
fgene-12-684882 September 1, 2021 Time: 16:23 # 1

ORIGINAL RESEARCH
published: 06 September 2021

doi: 10.3389/fgene.2021.684882

Edited by:
Valentino Ruggieri,

Sequentia Biotech, Spain

Reviewed by:
Jia Wen,

University of North Carolina at Chapel
Hill, United States

Upendra Kumar,
Chaudhary Charan Singh Haryana

Agricultural University, India

*Correspondence:
Min-Gyoung Shin

mushrumrum@gmail.com

Specialty section:
This article was submitted to

Plant Genomics,
a section of the journal

Frontiers in Genetics

Received: 24 March 2021
Accepted: 09 August 2021

Published: 06 September 2021

Citation:
Shin MG and Nuzhdin SV (2021)

Interspecific Sample Prioritization Can
Improve QTL Detection With

Tree-Based Predictive Models.
Front. Genet. 12:684882.

doi: 10.3389/fgene.2021.684882

Interspecific Sample Prioritization
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Min-Gyoung Shin* and Sergey V. Nuzhdin
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Due to increasing demand for new advanced crops, considerable efforts have been
made to explore the improvement of stress and disease resistance cultivar traits through
the study of wild crops. When both wild and interspecific hybrid materials are available,
a common approach has been to study two types of materials separately and simply
compare the quantitative trait locus (QTL) regions. However, combining the two types
of materials can potentially create a more efficient method of finding predictive QTLs.
In this simulation study, we focused on scenarios involving causal marker expression
suppressed by trans-regulatory mechanisms, where the otherwise easily lost associated
signals benefit the most from combining the two types of data. A probabilistic sampling
approach was used to prioritize consistent genotypic phenotypic patterns across both
types of data sets. We chose random forest and gradient boosting to apply the
prioritization scheme and found that both facilitated the investigation of predictive causal
markers in most of the biological scenarios simulated.

Keywords: interspecific, QTL, random forest, gradient boosting, chickpea, machine learning, sample
prioritization

INTRODUCTION

In agriculture, one of the most prominent hurdles to overcome has been the development
of climate-resilient plants (Muñoz-Amatriaín et al., 2017; Narayana and von Wettberg, 2020;
Sokolkova et al., 2020; von Wettberg et al., 2020). The speed and magnitude of worldwide climate
change necessitate the accelerated advancement of modern crops (Laderach et al., 2011; Joyce
and Rehfeldt, 2013; Chen et al., 2015). To do that, an important step is the investigation of the
genetic characteristics of modern crops that have been resistant to improvement, and such an
investigation can be accelerated by using advanced technologies. Fortunately, the advent of modern
sequencing technology has made it possible to investigate genomes on a finer scale than before
(Stich and Melchinger, 2010; Narayana and von Wettberg, 2020). Currently, we can utilize genome-
scale sequencing technologies to assemble genomes, locate target genes, and identify genes that
are associated with particular traits of interest very efficiently. In agriculture, modern sequence
technologies can gain synergetic efficacy when combined with modern breeding systems used to
fine-map quantitative trait locus (QTL) regions. For instance, MAGIC and Nested Association
Mapping (NAM) are breeding systems that aim to find QTL regions with much finer scale by using
multiple parental lines to increase genomic variations (Cavanagh et al., 2008; Kump et al., 2011;
Tian et al., 2011; Song et al., 2017; Narayana and von Wettberg, 2020).
In addition to advanced sequencing technologies and breeding systems, interspecific
hybrid approaches have been crucial to agricultural advancements (Singh et al., 2013;

Frontiers in Genetics | www.frontiersin.org 1 September 2021 | Volume 12 | Article 684882

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.684882
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2021.684882
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.684882&domain=pdf&date_stamp=2021-09-06
https://www.frontiersin.org/articles/10.3389/fgene.2021.684882/full
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-684882 September 1, 2021 Time: 16:23 # 2

Shin and Nuzhdin Prioritized Tree-Based Models for Interspecific-Hybrid

FIGURE 1 | Probabilistic sample prioritization scheme applied to tree-based prediction models.

Alvarez and Guzmán, 2018; von Wettberg et al., 2018; Moenga
et al., 2020). Interspecific hybrid is a method involving breeding
wild species and cultivar species. Wild species often have genetic
information that cultivar species have lost due to the long
domestication cycle and genetic bottle neck (von Wettberg
et al., 2018; Moenga et al., 2020; Narayana and von Wettberg,
2020). The lost genetic information frequently involves traits like
environmental stress resistance and disease resistance (Nelson
et al., 2017; Moenga et al., 2020). Using interspecific hybrid,
we can investigate wild genetic variations that are associated
with important traits and locate causal QTLs by performing
association analysis, an application that has been used in staple
crop studies. For example, in a 2019 chickpea study, QTLs
associated with chickpea germination, flowering duration, and
bean characteristics were found using NAM materials developed
by crossing cultivar chickpeas and wild chickpea plants collected
from Turkey (Warburton et al., 2017; Osorio-Guarín et al., 2019;
Shin et al., 2019).

As genetic materials become more advanced, novel
methodological approaches are being used in analysis of
interspecific hybrid plants. Denser markers allow utilizing single-
marker based regression approaches for hybrid plants. Predictive
methods such as parametric gBLUP enable marker-assisted

selection (MAS) or genomic selection (GS) (Gonzalez-Camacho
et al., 2018; von Wettberg and Khoury, 2020; von Wettberg
et al., 2020). Moreover, machine learning approaches have been
introduced as promising alternatives to parametric predictive
approaches when finding QTLs that can be used for future
breeding schemes (Chlingaryan et al., 2018; Gonzalez-Camacho
et al., 2018; Mittrapiyanuruk and Charoen-Ung, 2018). Not
only can machine learning potentially overcome the issues
with a relatively small sample size to marker number, it is
also useful in capturing the nonlinear form of relationships
between marker allelic dosage and phenotype variation (Desta
and Ortiz, 2014; Qutrio Baloch et al., 2020). Among various
machine learning approaches, random forest and gradient
boosting methods are especially effective tree-based methods.
These methods build multiple small predictive decision trees
to make the final prediction, making them more powerful
than prediction methods that use only a single model. Another
advantage of these methods is that they can rank markers based
on marker contribution to trait prediction (Genuer et al., 2010;
Mittrapiyanuruk and Charoen-Ung, 2018; Shah et al., 2019;
Shin et al., 2019).

To compare association signals from wild-type and hybrid
materials, scientists analyze two materials independently to
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investigate shared QTLs. However, by integrating information
coming from two different data types, the chance of finding
QTLs can be increased. Integration of information can be
particularly useful when wild-type genetic regions and cultivar
genetic regions have epistatic interactions. Trans-regulation
of QTLs has been commonly found in interspecific hybrid
studies (Heidt et al., 2013; Santos et al., 2015; Gould et al.,
2018). For instance, in an Arabidopsis study, miR163 was
found to be a negative regulator against pathogen/herbivore
resistance mechanisms, but to be inactive in Arabidopsis
arenosa (Ng et al., 2011). By studying the allotetraploid
hybrid of the two specifies, the study found that miR163
is repressed by trans-regulators. Association signals hidden
by trans-regulated suppression of phenotype expression can
be potentially rescued if we properly prioritize samples with
consistent phenotype–genotype correlation across different data
types. This can be achieved by investigating samples that share
genetic and phenotypic similarity between hybrid and wild-
type materials (Figure 1). In this study, hybrid samples were
weighted by a distance measure that captures proximity between
hybrid samples and wild-type samples using a probabilistic
random sampling approach. Two machine learning methods,
random forest and gradient boosting, were applied, and their
performances were compared with and without the weighting
scheme using two different distance measure parameters. The
three types of genetic data used were wild-type chickpea, Bari
hybrid chickpea, and Egil hybrid chickpea, and phenotypes
were simulated based on hybrid materials. The results show
that weighted gradient boosting models performed better
than unweighted gradient boosting models on all data sets
and that weighted random forest performed better than
unweighted random forest models in Bari chickpea in large-
effect-size scenarios with specific parameter settings. The results
suggest that combining information from hybrid and wild-
type materials generally performs better in detecting trans-
downregulated signals in hybrid materials than investigating
hybrid material alone.

RESULTS

Bari Causal Marker Prediction Efficacy in
Random Forest Models
Overall, weighted random forest models performed better
than unweighted random forest models in finding causal
markers (Figure 2A). The only exception was when effect
sizes were small and hybrid trait segregation threshold was
high. When the threshold was 25%, unweighted prediction
models detected causal markers in the first rank bin at a
rate of 75%, while weighted prediction models detected causal
markers in the same bin at a rate of 73–74% (Figure 2C). The
overall mean percentage difference between weighted prediction
models and unweighted prediction models in the “rank < 2”
interval was 5%.

Regression models ranked causal markers as the top markers
at 81 and 87%, in low-effect-size and large-effect-size scenarios,
respectively (Figures 3A,B). When effect sizes were small and

FIGURE 2 | Bari small effect size scenario causal marker detection rates from
random forest models, across different rank intervals. The hybrid trait
segregation threshold was 5% in panel (A), 10% in panel (B), and 25% in
panel (C).

hybrid trait segregation thresholds were 5 and 10%, weighted
prediction models performed the same as or better than
regression models in the first marker rank bin, with detection
rates ranging from 81 to 84% (Figures 2A,B). In high-effect-size
scenarios, weighted prediction models always performed better
than regression models by ranking causal markers in the first
marker bin at a minimum rate of 89%.

Performance of weighted prediction models was sensitive
to the hybrid trait segregation threshold in low-effect-size
scenarios (Figure 4). In the accumulative distribution of causal
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FIGURE 3 | Bari (A) small-effect-size scenario and (B) large-effect-size scenario causal marker detection rates across different rank intervals in regression models.

marker ranks at the hybrid trait segregation threshold of 5%,
the 80% quantile coincided with marker rank 1.5, the 90%
quantile coincided with the marker rank from 2.7 to 2.8, and
the corresponding marker rank range was from 2 to 2.5 at
the 80% quantile and from 3 to 5.3 at the 90% quantile at
other thresholds.

The overall performance of Jaccard distance-based weighted
models and Gower distance-based weighted models was similar
in different effect size scenarios and parameter settings. The
largest performance difference was 2% at the wild-type trait
segregation threshold of 20% in low-effect-size scenarios.

The percentage range of causal markers ranked in “rank < 2”
ranged between 73 and 84% in low-effect-size scenarios and 86
to 93% in high-effect-size scenarios. The best performance of
prediction models in the first rank bin was reached in high-effect-
size scenarios when the hybrid trait segregation threshold was 5%.

Bari Causal Marker Prediction Efficacy in
Gradient Boosting Models
Weighted gradient boosting models consistently performed
better than unweighted gradient boosting models. In the
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FIGURE 4 | Cumulative Bari small-effect-size scenario causal marker detection rates from random forest models. The hybrid trait segregation threshold was 5% in
panel (A) and 25% in panel (B).

“rank < 2” interval, the overall average percentage difference
between weighted prediction models and unweighted
prediction models was 11%, which is 6% higher compared
to random forest results.

Overall, at least one of the weighted models performed the
same as or better than regression models in the first rank bin with
few exceptions. In small-effect-size scenarios, weighted models
performed better than regression models only when the top
marker cutoff was 5 (Figure 5A), while in the same effect size
scenarios, weighted models performed the same as or better than
regression models when the hybrid trait segregation threshold
was less than 20% (Figure 5B). The percentage range of the causal
markers ranked as “rank < 2” ranged from 67 to 86% in small-
effect-size scenarios and 79 to 89% in large-effect-size scenarios.

As observed in random forest results, the weighted model
performance was sensitive to the hybrid trait segregation
threshold when effect sizes were small (Figure 6). In the
accumulative distribution of causal marker ranks, the 80%
quantile coincided with the marker rank from 1.6 to 1.7 and the
90% quantile coincided with the marker rank from 2.3 to 2.8 at a
threshold below 15%. The corresponding marker rank range was
from 1.8 to 2.2 at the 80% quantile and from 3 to 3.5 at the 90%
quantile at a higher threshold.

The best performance of prediction models in “rank < 2”
was 90%, in large-effect-size scenarios. In addition, at three-
parameter settings in large-effect-size scenarios, the performance
reached 89%. The best performance was found at a hybrid
trait segregation threshold of 5% in large-effect-size scenarios
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(Figure 5C). Performance of 89% was achieved at a hybrid trait
segregation threshold of 10%, at a top marker threshold of 5, and
at a wild-type trait segregation threshold of 20%.

Egil Causal Marker Prediction Efficacy in
Random Forest Models
In many parameter settings, unweighted random forest models
performed better than weighted random forest models in
finding causal markers (Figure 7A). Cases in which weighted
random forest models performed better than unweighted
random forest models in the “rank < 2” interval were found
in large-effect-size scenarios. In particular, weighted models
outperformed unweighted models in all five types of hybrid
trait segregation thresholds (Figure 8B) and at wild-type trait
segregation thresholds less than 20% (Figure 7C). Weighted
models performed better than unweighted models at all different
top marker cutoffs except for the cutoff of 10 in large-effect-size
scenarios (Figure 7D). The average difference between weighted
model and unweighted model performances was 4%.

At least one of the prediction models ranked causal markers as
the top marker with a higher percentage than regression models
in all effect size scenarios and parameter settings (Figures 7, 8).
The percentage of causal markers ranked in the first rank bin by
regression models was 72% in low-effect-size scenarios and 80%
in high-effect-size scenarios, while the percentage range of causal
markers ranked as top markers by prediction models ranged
from 66 to 80% in low-effect-size scenarios and 87 to 91% in
high-effect-size scenarios.

The performance of weighted prediction models was sensitive
to the hybrid trait segregation threshold in low-effect-size
scenarios (Figure 9). Weighted prediction models performed best
at a threshold of 5% based on causal marker rank quantiles. In
the accumulative distribution of causal marker ranks, the 80%
quantile coincided with the marker rank 2, and the 90% quantile
coincided with the marker rank from 3.9 to 4 at the threshold of
5%, while the corresponding marker rank range was from 3 to 3.4
for the 80% quantile and from 5 to 9.2 for the 90% quantile in
other thresholds.

The best performance in “rank < 2” was achieved by Gower
distance-based weighted models at a hybrid trait segregation
threshold level of 10% in high-effect-size scenarios. The second-
best performance in the same rank bin was from the same type of
model at a hybrid trait segregation threshold level of 5% in high-
effect-size scenarios. In general, Jaccard distance-based weighted
prediction models performed similarly to Gower distance-based
weighted prediction models.

Egil Causal Marker Prediction Efficacy in
Gradient
Weighted gradient boosting models consistently performed
better than unweighted gradient boosting models (Figure 10).
The overall average percentage difference between weighted
prediction models and unweighted prediction models in the
“rank < 2” interval was 8%, while the difference was 4% in
random forest results.

FIGURE 5 | Bari causal marker detection rates across different rank intervals
in gradient boosting models. (A) The top marker cutoff of 5 in the
small-effect-size scenario, (B) the hybrid trait segregation threshold of 5% in
the small-effect-size scenario, and (C) the hybrid trait segregation threshold of
5% in the large-effect-size scenario.

Regression models always performed better than prediction
models (Figures 7, 10). The percentage range of causal markers
ranked as top markers ranged from 56 to 71% for low-effect-size
scenarios and 63 to 78% for high-effect-size scenarios.

The performance of weighted prediction models was sensitive
to the hybrid trait segregation threshold in low-effect-size
scenarios as observed in Bari and Egil random forest results
(Figure 11). In the accumulative distribution of causal marker
ranks at the hybrid trait segregation threshold of 5%, the 80%
quantile coincided with the marker rank from 3.6 to 4, and the
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FIGURE 6 | Cumulative Bari small-effect-size scenario causal marker detection rates in gradient boosting models. The hybrid trait segregation threshold was 5% in
panel (A) and 25% in panel (B).

90% quantile coincided with the marker rank from 7 to 7.5,
while the corresponding marker rank range was from 4.6 to 6
at the 80% quantile and from 8.7 to 11 at 90% quantile in the
other thresholds.

The overall performance of Jaccard distance-based weighted
models and Gower distance-based weighted models was similar
in most of effect size scenarios and parameter settings, and in
some cases, the difference between the two approaches was more
than 2%. For instance, in large-effect-size scenarios with a top
marker cutoff of 20, Jaccard distance-based models performed
5% better than Gower distance-based models in the first rank bin
(Figure 10C). On the other hand, in large-effect-size scenarios
with a top marker cutoff of 5, Gower distance-based models

performed 3% better than Jaccard distance-based models in the
same rank bin (Figure 10D).

The highest percentage of causal markers ranked as “rank< 2”
was 78%, which was when effect sizes were large and the
hybrid trait segregation threshold was 5% and when the top
marker cutoff was 20.

DISCUSSION

Random forest and gradient boosting methods are widely
applied powerful machine learning methods (Lubke et al.,
2013; Mittrapiyanuruk and Charoen-Ung, 2018; Shin et al.,
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FIGURE 7 | Egil causal marker detection rates across different rank intervals in random forest models. (A) Small-effect-size scenarios at the hybrid trait segregation
threshold of 5%. (B) Large-effect-size scenarios at the hybrid trait segregation threshold of 5%. (C) Large-effect-size scenarios at the wild-type trait segregation
threshold of 5%. (D) Large-effect-size scenarios at the top marker cutoff of 15.

2019). Although both approaches adapt a tree-based model
scheme, their internal logic is different, and the investigation
of their performance difference according to different types
of data sets can provide valuable information. This study
used two different data sets, Bari chickpea and Egil chickpea
data, and compared the performance of two machine learning
approaches. Additionally, a weighting scheme that prioritizes
hybrid samples that share similarity with wild-type samples
in terms of genotypic and phenotypic patterns was tested.
The biological context of the simulation was confined to a
scenario where causal marker effect is suppressed by epistatic
interaction in hybrid plants since such a lost signal can take
advantage of signals from wild-type materials. This study
suggests performance improvement of random forest and
gradient boosting methods in identification of causal loci from
interspecific hybrid data.

In both datasets, weighted gradient boosting models generally
performed better than unweighted gradient boosting models. In
the “rank < 2” interval, the performance of weighted gradient
boosting models was 11% and 8% better than unweighted
gradient boosting models in Bari and Egil data, respectively. For
random forest, weighted models performed better in majority
parameter settings only with the Bari data. In Bari, for small-
effect-size scenarios, the performance of weighted models was
better than unweighted models only when the hybrid trait

segregation threshold was less than 20%. In Egil, large effect
sizes and lower trait segregation thresholds contributed to the
improved performance of weighted random forest models. In
summary, gradient boosting is more likely to provide consistent
results across different data sets and parameters.

In the 80 and 90% quantiles of causal marker ranks, the
model performance was sensitive to the hybrid trait segregation
threshold. In all cases, the smallest threshold, 5%, showed the
smallest marker ranking, indicating that a small hybrid trait
segregation window tends to rank causal markers closer to the
top markers. Not surprisingly, in the first rank bin, the best
performance was found at hybrid trait segregation thresholds of
5 or 10%. However, the parameters wild-type trait segregation
threshold and top marker cutoff were not factors that altered the
efficacy of the predictive model considerably.

Although the Gower distance and Jaccard distance
measurements resulted in different rates of causal marker
detection efficacy in a few cases, there was no dramatic difference
in the performance of the two measurements. Therefore, it is
not expected that the choice of distance metric would be the key
factor in changing the performance of the predictive model.

In this study, random forest models achieved the highest
percentage of causal marker detection as top markers regardless
of whether the samples were weighted or not. However, because
random forest models are more sensitive to the data set and effect
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FIGURE 8 | Egil (A) small-effect-size scenario and (B) large-effect-size
scenario causal marker detection rates across different rank intervals in
regression models.

size, it can be difficult to decide whether to use a weighted or
unweighted model based on the characteristics of the data set
of interest. In conclusion, a weighted gradient boosting model
can be proposed as a method that provides robust causal marker
ranking efficiency across different data and parameter settings.

MATERIALS AND METHODS

Random Forest
Random forest is an ensemble method composed of multiple
decision trees. It takes subsets of samples, which is called bagging,
to build each decision tree and uses aggregate predictions
from multiple decision trees to make a final prediction. This
subsampling strategy is known to produce reliable results,
balancing variance and bias. In this study, 1,000 decision trees
were used, and RMSE was chosen as the loss function. To estimate
variable importance, a permutation-based method was applied.
Permutation-based variable importance reflects the change of
prediction accuracy measured from out-of-bag samples, which
are the samples that were not included in decision tree training.
The change of prediction is the difference of prediction error
from permuted data where a target variable was permuted and

FIGURE 9 | Cumulative Egil small-effect-size scenario causal marker
detection rates in random forest models. The hybrid trait segregation
threshold was 5% in panel (A) and 25% in panel (B).

prediction error from non-permuted data. In this study, variable
importance was measured from 100 independent iterations, and
the average rank was reported.

Gradient Boosting
Another type of ensemble learner, gradient boosting, uses
multiple weak learners which contribute to the final prediction.
The difference between gradient boosting and random forest
is that the former focuses on residual values of prediction
performed on the previous step. This concept can be formulized
as follows:

ŷt = ŷt−1 + ηh(y, ŷt−1)

where ŷt is a predicted value at step t, η is a learning rate, and h
is the negative gradient of the loss from the given loss function,
which is the squared error in this study. Each step aims to reduce
the loss by taking into account the gradient of the previous loss
function. In this study, 0.3 was used as an η value. To estimate
variable importance from gradient boosting, gain was measured.
Gain is a measurement that represents the relative contribution
of each marker to the model, and it is calculated using increased
score as a result of a new branch. In this study, variables were
ranked based on gain in 100 independent iterations, and the
average rank was reported.
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FIGURE 10 | Egil causal marker detection rates across different rank intervals in gradient boosting models. (A) Small-effect-size scenarios at the hybrid trait
segregation threshold of 5%. (B) Large-effect-size scenarios at the hybrid trait segregation threshold of 5%. (C) Large-effect-size scenarios at the top marker cutoff
of 20 and (D) cutoff of 5.

Independent Marker Filtering
Tree-based methods provide variable importance measures
which can be used to prioritize markers. However, when there
is a correlation between markers, the returned results can be less
accurate because variance importance can be unevenly assigned
to one of the correlated markers. To alleviate this issue, markers
were filtered based on pairwise correlation coefficients before
performing prediction analysis. To select markers with low
pairwise correlation coefficients, correlation between all pairwise
markers was calculated first. Based on calculated correlation
coefficients, adjacency networks were constructed. To do this,
each marker was assigned to each node in a network, and a
pairwise relationship with a correlation coefficient larger than
0.7 was used to connect a pair of nodes that correspond to
the pair of markers. Assignment of networks was carried out
using the R package igraph (Csardi and Nepusz, 2005); then
one representative marker from each connected component
was selected. To assist causal marker rank assessment, if a
causal marker was a member of a connected component,
the causal marker was selected as a representative marker,
and otherwise, a random marker was selected. In total, 125
markers were selected from Bari data, and 25 markers were
selected from Egil data.

Phenotype Simulation
To simulate phenotype, causal markers were chosen as the
intersect of hybrid markers and wild-type markers. We
emphasize that our analysis does not and cannot establish a
causality; rather, it relies on prior knowledge of causal effects
and observes how frequently they are in fact detected. To
select causal markers with higher heterozygosity in wild-type
materials, a minor allele frequency ratio threshold 1.5 was used.
After applying the filtering and selecting independent markers
according to the procedure described in section “Independent
marker filtering,” a total of 125 markers were selected from
2,400 Bari markers, and 25 markers were selected from 2,132
Egil markers. To simulate phenotypes with different effect sizes,
variance explained values of 0.4 and 0.8 were chosen. Phenotypes
were simulated based on allelic dosage of a causal marker, in
an additive manner, and random noise was introduced to adjust
effect sizes. Random noise was simulated by using the R package
rmvnorm (Genz et al., 2009) with an n × n identity matrix,
where n is the number of samples, and random variance was
sampled. To simulate the effect of epistatic trans-downregulation,
one random marker was selected, and the phenotype value
was suppressed when the random marker had an allele dosage
bigger than zero.
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FIGURE 11 | Cumulative Egil small-effect-size scenario causal marker
detection rates in gradient boosting models. The hybrid trait segregation
threshold was 5% in panel (A) and 25% in panel (B).

Weighted Models
In addition to standard random forest and gradient boosting
models, weighted models are applied to prioritize samples with
consistent genetic and phenotypic patterns across wild-type
materials and hybrid materials. Prioritization was achieved by
applying a probabilistic sampling scheme where probability
reflects the importance of each sample. First, markers to focus
were selected from wild-type materials. The correlation of wild-
type phenotype and allelic dosage of each marker was calculated,
and the top correlated markers were selected. To verify the impact
of the number of selected markers, different numbers of top
markers were applied, and the corresponding performance of
prediction was tested. The varied numbers of markers were 5, 10,
15, and 20. Next, wild-type samples were filtered based on trait
segregation level. Samples with segregating traits were chosen,
applying different quantiles to assess the impact of the number of
chosen wild-type samples. The choices of quantiles were 5, 10, 15,
20, and 25%. Then, hybrid samples were filtered using the same
scheme using five types of quantiles. Filtered hybrid samples were
prioritized based on average similarity with filtered wild-type
samples. Similarity between each hybrid sample and filtered wild-
type samples was measured using two distance metrics, Gower
distance and Jaccard distance, which can be applied to measure
the distance between variables with discrete features. The Gower

distance is defined as follows (Gower, 1971):

Sij =
∑n

k=i sijkδijk∑n
k=i δijk

where i and j are samples, k is SNP, and s is the contribution score:

sijk =
|xik − xjk|

Rk

where xik is the dosage of SNP k in sample i and Rk is the dosage
range of SNP k.

δijk is a weight function that is zero when SNP k is invalid for
one or more samples. Jaccard distance is defined as follows:

Jij = 1−
∑n

k=i Iijk∑n
k=i Ik

where Iijk is 1 only when SNP k has the same dosage in sample i
and j and Ik is 1 when at least one of the samples has non-zero
dosage in SNP k.

Averaged distance was used to assign random sampling
probability to each hybrid sample. In other words, filtered hybrid
samples that share a high similarity with filtered wild-type
samples were designed to be sampled with higher probability.
Probabilistically, random samples were plugged into random
forest and gradient boosting models.

Regression
Regression analysis was performed to assess the rank
of causal markers using linear regression models. The
analysis was performed using the genome-wide association
analysis tool PLINK.

Genetic Materials
Chickpea Materials
The 143 wild chickpea samples used in this study were a subset
of chickpea samples collected in Turkey, which is known as the
origin of chickpea (von Wettberg et al., 2018). The Bari and Egil
data used in this study are subsets of the 2,521 F2 hybrid chickpea
materials crossed between 20 wild-type parent lines and the early
flowering parent ICCV96029. After further filtering based on FT
locus to prevent the confounding effect of segregating phenology
linked to that locus, 284 F2 lines were selected (Shin et al.,
2019). To perform GBS sequencing, restriction enzymes HindIII
and NlaIII were used, and Illumina HiSeq 4000 was used to
generate sequence data. Hybrid genotype data are available online
at the National Center for Biotechnology Information under the
BioProject umbrella PRJNA353637. Illumina reads were mapped
to the Cicer arietinum CDC Frontier reference genome using
BWA MEM, and variants were called using the GATK pipeline
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and were filtered using hard filtering parameters: MQ > 37,
QD > 24, MQRankSum < 2. The numbers of samples were
143, 140, and 124, in wild-type chickpea, Bari chickpea, and
Egil chickpea, respectively, and the corresponding numbers of
markers were 1,946, 2,400, and 2,132, respectively.
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