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ABSTRACT: This study describes a novel hydrometallurgical
approach for efficient copper recovery from low-grade ores.
Improvement in the copper extraction efficiency was explored by
employing blends of acids (sulfuric acid and nitric acid) and an
oxidizing agent along with exposure to microwave and ultraviolet
radiation. Scanning electron microscopy with energy-dispersive X-
ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), and optical
microscopy (OM) were used to characterize the ores’ elemental
composition, morphology, and mineralogy, revealing the presence
of wroewolfeite, chalcopyrite, and other mineral phases. Thermog-
ravimetric analysis (TGA) investigated the thermal stability of the
ore samples. Under optimal leaching conditions (liquid−solid ratio
of 15:1 mL g−1, copper ore particle size of 55−65 μm, and stirring
for 30 min at 300 rpm), the method demonstrated an outstanding copper leaching efficiency of 96.8%. Solvent extraction was
performed efficiently with the pregnant leach solution, further enhancing copper extraction to 97.9% within less than a minute of
loading time. These results underscore the effectiveness of the modified hydrometallurgical approach for extracting copper from low-
grade ores and hint at its potential for extracting other metals. Such versatility of this approach makes a significant contribution to
the field of hydrometallurgy.

1. INTRODUCTION
Copper holds enormous significance in achieving sustainable
development, as it is essential for numerous industries like
housing, transportation, electrification, and appliances and
serves as a fundamental element for global economic growth
and the betterment of mankind.1 Solar energy, known as
photovoltaics, requires 11−40 times more copper per unit of
electricity produced than traditionally deployed power
generation methods, mainly from fossil fuels.2 Thus, switching
toward solar energy will result in a substantial demand for
copper not only in PV solar cells but also its broader
applications in solar energy systems. The final global copper
demand is expected to rise from 24.3 Mt recorded in 2015 to
44.4 Mt in 2050.3 As the demand for copper continues to
increase, the world is facing a decline in reserves of high-quality
copper ores.4 This dilemma has dramatically stressed on the
development of innovative approaches for efficiently extracting
copper from its low-grade ore deposits.5

Currently, copper extraction from its ores is achieved
through various techniques such as bioleaching, gravity
separation, flotation, pyrometallurgy, solvometallurgy, and
hydrometallurgy.6 Undoubtedly, bioleaching, gravity separa-
tion, and flotation are useful mineral processing techniques,
but they are often not as widely used as pyrometallurgy,
solvometallurgy, and hydrometallurgy due to several reasons in
terms of complex processes requiring precise monitoring of

various factors like temperature, pH, and reagent concen-
trations.7 Consequently, these approaches result in longer
processing times and higher operational costs contrasting well-
established methods such as pyrometallurgy, solvometallurgy,
and hydrometallurgy. Pyrometallurgy is considered a predom-
inant technique, especially for beneficiating copper from
chalcopyrite-bearing ores.8 However, it is only economically
feasible for chalcopyrite ores with a high copper content and
requires elevated temperatures, which makes it energy-
intensive. Additionally, the release of SO2 during pyrometallur-
gical beneficiation of copper can cause serious environmental
concerns.9 At the same time, solvometallurgy uses organic
solvents either entirely or partially and has proven to be
effective for extracting (solvoleaching) and recovering metals
(nonaqueous solvent extraction and nonaqueous electro-
deposition).10 However, this technique necessitates the use
of expensive and volatile organic solvents that are challenging
to handle, and the reaction process must be conducted in an
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enclosed chamber to avoid hazardous vapors.11 Contrasting
with the above-mentioned copper beneficiation approaches,
hydrometallurgical methods are highly valued for their instant
construction, affordable price, simple operation, excellent
efficacy, and positive environmental impact.12 Hydrometallur-
gical approaches involve leaching of desired metals from their
ores by utilizing different chemicals termed lixiviants (primarily
inorganic) and then recovering the leached metals from the
mother solutions.13 Noteworthily, the success of a leaching
process for a specific metal extraction is significantly controlled
by several factors, including ore characteristics (i.e., mineral
composition, chemical properties, type, particle size, and
source of ore), lixiviant properties (concentration and nature
of leaching agent), and other experimental parameters such as
stirring time and speed and liquid-to-solid (L/S) ratio.14

Among these experimental parameters, the nature and
concentration of lixiviant is recognized as the dominating
parameter as it significantly impacts the leaching process
efficiency.15 To this end, the use of mixed inorganic acids is
widespread; however, adding an oxidizing agent such as H2O2
could further enhance the overall leaching efficiency for the
successful beneficiation of a specific metal.16

A study was carried out to leach different forms of low-grade
copper ore in sulfuric acid and recovered a maximum of 93%
from its leached solution through solvent extraction.14c

Another group of researchers deployed HCl solution as a
lixiviant for the leaching of copper. It deployed a commercial
solvent extractant (SX) called CYANEX 921 in kerosene and
obtained significant copper recoveries (69−87%).17 In another
study, mixed sulfate/chloride leach using tributyl phosphate
(TBP) as a leaching agent and LIX 841 and CYANEX 923 in
kerosene as extractants were also deployed for the beneficia-
tion of copper(II) from printed circuit boards (PCB).18

Interestingly, metal extraction efficiencies could be enhanced
significantly when sample solutions were exposed to micro-
wave (MW) radiation.19 It is important to mention that
microwave-sensitive materials on exposure to MW radiation

undergo internal heating, creating thermal stress and cracks
between different components, leading to dissociation of
minerals into their monomeric forms.20

Recently, photoleaching of sulfide minerals and copper
concentrates using ultraviolet−visible (UV−vis) radiation has
been published and has opened new avenues in hydro-
metallurgical processes for treating low-grade ores.21 This
process helps break down difficult-to-dissolve minerals, like
chalcopyrite, using sunlight instead of conventional methods
like acid leaching, chemicals, and microorganisms. Photo-
leaching uses UV and visible light from the sun to trigger
chemical reactions that create highly reactive moieties,
including free radicals, which can assist in the mineral’s
dissolution. Furthermore, this approach can reduce the energy
costs compared to other leaching techniques.21,22 Owing to the
above-mentioned reasons, the deployment of MW and
ultraviolet (UV) radiation has become a popular and cost-
effective approach in recent years in the mineral processing
industry.23 Previous research studies mainly focused on
leaching of copper from high-grade ores, especially copper
sulfide ores, and appreciable extraction efficiencies were
achieved. To date, no study has been conducted to explore
the potential of blends of acids and oxidizing agents, along with
the assistance of MW and UV radiation, to extract copper from
low-grade ores and achieve maximum extraction efficiencies.
This study addresses this gap by investigating a novel

hydrometallurgical route assisted by MW and UV radiation for
extracting copper from low-grade ores. We hypothesize that
this combined approach can achieve superior extraction
efficiencies compared to conventional methods. The optimized
process will be established through the evaluation of various
experimental parameters, including the ore and leaching
characteristics. Figure 1 provides a schematic illustration
depicting the copper leaching process.

Figure 1. Schematic of the modified hydrometallurgical approach for copper leaching from its low-grade ore and its recovery through solvent
extraction.
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2. EXPERIMENTAL SECTION
2.1. Chemicals. Following standard sampling protocols,

copper ore samples were obtained from Khawazakhela, Swat,
Khyber Pakhtunkhwa, Pakistan. The collected samples under-
went a meticulous cleaning process. Subsequently, they were
crushed using a jaw crusher and ground in a ball mill. Finally,
the crushed and ground material was pulverized into a fine
powder using a steel mortar and pestle. To achieve a consistent
particle size distribution, 200 g of the powdered copper sample
was sieved through a series of five mechanical sieves with mesh
numbers 100 to 325, conforming to American National
Standards.24 Table 1 illustrates details of the obtained particle

size fractions and their corresponding weights. Approximately
73% of the sieved material corresponds to the particle size
range less than 132 μm, and the remaining sample did not
pass-through the sieve due to the large particle size. High-
purity chemicals, including 98% H2SO4, 30% H2O2, 68%
HNO3, and ≥97.0% NaOH, were utilized throughout the
experimental work. All of the aforementioned chemicals were
procured from Sigma-Aldrich. The extractant ACORGA
M5640 was purchased from Haihang Industry Sanqing
Fengrun, Jinan City, Shandong Province, China. Deionized
water was utilized to prepare stock solutions and further
dilutions.

2.2. Characterization Techniques. Various analytical
techniques were employed to characterize the copper ore
samples and monitor the leaching process. An atomic
absorption spectrophotometer (AAS, Aurora Biomed
ICR8000) was employed to quantify copper in leached and

spent lixiviant solution using a hollow cathode lamp as an
excitation source and a fuel-air ratio of 2:10 L min−1.
Morphological and elemental details of the low-grade copper
ore were obtained using a scanning electron microscope
equipped with an energy-dispersive X-ray (EDX) spectrometer
(Zeiss EVO LS10, Germany). Standard laboratory equipment
facilitated the experiments, including an analytical balance for
precise weight measurements (Aczet CX 320, USA) and a hot
plate with a magnetic stirrer (CJJ78-1, Pakistan) for controlled
heating and mixing. Adhering to American standards, sieve
analysis was done to separate the copper ore samples into
different particle size fractions. The mineralogical composition
of the ore was investigated using an optical microscope
(AmScope digital, LED-1444A) for initial observations, and an
X-ray diffractometer (Bruker D8) was used for more precise
identification and quantification of mineral phases. X-ray
diffraction (XRD) scan was performed at 2θ from 4 to 80°,
with Cu kα radiation. The thermal behavior of the copper ore
was explored using a thermogravimetric analyzer (Linseis PT-
1600 simultaneous thermal analyzer). Finally, microwave and
ultraviolet radiation treatments were administered using a
Dawlance microwave oven (DW 180G, Korea) with a power
source of 220 V-50 Hz. Additionally, a B1450 UV Clave
chamber with an intensity of +500 μW cm−2 (at the center of
the chamber) was utilized for UV radiation. The steps
performed during the current investigation are given in Figure
S1.

2.3. Leaching Process. The copper leaching process
commenced after analyzing the copper ore samples. To achieve
optimal extraction efficiency, various particle size fractions
(Table 1) were tested. The particle sizes obtained from the
sieve analyzer were verified using a Zetasizer ZS90 (Malvern
Instruments, U.K.), confirming that the selected particle size
was accurate, as given in Figure S2. A fresh lixiviant mixture
was prepared by combining 5 mL each of 30% hydrogen
peroxide solution, 0.25 M sulfuric acid, and 0.25 M nitric acid.
Experiments were conducted using different solid-to-liquid (L/
S) ratios to determine the most effective leaching conditions.
The optimal conditions were identified as follows: 1 g of
copper ore powder leached in 15 mL of lixiviant at 40 °C for

Table 1. Particle Size Sieve Analysis of Low-Grade Copper
Ore

# particle size (μm) (±7 μm) weight (%)

1 <55 1.61
2 55−65 42.14
3 65−75 13.72
4 75−96 16.21
5 >132 26.32

Figure 2. (a) Pre- and (b) post-extraction of copper from its low-grade ore.
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30 min by using a magnetic hot plate, achieving most
significant copper oxidation.14c,25 Following the leaching step,
filtration was done to separate the green-colored filtrate
(mother liquor) from the solids. Finally, this filtrate was
irradiated in a microwave oven and a UV chamber for 1.5
min.26 It is pertinent to mention that UV irradiation of leached
solution was executed in a quartz vessel to ensure effective UV
transmission to the leached solution.

2.4. Extraction Process. Copper extraction was conducted
using a 250 mL separating funnel following the leaching
process. An organic solvent extractant (SX) called ACORGA
M5640 OPT series, prediluted at a 1:10 ratio with n-decane,
was used for this step.27 To thoroughly evaluate the
effectiveness of the SX in selectively capturing copper, a 400
mL pregnant leach solution (PLS) containing a known amount
of copper was prepared under optimal leaching conditions.
The pH of PLS was adjusted to the desired level for efficient
SX operation using dilute solutions of NaOH and H2SO4.
Approximately 20 mL of prediluted SX was added to 100

mL of PLS within the separating funnel. The mixture was then
shaken for 10 min to maximize copper extraction. After
shaking, the mixture settled into two distinct layers, as shown
in Figure 2, an upper dark organic phase containing the
extracted copper and a lower aqueous phase. The aqueous

phase was cautiously taken out in a beaker by gradually
opening the tap of the separating funnel and observing the
drop-by-drop extraction, leaving behind the copper-loaded
organic phase.
The copper concentration in the spent lixiviant (aqueous

phase) was then determined using atomic absorption spec-
troscopy (AAS). This procedure was repeated with the
remaining 300 mL of PLS. The final clear aqueous solution
was collected, and its copper content was again measured using
AAS. The efficiency and selectivity were determined by
comparing the initial and final copper concentrations in the
PLS, providing essential insights into the process efficacy.

3. RESULTS AND DISCUSSION
3.1. SEM-EDX Analysis. A low-grade copper ore sample

(with a particle size fraction of 55−65 μm) was examined using
SEM-EDX to investigate the surface structure and elemental
composition. The SEM images in Figure 3(a,b) display the
uneven distribution of irregularly shaped copper ore particles.
The particle size was measured using software (ImageJ 1.52v/
java 1.8.0_112 64 bit) and found to be within the range of 55−
65 μm. The EDX spectrum of the copper ore sample in the
chosen area shows the elemental composition, as illustrated in

Figure 3. SEM images of the low-grade copper ore sample at two different magnifications (a) and (b). EDX analysis of the low-grade copper ore
(c).
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Figure 3c. Additionally, Table 2 displays the semiquantitative
data of the chemical components present in the copper ore
sample.

3.2. Optical Microscopy Analysis. Optical microscopy
investigation of low-grade copper ore samples, revealed the
presence of copper in the form of sulfide mineral phases,
including chalcopyrite and wroewolfeite, and iron sulfide
minerals. Quartz, calcite, chlorite, and amphibole are the main
gangue minerals contained in the copper ore sample. Figure 4
illustrates that the chalcopyrite and iron sulfide minerals exist
in gangue minerals as disseminations, stringers, brecciated, and
fracture-filled forms. Subsequent XRD analysis corroborated
the presence of both gangue and copper-bearing mineral
phases.

3.3. XRD Analysis. The X-ray diffraction pattern (XRD) of
the low-grade copper ore sample (Figure 5) confirms the
presence of wroewolfeite (CODB no. 9000979) and
chalcopyrite (CODB no. 2104753) as the dominant copper-
bearing mineral phases. The XRD graph suggests that the low-
grade copper ore sample contains copper-bearing minerals
such as wroewolfeite and chalcopyrite with obscured signals
due to their low concentrations. The presence of wroewolfeite
is indicated by peaks at 2θ angles of 16, 23, 26, 29, 34, 35, 38,
49, 52, 56, and 62°, while the peaks around 30, 50, and
58°confirm the presence of copper in chalcopyrite. The XRD

graph also indicates the prominent peaks for gangue minerals
like quartz and calcite.

3.4. Thermogravimetric Analysis. Thermogravimeteric
analysis (TGA) of a copper low-grade ore sample was executed
in the air atmosphere with a heating rate of 5 °C min−1. The
TGA curve (Figures 6 and S3) for the low-grade copper
samples shows three decomposition stages; The thermal
decomposition copper ore occurs in three stages. The first
stage involves the evaporation of a small amount of water
molecules between 27.9 and 167 °C.28 The second stage
involves the reactions at lower temperatures (167.2−526 °C),
leading to the formation of copper sulfide, iron sulfide, sulfates,
and copper oxysulfate, depending on the heating rate.29 The
third stage consists of the dissociation of iron sulfate and
copper oxysulfate at higher temperatures (526−924 °C).
These changes occurred primarily due to the direct oxidation
of Cu2S/CuS and FeS, which were formed after the
decomposition of chalcopyrite. Furthermore, the oxidation
process resulted in the production of CuSO4, iron sulfate, and
their relevant oxides. Different chemical reactions occurring
during the oxidation and sulfonation steps can be described as
follows:14c

Table 2. Semiquantitative Analysis of the Low-Grade
Copper Ore Sample

element
at.
no.

mass
[%]

mass norm
[%]

atom
[%]

rel. error [%]
(1 σ)

sulfur 16 4.46 4.46 3.97 15.45
oxygen 8 44.24 44.24 57.89 19.79
silicon 14 13.73 13.73 12.85 6.62
copper 29 2.08 2.08 0.72 11.52
calcium 20 15.86 15.86 9.50 13.99
magnesium 12 2.62 2.62 2.17 12.86
iron 26 13.78 13.78 7.31 12.34
manganese 25 3.23 3.23 0.98 7.67

Figure 4. Optical microscopy analysis of low-grade copper ore (a, b).

Figure 5. XRD pattern of the low-grade copper ore sample.
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+ + +2CuFeS O (g) Cu S 2FeS SO (g)2 2 2 2 (1)

+ +2FeS 2O (g) 2FeS 2SO (g)2 2 2 (2)

+FeS 2O (g) FeSO2 4 (3)

+ +Cu S SO (g) 3O (g) 2CuSO2 2 2 4 (4)

+ ·2Cu S 5O (g) 2CuO CuSO2 2 4 (5)

+CuSO Cu SO4 3 (6)

· +2CuO CuSO 2CuO SO4 3 (7)

3.5. Optimization of Experimental Parameters. The
effectiveness of the leaching process for specific metal
extraction is governed by several factors, including the particle
size, L/S ratio, agitation time, lixiviant concentration, oxidizing
agent, and others.30 Below is a detailed discussion of the
aforementioned experimental parameters affecting the leaching
and recovery processes of copper from its low-grade ore.

3.5.1. Effect of Cu Ore Particle Size. To investigate the
impact of particle size on the copper leaching efficiency,
different copper ore size fractions (<55, 55−65, 65−75, 75−
96, and >132.30 μm) were examined. 1 g of each copper ore
size fraction was dissolved in a leaching mixture of 7.5 mL,
each in 0.25 M H2SO4 and 0.25 M HNO3 solutions with
stirring at 300 rpm for 30 min. As generally observed, the
leaching efficiency tends to increase with decreasing particle
size due to the greater particle surface area exposed to the
leachant. The results confirm this trend as fine particle
distributions exhibit higher copper leaching rates (Figure 7a).
The 55−65 μm size fraction achieved the highest leaching
efficiency (32.3%) due to its larger surface area, facilitating
more interactions between the reactants.31 However, as the
particle size increased beyond 65 μm, recovery declined from
32.3 to 29.50% (Figure 7a). Larger ore particles (>132.30 μm)
exhibiting a less surface area exposed to the leachants reduce
the contact between the leaching agents and the metal in the
ore and result in reduced dissolution rates.32 Interestingly,
particle sizes smaller than 55 μm also display a decrease in the
leaching efficiency. This can be attributed to the formation of
slimes that coat the copper mineral particles, hindering their
dissolution.14c Based on these findings, the 55−65 μm fraction

was determined to be the optimal particle size and was chosen
for further investigation.

3.5.2. Effect of Liquid-to-Solid Ratio. The influence of L/S
ratio on copper leaching from low-grade ore was studied using
various ratios (5:1, 15:1, 25:1, 35:1, and 45:1 mL g−1) under
constant conditions (300 rpm stirring, 30 min, 55−65 μm
particles, 0.25 M H2SO4/HNO3 lixiviant). As expected (Figure
7b), the lowest copper dissolution occurred at a 5:1 L/S ratio
due to insufficient lixiviant volume to leach all copper particles
within the leaching time. A lower lixiviant volume with a
constant solid mass increases the solution viscosity and hinders
the particle contact, reducing the leaching rate.33 Conversely,
the leaching efficiency increased with increasing L/S ratio due
to a greater lixiviant volume per unit solid.34 However, beyond
15:1 mL g−1, there was no significant increase in copper
dissolution. Therefore, 15:1 mL g−1 was chosen as the optimal
L/S ratio. These findings highlight the importance of sufficient
lixiviant volume for effective copper leaching. The study
achieved 34.64% copper leaching rate at this L/S ratio.
Increasing the lixiviant volume to 25 or 35 mL g−1 did not
significantly improve extraction (Figure 7b), posing challenges
for separating the leached products from the excess acid.

3.5.3. Effect of Lixiviant Concentration. The effect of
lixiviant concentration on the copper leaching process was
investigated using various concentrations of H2SO4 and HNO3
(0.12, 0.25, 0.5, and 0.75 M) while maintaining constant
leaching conditions (55−65 μm particles, 15:1 mL g−1 L/S
ratio, 300 rpm stirring, 30 min).32,35 As shown in Figure 7c,
both acids achieved the highest copper leaching percentage
(31.94%) at a lixiviant concentration of 0.25 M. Increasing the
concentration beyond 0.25 M did not significantly improve.
Therefore, 0.25 M was chosen as the optimal value for further
experiments.

3.5.4. Effect of Stirring Time. The impact of agitation time
on copper leaching was studied by varying the agitation time
from 10 to 40 min (10 min increments) under constant
conditions (1 g, 55−65 μm particles, 0.25 M H2SO4/HNO3
lixiviant, 15:1 mL g−1 L/S, 300 rpm). As shown in Figure 7d,
the maximum copper dissolution (34.52%) occurred at 30 min.
Extending the agitation time beyond 30 min did not
significantly improve the leaching efficiency (Figure 7d).36

Therefore, 30 min was chosen as the optimal agitation time for
further studies.
During the dissolution of copper ore particles in lixiviant, the

following reaction represents the overall leaching procedure of
the copper-bearing sulfide material.37

+ + +

+ + + +

+

CuFeS 2H SO HNO O

CuSO FeSO Cu(NO ) Fe(NO ) 2S

2H O

2 2 4 3 2

4 4 3 2 3 2

2 (8)

3.5.5. Effect of the Nature of Lixiviant Mixture. By using
different ratios of oxidizing agent (H2O2) with sulfuric acid and
nitric acid, different lixiviant mixtures were prepared to explore
the relative role of H2O2. Various ratios of H2O2 with H2SO4
and HNO3 (mL/mL; 1:14, 2:13, 3:12, 4:11, and 5:10) were
used as a lixiviant mixture to obtain the final volume of the
lixiviant mixture as 15 mL to ensure the optimized L/S ratio.
From Figure 7e, it can be seen that a noticeable increase in
copper dissolution occurs when the ratio of hydrogen peroxide
and a mixture of sulfuric acid and nitric acid is adjusted to 5:10
mL/mL. In addition, the combination of sulfuric acid, nitric

Figure 6. Thermogravimetric analysis of the low-grade copper ore.
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acid, and hydrogen peroxide produces heat through an
exothermic process, which speeds up the dissolution reaction
and allows for a substantial increase in copper dissolution
(94.2%).

3.5.6. Effect of Radiation. To investigate the effect of
irradiation on the leaching percentage of copper, four leaching
experiments were conducted: first with no radiation (NR),
second in the presence of microwaves (MW) only, third under
ultraviolet (UV) light only, and fourth under both MW first

and then UV radiation. In the absence of radiation, copper
leaching was found to be 94.2% under optimized conditions of
other leaching parameters. However, when the leached
solution was placed in the MW chamber, copper leaching
slightly increased from 94.2 to 95.2%, as shown in Figure 7f.
The effect of UV irradiation was minimal, with copper leaching
increasing from 94.2 to 94.5%. However, in the fourth
experiment, where the copper-leached solution was irradiated
with MW and UV, copper leaching significantly increased to

Figure 7. Effect of different experimental parameters on copper dissolution: (a) particle size, (b) liquid−solid ratio, (c) lixiviant concentration, (d)
agitation time, (e) volume of the oxidizing agent, and (f) radiation.
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96.8%, confirming the significant impact of combined MW and
UV radiation on copper leaching. MW and UV radiation
trigger the chemical processes that produce heat and highly
reactive moieties such as free radicals that can enhance the
overall mineral’s dissolution process.21 The aforementioned
experiment was conducted in triplicate, and the average Cu
extraction efficiency was taken with a standard deviation of
0.23515.

3.6. Solvent Extraction. The solvent extraction process is
described in detail in Section 2.3. Table 3 displays the results

of AAS analysis for the SX reagent’s performance in n-decane.
A 1:10 dilution was carried out, and the pH was kept within
the parameters of the product (ACORGA M5640). In a 250
mL separating funnel, 20 mL of extractant (SX) was mixed
with 100 mL of pregnant leach solution (PLS) at a controlled
pH. At pH 3.5, three extraction values (63.07, 63.12, and 63.41
mg/mL) from PLS yielded an average copper extraction
efficiency of 97.9%. At this pH, the iron absorption in the
loaded organic phase was measured at 1%. Nonetheless, it was
found that the overall effectiveness of copper extraction %
using solvent extraction and adjusted leaching parameters was
97.9%. Increasing the pH resulted in a slight decrease in
copper extraction.

■ CONCLUSIONS
In this study, we successfully developed a radiation-assisted
hydrometallurgical method for efficient copper extraction from
low-grade ore. Comprehensive characterization using SEM,
XRD, TGA, and chemical analysis provided valuable insights
into the ore composition. XRD confirmed the presence of
wroewolfeite and chalcopyrite as the primary copper-bearing
minerals.
The study optimized various parameters influencing copper

leaching and its extraction, thus maximizing the overall
recovery. Under optimized conditions (liquid-to-solid ratio:
15:1 mL g−1; lixiviant composition: 0.25 M H2SO4, 0.25 M
HNO3, and 30% H2O2; particle size: 55−65 μm; stirring at 300
rpm for 30 min; exposure to microwave and UV radiation), a
remarkable copper leaching efficiency of 96.8% was achieved.
Finally, the ACORGA M5640 OPT series extractant achieved
a high extraction efficiency of 97.9% within a short loading
time (less than 1 min).
These findings demonstrate the exceptional performance of

the modified hydrometallurgical approach for copper recovery
from low-grade ores. This approach has the potential to be
successfully applied to extract other metals from their
respective low-grade ores, promoting efficient utilization of
valuable resources. However, assessment of precise cost
incurred on the installation and operational costs will be
helpful prior to the commercialization of this approach for
extraction of copper and other metals from their low-grade
ores.
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