 1 GBLUP BayesA BayesB BayesCπ

LD 2 HD 3

(SD)
LD HD (SD) LD HD (SD) LD HD (SD)

Growth traits
ADG (−0.05) 0.37 0.40 (0.06) 0.36 0.42 (0.06) 0.35 0.43 (0.06) 0.38 0.42 (0.06)

LW (+0.06) 0.43 0.38 (0.05) 0.42 0.34 (0.06) 0.41 0.38 (0.06) 0.44 0.37 (0.06)

Carcass traits

CW (0) 0.23 0.24 (0.06) 0.22 0.21 (0.06) 0.23 0.24 (0.06) 0.23 0.20 (0.06)
DP (−0.07) 0.31 0.37 (0.05) 0.28 0.37 (0.06) 0.30 0.39 (0.06) 0.34 0.37 (0.06)
LP (−0.03) 0.29 0.34 (0.06) 0.28 0.34 (0.05) 0.33 0.33 (0.06) 0.32 0.34 (0.06)
ST (−0.20) 0.31 0.45 (0.06) 0.32 0.53 (0.06) 0.31 0.53 (0.06) 0.32 0.54 (0.06)
TD (+0.04) 0.36 0.36 (0.05) 0.37 0.31 (0.06) 0.38 0.34 (0.06) 0.38 0.31 (0.06)
SR (−0.09) 0.37 0.43 (0.06) 0.38 0.46 (0.06) 0.39 0.48 (0.05) 0.39 0.54 (0.05)
CR (−0.04) 0.37 0.42 (0.05) 0.37 0.39 (0.06) 0.30 0.39 (0.06) 0.39 0.39 (0.06)

RMW (−0.09) 0.47 0.61 (0.06) 0.47 0.53 (0.07) 0.43 0.50 (0.06) 0.43 0.52 (0.06)

Meat
quality traits

EMA12 (+0.06) 0.32 0.24 (0.07) 0.32 0.25 (0.07) 0.27 0.23 (0.07) 0.32 0.26 (0.07)
EMA13 (+0.06) 0.29 0.21 (0.07) 0.28 0.24 (0.07) 0.30 0.24 (0.07) 0.29 0.22 (0.07)

MB (+0.07) 0.34 0.27 (0.07) 0.31 0.26 (0.07) 0.32 0.25 (0.07) 0.34 0.26 (0.07)
1 Traits with an average decrease or increase in prediction accuracy. Growth traits: average daily gain (ADG; kg) and live weight (LW; kg).
Carcass traits: hot carcass weight (CW; kg), dressing percentage (DP; %), lean meat percentage (LP; %), weight of retail beef cuts including
striploin (ST; kg), spencer roll (SR; kg), chuck roll (CR; kg), and tenderloin (TD; kg), and retail meat weight (RMW). Meat quality traits: eye
muscle area at the 12th rib (EMA12), eye muscle area at the 13th rib (EMA13), and marbling at the 12th rib (MB). 2 Prediction accuracy of
the low-density SNP panel. 3 Prediction accuracy with standard deviation of BovineHD Beadchip; prediction accuracies were averaged
over the fivefold cross-validation (CV) and then over the 20 replicates in BovineHD Beadchip.

3.5. Regression Coefficients of the Low-Density SNP Panel Using Different Methods

Table 3 displays the phenotype regression on DGVs. For the low-density SNP panel,
the regression coefficients of the 13 traits were 0.764–1.372, 0.928–1.561, 1.199–1.430, and
0.790–1.367 for GBLUP and BayesA/B/Cπ, respectively. Except for the coefficients of
ADG, TD, and CR, the values showed significant deviation from 1, while MB showed
the highest bias across four methods, suggesting that the level of bias of the genomic
predictions for these traits increased. For BovineHD Beadchip, the regression coefficients
for ADG, LW, DP, LP, TD, SR, and RMW were not significantly different from 1 for any
of the methods, indicating that the predictions were not significantly biased, while the
regression coefficients for EMA12, EMA13, and MB were significantly different from 1 for
the four methods. When comparing the low-density SNP panel to BovineHD Beadchip, we
found that the latter’s regression coefficients were closer to 1, with less bias in prediction,
especially for LP, DP, CW, MB, and EMA12.

3.6. Prediction Performance of Different Methods

When using the low-density SNP panel, BayesCπ displayed the best predictive per-
formance, followed by GBLUP, BayesA, and BayesB (Figure 3). The accuracies of ADG,
LW, CW, DP, ST, SR, and CR were higher for BayesCπ than for the other three methods.
GBLUP outperformed BayesB and BayesA in terms of ADG, LW, CW, DP, and RMW, while
BayesA delivered better predictive performance than BayesB in terms of ADG, LW, ST,
CR, RMW, and EMA12. In the BovineHD Beadchip, Bayesian methods performed better
than GBLUP for ADG, DP, ST, SR, EMA12, and EMA13, and the accuracies of ST and
SR estimated by Bayesian methods were 0.08 and 0.06 higher, respectively, than those of
GBLUP on average. However, the prediction accuracies of CW, LW, TD, CR, and RMW
using GBLUP were higher than those of Bayesian methods, especially in terms of RMW, for
which the accuracy of GBLUP was 0.08, 0.11, and 0.09 higher than that of BayesA, BayesB,
and BayesCπ, respectively. On the other hand, when comparing the regression coefficients
of the four methods with each other, we found that GBLUP performed better than the three
Bayesian methods in both SNP panels, with the regression coefficients being closer to 1 for
most traits, indicating that GBLUP contributed to less bias in the genomic predictions. Of
the three Bayesian methods, BayesCπ delivered better predictive performance than BayesA
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and BayesB in the low-density SNP panel, since the deflation of the DGVs predicted by it
was smaller.

Table 3. Regression coefficients for GEBVs for the low-density SNP panel using different methods.

Traits 1 GBLUP BayesA BayesB BayesCπ

LD 2 HD 3 LD HD LD HD LD HD

Growth traits
ADG 0.914 0.989 1.397 1.022 1.198 0.970 1.198 1.039
LW 1.175 1.011 1.300 0.971 1.342 0.926 1.150 1.045

Carcass traits

CW 0.812 1.102 0.928 0.967 1.198 1.202 0.852 1.082
DP 0.922 1.075 1.379 0.976 1.331 1.057 1.022 1.151
LP 0.904 0.963 1.343 0.910 1.323 1.041 1.008 1.025
ST 1.023 1.064 1.387 1.225 1.210 1.082 1.210 1.077
TD 1.106 1.064 1.389 1.056 1.271 0.974 1.201 1.082
SR 1.094 1.059 1.388 1.093 1.242 0.993 1.158 0.965
CR 0.923 1.040 1.170 1.092 1.199 1.148 1.199 1.094

RMW 1.164 1.039 1.203 0.944 1.234 1.031 1.257 0.991

Meat quality
traits

EMA12 0.924 1.116 1.460 0.983 1.263 0.958 0.937 1.082
EMA13 0.764 1.025 1.419 1.117 1.293 1.167 0.790 1.142

MB 1.372 1.125 1.561 1.122 1.430 1.210 1.367 1.159
1 Growth traits: average daily gain (ADG; kg) and live weight (LW; kg). Carcass traits: hot carcass weight (CW; kg), dressing percentage
(DP; %), lean meat percentage (LP; %), weight of retail beef cuts including striploin (ST; kg), spencer roll (SR; kg), chuck roll (CR; kg), of
tenderloin (TD; kg), and retail meat weight (RMW). Meat quality traits: eye muscle area at the 12th rib (EMA12), eye muscle area at the 13th
rib (EMA13), and marbling at the 12th rib (MB). 2 Regression coefficients of the low-density SNP panel. 3 Regression coefficients with
standard deviation of the BovineHD Beadchip; regression coefficients were averaged over the fivefold cross-validation (CV) and then over
the 20 replicates in BovineHD Beadchip.
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4. Discussion
4.1. The Selection Strategies of the Low-Density SNP Panel

Compared with previous studies that merely focused on developing a low-density
SNP chip for imputation or a trait-specific low-density chip, we took both purposes into
account to design a customized low-density SNP panel for the Chinese Simmental beef
cattle. An approximate 97% imputation accuracy could be obtained when imputing this
panel for the 770 K. The high imputation accuracy could be attributed to the selection
of the SNPs with high MAF, whereby the low-density SNPs could reflect the genome
polymorphism of the Chinese Simmental beef cattle. Similarly, a previous study used the
same strategy to form a low-density SNP chip for GP and achieved over 97% imputation
accuracy when imputed it to Illumina BovineSNP50 [20].

Compared with the other studies that used whole genome-wide association studies
(GWAS) [9] or Bayesian GWAS [22] to screen the candidate variants of one trait for low-
density SNP chip, our study used both methods to select potential causal variants of
13 traits. As expected, our panel achieved moderate to high prediction accuracy across
all traits, which was beneficial for the inclusion of these variants since the effect of causal
variants could be estimated directly and the non-associated variants that may have diluted
the true genetic signals were removed [39]. Previously, researchers did not take the genome
annotation into account when designing a low-density SNP panel. Recent studies on
genomic prediction showed that incorporating the genome annotation [40,41] into GP can
improved the prediction accuracy. Our recent study integrating the gene annotation into
prediction models demonstrated that the number of gene entries that are represented by
the SNP has an impact on the prediction accuracy [42]. To make the low-density SNP panel
reflect more gene entries, our study included SNPs that have the highest MAF in each
gene entry.

4.2. Estimation of Genetic Parameters

In our study, heritability estimates ranging from low to high (from 0.11 to 0.56) were
generated for 13 traits in Chinese Simmental beef cattle. The estimates for LW, CW, and
RMW in this study were similar to those in a previous study on Chinese Simmental beef
cattle, while the estimates for DP, LP, ST, and SR were 0.12, 0.21, 0.16, and 0.13 higher,
respectively, than those found previously [26], which was partially due to the comparatively
larger reference population used for the variance component estimations in our study.
Comparing our results with previously reported estimates for other cattle populations, we
found that the estimated heritability levels of CW (0.42) and ADG (0.37) were consistent
with those from reports on American Angus (CW, 0.40) [43] and Multibreed cows (ADG;
0.34) [44], but were lower or higher than those found in Simmental (CW, 0.48 [45]), Japanese
Black (CW, 0.56) [46], Hanwoo (CW, 0.33 [47]), and Nellore (CW, 0.17 [48]; ADG,0.31 [49])
cattle breeds. The heritability levels for EMA13 (0.28) and MB (0.11) were below the
corresponding values found above for Japanese Black (0.42 and 0.56) and Hanwoo (0.37
and 0.40) cattle populations, respectively. The reasons for such differences in heritability
were the different population scales and genomic relationship matrices used for heritability
estimations. Among all traits, growth traits had a high genetic correlation with most
carcass traits, but had a moderate genetic correlation with meat quality traits (Figure 2).
The genetic correlations between ADG and LW, CW, ST, TD, and MB were consistent with
a previous report on Chinese Simmental beef cattle [50].

4.3. The Prediction Accuracy of the Low-Density SNP Panel

The usage of the low-density SNP panel achieved moderate to high accuracy in
studied traits, even though it decreased the prediction accuracies in most of the traits in
comparison with those using the BovineHD Beadchip. Among these 13 traits, ST, RMW,
and SR displayed the greatest decreases, with average decreases of 0.20, 0.09, and 0.09
across the four methods, respectively; however, DP, LP, CR, and ADG exhibited slight
decreases ranging from 0.02 to 0.07. These losses in accuracy were mainly attributed to the
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decrease in marker density in the low-density SNP panel, since the prediction accuracy
should, in theory, be positively associated with the marker density [9,13]. The marker
density dropping from 770 K to 30 K may increase the physical distance between QTLs
and markers and reduce linkage disequilibrium (LD) between them. The imperfect LD
between them resulted in markers not explaining more genetic variance on behalf of QTLs.
The prediction accuracy decreases quickly if the linkage between the markers and QTLs is
low [51].

In contrast to the decrease in accuracy for the above seven traits, the accuracy of LW
prediction using the low-density SNP panel was very close to that using the BovineHD
Beadchip, and even the accuracies of LW, TD, EMA12, EMA13, and MB benefited from
the usage of the low-density SNP panel, with average accuracy increases of 0.04–0.07.
These unexpected improvements indicated that the low-density SNP panel containing
candidate QTLs and informative SNPs for a low-density SNP panel could be feasible and
useful for cost-effective prediction, even if the marker density is much smaller. Our study
suggested that the genetic variances of these five traits were determined by a small number
of variants with large effects. The selection of SNPs associated with traits or explaining a
great percentage of the genetic variance allowed the QTL effects to be directly captured by
the models [52]. The high average identical by state (IBS = 0.65) value between the training
and validation datasets, as well as the small effective population size (Ne = 74 estimated
by [53]) of this breeding population, could have resulted in an extensive LD and a smaller
number of effective chromosome segments being estimated. This, in turn, may have
advantaged the high prediction accuracy of these traits using the low-density SNP panel.

4.4. The Prediction Accuracy of Four Prediction Methods

To allow a more reliable assessment of the predictive performance of the low-density
SNP panel, four methods with different model assumptions were applied. No consensus
exists to date on the best genomic prediction tool, in spite of plenty of comparisons
having been made for various prediction methods in both simulations [7,52] and real
datasets [26,43]. In our study, the BayesCπ model outperformed the others for most traits,
indicating that BayesCπ successfully interprets the genetic architecture of these traits. The
accuracy of GEBV relies on the consistency between the assumption distribution of the
locus effects and the true pattern [54]. Unlike BayesA and BayesB, which have a great
sensitivity to the assumption of the locus effects, the prior value of BayesCπ is inferred
from real circumstances [55]. In BayesCπ, the posterior value of the π of the 13 traits ranged
from 0.78–0.96, lower than the fixed value for BayesB (0.995). The performance of GBLUP
was worse than that of BayesCπ, which may be attributed to the inferior capture of the
genetic relationships between cattle using the low-density SNP panel. Similar results have
also been reported from studies that analyzed the impacts of marker density on GP for both
real [56] and simulation datasets [57]. Regarding the BovineHD Beadchip, the predictive
performance of the Bayesian models was superior to that of the GBLUP, which was in line
with the results of a previous study on the same cattle population [26].

4.5. Application of the Low-Density SNP Panel

The customized low-density SNP panel will be applied for the cost-effective GP
of the 13 traits of the Chinese Simmental beef cattle. The calves will be genotyped by
the low-density SNP panel, and the genomic estimated breeding value (GEBV) will be
calculated. Animals with GEBV ranking in the top 10% will be selected as candidates for
breeding purposes. Compared to the prediction accuracy of the BovineHD Beadchip, the
accuracy of the low-density SNP panel was slightly lower. For a more accurate estimation
of genetic merit and candidate selection, the calves passing the first step selection will be
genotyped by the BovineHD Beadchip. The two-step genotyping will greatly reduce the
genotyping costs by avoiding BovineHD Beadchip genotyping for all animals. Meanwhile,
the second step of genotyping can ensure the satisfactory prediction accuracy of GEBV
and the selection of breeding calves. In this setting, we assume that the low-density SNP
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panel would be a feasible and applicable way for cost-effective genomic prediction in
Chinese Simmental beef cattle. The size of the reference population, as well as the genetic
relationship between the training and validation datasets, plays a key role in genomic
prediction. In future, the low-density SNP panel will be updated as the number of animals
in the reference population increases. For example, new variants with larger estimated
effects will be included and less informative variants in the current panel with small effects
will be removed, while the marker density of the low-density SNP panel will be kept at
approximately 30 K. With the availability of whole-genome sequencing of the Chinese
Simmental cattle, the SNP list of the SNP panel will be refined to enhance the prediction
power. The causal variants of 13 traits identified using the whole-genome sequencing data
will also added to the panel in the near future.

5. Conclusions

A customized low-density SNP panel with 30,684 informative markers was devel-
oped and used to predict useful genomic estimated breeding values in 13 growth, carcass,
and meat quality traits of Chinese Simmental beef cattle, aiming to reduce breeding costs
and support the application of genomic prediction. To enable comparison, the prediction
accuracies using BovineHD Beadchip were treated as references. We found that the perfor-
mance of the ~30 K SNP genotyping array was trait-dependent; it reduced the predictive
accuracies of seven traits but improved the accuracies of five traits. While differences in
terms of prediction accuracy were observed among the 13 traits, the low-density SNP panel
achieved moderate to high accuracy for most of the traits and even improved accuracy for
some traits. Overall, the low-density SNP panel (~30 K) is a feasible and promising tool for
cost-effective genomic prediction in Chinese Simmental beef cattle when only one or a few
key economic traits are of interest.
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frequency (MAF) distribution of the low-density SNP panel in Chinese Simmental beef cattle; Table
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BovineHD Beadchip.
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