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Kidney renal papillary cell carcinoma (KIRP), the second most common subtype of renal
cell carcinoma, still lacks effective treatment regimens for individualized immunotherapy
because of the heterogeneity of its elusive immune microenvironment. Therefore, we
aimed to comprehensively evaluate the immune microenvironment of KIRP by using the
computational biology strategy to analyze the expression profile data of 289 KIRP patients
obtained from The Cancer Genome Atlas database. Based on multidimensional, multi-
omics bioinformatics analysis, we found that the tumor of patients with KIRP exhibited
“hot” tumor characteristics but the CD8+ T cells in the tumor tissues did not limit tumor
progression. Thus, patients with KIRP may realize higher clinical benefits by receiving
treatment that can reverse CD8+ T-cell exhaustion. Among them, C1 and C3 immune
subtypes could realize the best efficacy of reversing CD8+ T-cell exhaustion. Moreover,
CCL5 and FASLG expression may be related to the formation of the immunosuppressive
microenvironment in the tumors of patients with KIRP. In conclusion, the immune
microenvironment landscape presented in this study provides a novel insight for further
experimental and clinical exploration of tailored immunotherapy for patients with KIRP.

Keywords: renal papillary cell carcinoma, CD8+ T-cell exhaustion, CCL5, FASLG, immunotherapy
response subtypes
INTRODUCTION

Renal cell carcinoma (RCC) is one of the most common types of kidney cancer in humans. In the
past two decades, the incidence of kidney cancer has been increasing (accounting for 2%–3% of all
new tumor cases) and RCC accounting for approximately 85% of kidney cancer cases (1). Kidney
renal papillary cell carcinoma (KIRP) is the second most common type of RCC, accounting for
10%–20% of all RCC cases (2). Although considerable progress has been made in the diagnosis and
treatment of RCC, the clinical outcome of RCC is still not satisfactory (3, 4). As an important
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subtype of kidney cancer, the preferred treatment for local and
locally advanced KIRP is surgical resection. Although multiple
drugs have been used for treating advanced and metastatic KIRP,
including anti-vascular endothelial factor drugs and mTOR
inhibitors, effective and individualized immunotherapeutic
programs for treating KIRP have still not been developed (2).

Tumor-infiltrating immune cells (TIICs) form an ecosystem
that regulates cancer progression in the tumor microenvironment
and have exhibited potential prognostic value (5). The most
studied TIICs are tumor-infiltrating lymphocytes, among which
cytotoxic CD8+ T cells can prevent tumor growth (6). However,
antigen-epitope-specific CD8+ T cells present in the tumor in situ
or the peripheral blood are often inactivated first (7, 8). The
combination of the CTLA4–B7 complex on the surface of T cells
inhibits the activation of T cells, leading to the inhibition of T-cell
proliferation (9). A previous study has shown that TIM-3 and PD-
1 have a potential synergistic effect and induce the dysfunction of
tumor-infiltrating CD8+ T cells (10). Therefore, these lead to the
exhaustion of CD8+ T cells in the tumor microenvironment and,
thus, the loss of antitumor effects. At present, targeted drugs for
PD-1 and CTLA4 have been approved treating various cancers
including KIRC and have achieved good results (11–15). The size
and number of intraperitoneal and retroperitoneal metastases
were considerably reduced in a patient with type 2 recurrent
metastatic KIRP after 5 months of treatment with nivolumab
monoclonal antibody (16), suggesting the potential feasibility of
restoring the antitumor ability of CD8+ T cells to treat KIRP.
However, a comprehensive evaluation of the tumor immune
microenvironment in patients with KIRP has still not been
performed, which has severely limited the further exploration of
the feasibility of immunotherapy in these patients.

Therefore, in this study, we comprehensively evaluated the
tumor immune microenvironment of patients with KIRP
and identified key genes and T-cell subsets that are closely
related to the tumor microenvironment of patients with
KIRP and can be used as immunotherapeutic targets or
Frontiers in Immunology | www.frontiersin.org 2
markers. Furthermore, we identified subtypes with different
immunotherapy responses of KIRP patients through an
unsupervised clustering method and further demonstrated the
prospect of immunotherapy based on reversing CD8+ T-cell
exhaustion in KIRP patients.
MATERIALS AND METHODS

Data Sources and Differential Analysis
of mRNAs
The RNA-seq matrix files (count format) and clinical
information of 289 KIRP samples and 32 peritumoral kidney
samples were downloaded from The Cancer Genome Atlas
(TCGA) (https://cancergenome.nih.gov/) (Tables 1 and 2). The
mRNA-seq matrix files were extracted for the next differential
analysis. The R package “edgeR” was applied to screen
differentially expressed mRNAs between normal and tumor
tissues. Next, the p-value was calculated by the FDR-corrected
method. The mRNAs with fold change >2 (| log2 fold-change | >1)
and p < 0.05 were filtrated as differentially expressed genes.

Evaluation of Immune Infiltration
The CIBERSORT method is used to evaluate the proportion of
immune cells based on the standardized gene expression files. This
method has been validated in gene expression file studies
measured by gene chips (17). We used the CIBERSORT to
calculate the proportion of 22 immune cells (B cells naïve, B
cells memory, plasma cells, T cells CD8, T cells CD4 naïve, T cells
CD4 memory resting, T cells CD4 memory activated, T cells
follicular helper, T cells regulatory (Tregs), T cells gamma delta,
NK cells resting, NK cells activated, monocytes, macrophages M0,
macrophages M1, macrophages M2, dendritic cells resting,
dendritic cells activated, mast cells resting, mast cells activated,
eosinophils, and neutrophils). Samples with p < 0.05 indicated that
TABLE 1 | Summary of clinical characteristics of histological subtypes in the KIRP-TCGA cohort.

Histological subtypes

Type 1 (N = 76) Type 2 (N = 82) NA (N = 131)

Age (year) 58 (28–79) 64 (28–85) 62 (31–88)
Gender
Male (%) 73.7 69.5 76.3
Female (%) 26.3 30.5 23.7
Stage
I (n) 57 42 73
II (n) 3 5 13
III (n) 3 24 24
IV (n) 1 6 8
NA (n) 12 5 13
T stage (n)
1/2/3/4/NA

64/7/4/1/0 47/8/26/1/0 82/18/29/0/2

N stage (n)
0/1/2/NA

8/2/0/66 14/13/3/52 28/9/1/93

M stage (n)
0/1/NA

17/0/59 29/3/50 48/6/77
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the proportion of immune cells calculated by CIBERSORT was
correct. In addition to CIBERSORT, we used the tumor immune
estimation resource (TIMER) database (https://cistrome.
shinyapps.io/timer/) to assess the abundance of six immune cells
(B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages,
and myeloid dendritic cells) for the TCGA and GEO cohorts (18).

Construction of Weighted Co-Expression
Network
The regulation network method is widely applied to analyze the
gene expression data. When compared with the node-based
method, the regulation network method pays attention to both
the difference in and the correlation between the gene expression
profiles (19). The weighted gene co-expression network analysis
(WGCNA) was superior to several other methods in constructing
the co-expression networks (20). To determine the gene groups
with similar expression patterns, we applied the previously
reported R package “WGCNA” to construct a weighted co-
expression network for the TCGA cohort (21). First, the outlier
samples were filtered to reduce the differences. The soft threshold
method was selected to construct the correlation network so that
the adjacency matrix becomes a continuous value between 0 and
1. The network thus constructed was closer to the real biological
network state. Then, the BlockwiseModules function was applied
to build scale-free networks, after which the module division
analysis and dynamic tree-cutting algorithm were applied to
group the genes with similar expression patterns and define the
modules (22). In order to obtain a large number of genes for each
module, we selected a dividing line (0.25) to merge some of the
modules with a high correlation.

Identification of Important Modules
Related to Immune Cells
To determine the importantmodules related to T cells in the TCGA
cohort, we calculated the value of module eigengenes (MEs), gene
significance (GS), and module significance (MS). MEs are the main
Frontiers in Immunology | www.frontiersin.org 3
components of geneprincipal component analysis in themodule. By
calculating the correlation between MEs and clinical information,
vital relevant modules could be determined. GS is a log10
transformation of p-value in the linear regression between the
gene expression and clinical information, which represents the
correlation between genes and samples. MS is the average GS in
themodule. Themodule with the highest correlationwith theCD8+
T cells was selected as the module to be analyzed. The enrichment
pathways of the key modules were obtained using the Metascape
(http://metascape.org/gp/index.html).

Construction of the PPI Network and
Screening of Its Hub Genes
For the TCGA cohort, the protein–protein interaction (PPI)
network in the hub module was constructed using default
parameters of the STRING database (23) and then visualized
using Cytoscape. The hub genes in the network were calculated
using the MCC algorithm in CytoHubba. When compared with
the 10 other previously reported methods, MCC can more
accurately identify the central objects in the network (24).

Screening of Hub Genes in the
WGCNA Network
For the TCGA cohort, the node with weights >0.4 between the two
nodes in thekeymodulewas input into theCytoscape, afterwhich the
hub genes in the co-expression network were calculated using the
MCC algorithm of CytoHubba. The genes highly correlated with
certain clinical features in the modules were identified as the more
important genes in the module; therefore, we defined genes that
simultaneously satisfied the module membership (MM) >0.9 and
genesignificance (GS)>0.6as thehubgenes in theWGCNAnetwork.

Identification of Real Hub Genes
in the Key Module
We identified the genes obtained from the intersection of hub
genes of the PPI network and the WGCNA network as the hub
TABLE 2 | Summary of clinical characteristics of molecular subtypes in the KIRP-TCGA cohort.

Molecular subtypes

KIRP.C1 (N = 92) KIRP.C2a (N = 34) KIRP.C2b (N = 21) KIRP.C2c–CIMP (N = 9) NA (N = 133)

Age (year) 59 (38–83) 64 (42–85) 64 (37–83) 45 (28–61) 63 (28–88)
Gender
Male (%) 79.3 70.6 57.1 33.3 75.9
Female (%) 20.7 29.4 42.9 66.7 24.1
Stage
I (n) 70 20 4 0 78
II (n) 5 1 0 1 14
III (n) 8 9 14 5 15
IV (n) 1 3 3 3 5
NA (n) 8 1 0 0 21
T stage (n)
1/2/3/4/NA

75/9/7/1/0 21/2/11/0/0 5/0/16/0/0 0/2/7/0/0 92/20/18/1/2

N stage (n)
0/1/2/NA

11/1/0/80 9/4/1/20 5/6/1/9 1/6/1/1 24/7/1/101

M stage (n)
0/1/NA

25/0/67 19/2/13 12/2/7 2/2/5 36/3/94
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genes of the key module in the TCGA cohort. The selection
of the intersection and drawing of the Wayne diagram
was performed using the online tool VENNY (Https://
bioinfogp.cnb.csic.es/tools/venny/index.html) (25). After
obtaining the true hub genes, we used the R package “corrplot”
to draw the correlation heat map between these hub genes.

Immunohistochemistry and Real-Time
Quantitative PCR Analyses
In total, 30 KIRP tissues and 10 adjacent normal tissues were
collected from 30 patients who underwent partial nephrectomies
or nephrectomies at The First Hospital of China Medical
University. All patients provided their written informed consent.
Total RNA was extracted using the TRIzol reagent (Waltham,
Massachusetts, USA). The PrimeScript RT Kit (Takara Bio, Inc.,
Dalian, China) was used to reversely transcribe RNA into cDNA in
accordance with the manufacturer’s protocols. The SYBR Green
PCR Kit (Takara Bio, Inc., Dalian, China) was used to conduct real-
time fluorescence quantitative PCR with the ABI7500 Fluorescent
Quantitative PCR Machine (Applied Biosystems, Lincoln Centre
Drive Foster City, CA, USA). Glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) was used as the internal control. The
primer sequences in this experimentwereas follows:CCL5 (forward:
5′-CCAGCAGTCGTCTTTGTCAC-3′; reverse: 5′-CTCTGGG
TTGGCACACACTT-3′), FASLG (forward: 5′-TGCCTTGG
TAGGATTGGGC-3′; reverse: 5′-GCTGGTAGACTCTCGGA
GTTC-3′), EOMES (forward: 5′-GCCATGCTTAGTGACA
CCGA-3′; reverse: 5′-GGACTGGAGGTAGTACCGC-3′),
PDCD1 (forward: 5′-CCAGGATGGTTCTTAGACTCCC-3′;
reverse: 5′-TTTAGCACGAAGCTCTCCGAT-3′), and GAPDH
(forward: 5′-ACAACTTTGGTATCGTGGAAGG-3′ reverse: 5′-
GCCATCACGCCACAGTTTC-3′). The mRNA expression levels
were analyzed using the 2-DDCTmethod. The immunohistochemical
data of the hub genes were obtained from The Human Protein
Atlas (HPA) database (http://www.proteinatlas.org) (26). The
method of the immunohistochemical analysis of the HPA could
be found in the HPA website (https://www.proteinatlas.org/about/
assays+annotation#ih).

Overall Survival Analysis of KIRP Patients
in the TCGA Cohort
Survival-related hub genes were determined by the Kaplan–
Meier (KM) survival analysis on the UALCAN (http://ualcan.
path.uab.edu/analysis.html) (27). KIRP patients were categorized
into the high expression (with gene expression levels above the
upper quartile) group and the low/medium expression (with
gene expression levels below the upper quartile) group. The log-
rank p < 0.05 was considered to be statistically significant.

Correlation Analysis of Hub Genes and
Immune Cells
TIMER (https://cistrome.shinyapps.io/timer/) was used for
correlational analysis between the hub genes and immune cells in
the TCGA cohort. The correlation analysis between the immune
cells and the clinical prognosis was also performed on the TIMER.
The R software was used to draw box plots of the proportion of
CD8+ T cells and Treg cells in different clinical stages.
Frontiers in Immunology | www.frontiersin.org 4
Identification of the Immune Subtypes
by Consensus Clustering
We used the R package “ConsensusClusterPlus” to perform
consensus clustering and the screening of the immune
subtypes of KIRP in the TCGA cohort based on the 12 hub
genes of the CD8+ T-cell-related module. In order to present the
immune landscapes in different immune subtypes, we used the R
package “ESTIMATE” to calculate the immune score, stromal
score, and tumor purity of each tumor sample. The package
“GSVA” was used to evaluate the single-sample gene-set
enrichment analysis (ssGSEA) score based on 29 immune gene
sets. The Kaplan–Meier (KM) survival curves of the immune
subtypes were performed by using the R package “Survival.”

Prediction of Immunotherapy Responses
in KIRP Patients
“TIDE” is a computational method that calculates the score of T-
cell exclusion and T-cell dysfunction to predict the responses of
immunotherapy (28). A lower TIDE score predicted a higher
immunotherapy response. We classified KIRP patients into a
true response group and a false response group by the median of
TIDE scores in the TCGA cohort.

Acquisition and Processing of
Validation Datasets
Three expression matrix files of KIRP, GSE2748 (n = 34),
GSE7023 (n = 35), and GSE26574 (n = 34) were extracted
from the Gene Expression Omnibus (GEO) (https://www.ncbi.
nlm.nih.gov/geo/). After merging the three expression matrix
files, the batch effects were adjusted by the R package “sva.” The
merged files were then used as the validation cohort.

Identification of Frequently Mutated
Genes and Gene-Set Enrichment Analysis
in Different Immunotherapy Response
Groups
The somatic mutation files (maf format) of 273 KIRP patients
of the TCGA cohort were downloaded from TCGA
(https://cancergenome.nih.gov/). The R package “Maftools”
was used to draw the waterfall plots in order to visualize the
genes with mutation frequency >5% in the high and
low/medium immunotherapy response groups. The r package
“clusterProfiler” was used to perform GSEA analysis to
evaluate the biological mechanisms between the high and
low/medium immunotherapy response groups. We visualized
the top five enrichment results of the high immunotherapy
response group.

Statistical Analyses
Spearman correlation was applied to calculate the correlation
coefficients between the hub genes. Wilcoxon test and Kruskal–
Wallis test were applied to separately conduct the group
comparisons of two groups and more than two groups. Overall
survival curves were generated using the Kaplan–Meier method,
and the group comparisons were performed with the log-
rank test.
August 2021 | Volume 12 | Article 657951
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RESULTS

Construction of a Weighted Co-Expression
Network of Differentially Expressed Genes
and Evaluation of Immune Infiltration
Under the condition of | log2 (fold-change) |> 1 and p < 0.05,
5,132 differentially expressed genes were screened (3,130
upregulated and 2,002 downregulated) in the TCGA
cohort (Supplementary Figure 1A). The 5,132 differential
genes in 289 tumor samples were used to construct a
co-expression network. The optimal soft threshold b = 5 was
used for the next calculation (Supplementary Figure 1B).
Frontiers in Immunology | www.frontiersin.org 5
The modules with ME of <0.25 in the cluster were
merged, and 32 modules were finally obtained in the TCGA
cohort (Supplementary Figures 1C, D). In the results of
CIBERSORT, 137 tumor samples with a p < 0.05 were selected
(Supplementary Figure 1E).

Correlation Between the Purple
Module and T Cells
In the WGCNA analysis results, we found a high correlation
between the purple module (169 genes) and CD8+ T cells
(r = 0.67, p = 5e-38) (Figure 1A). We also plotted the
relationship diagram of GS and MM of the purple module
A B

C

D

FIGURE 1 | Identification of important modules related to T cells through WGCNA. (A) The correlation between the modules and the five T-cell subtypes. The scale
bar indicated the range of the correlation coefficient, and the p value is in the parentheses. (B) Correlation between purple module members and gene significance.
(C) GO and KEGG enrichment analysis of 169 genes in the purple module confirmed that these genes were mainly enriched in the process of T-cell activation and
antigen processing and presentation. (D) Six tightly linked networks in the purple module were obtained using the MCODE algorithm.
August 2021 | Volume 12 | Article 657951
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(Figure 1B). These results indicate that the purple module was
significantly related to CD8+ T cells.

Analysis of the Function and Pathway of
Genes Identified in the Purple Module
The genes of the purple module were related to a variety of
immune functions. The first three significantly enriched GO
biological processes in the purple module were about T-cell
activation (Log10(P) = −26.47), response to interferon-gamma
(Log10(P) = −16.90), and the cytokine-mediated signaling
pathway (Log10(P) = −16.10). The first three KEGG pathways
were antigen processing and presentation (Log10(P) = −11.27),
Frontiers in Immunology | www.frontiersin.org 6
cytokine–cytokine receptor interaction (Log10(P) = −11.19), and
natural killer cell-mediated cytotoxicity (Log10(P) = −8.66)
(Figure 1C, Supplementary Table 1). In addition, by using the
MCODE algorithm of the Metascape platform, six closely linked
network components were calculated and their functionally
analyzed (Figure 1D, Supplementary Table 2).

Screening of Hub Genes of the
Purple Module
A PPI network with 115 nodes and 661 edges was generated and
visualized, and the genes in the top 30 scores were identified as
hub genes of this network (Figure 2A). The nodes with a weight
A B

C

D

FIGURE 2 | Identification of 12 hub genes by PPI and WGCNA co-expression networks. (A) PPI network of genes in the purple module. Using the MCC algorithm,
the top 30 genes in the PPI network were the hub genes of the PPI network. (B) Weighted co-expression network of nodes with weights > 0.4 between two nodes
in the purple module. The top 30 genes in the network scored by the MCC algorithm were the hub genes of the co-expression network. (C) The Wayne diagram
showed the common hub genes in the PPI network and the co-expression network. (D) The correlation heat map showed the correlation coefficients among 12
hub genes.
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of >0.4 (81 nodes, 1,530 edges) between two nodes in the
weighted co-expression network were visualized, and the genes
in the top 30 scores were identified as hub genes of the weighted
co-expression network (Figure 2B). In the purple module, genes
that were simultaneously satisfied MM >0.9 and GS >0.6 were
selected. Then, they were intersected to obtain 12 genes (GZMA,
FASLG, CD2, PDCD1, CCL5, CD8A, CD3D, EOMES, NKG7,
CD3E, CD8B, and CTLA4) (Figure 2C). We believed that these
12 genes were the true hub genes in the purple module and they
were strongly correlated (Figure 2D).

Differential Expression of Hub Genes
and Survival Analyses
As shown in Figure 3A, in the TCGA cohort, the expression of
these 12 genes in tumor tissues was higher than that in normal
tissues (p <0.05). The immunohistochemical data from HPA
showed that EOMES and PDCD1 exhibited medium staining in
the cytoplasm and cytomembrane of the tumor cells in the renal
cancer. Normal kidney tissue staining of EOMES exhibited high
staining in the cytoplasm and cytomembrane of cells in tubules, but
Frontiers in Immunology | www.frontiersin.org 7
as for cells in glomeruli, the staining was not detected. The staining
of PDCD1 was not observed in normal kidney tissues (Figure 3B).
In our samples, the mRNA levels of CCL5, FASLG, EOMES, and
PDCD1 in tumor tissues were significantly higher than those in
normal tissues (Figure 3C). Survival analysis revealed that the
overexpression of eight genes was significantly associated with poor
prognosis. As shown in Figure 3D, the p values of these genes are
as follows: CCL5 (p = 0.015), CD2 (p = 0.025), CD8A (p = 0.004),
CD8B (p = 0.039), EOMES (p = 0.045), FASLG (p = 0.015), GZMA
(p = 0.012), and PDCD1 (p = 0.01).

Hub Genes Were Significantly Correlated
With the Fraction of CD8+ T Cells
We validated the significant correlation between hub genes and
the fraction of CD8+ T cells in the TCGA cohort by using the
TIMER online platform (Figure 4A). The high infiltration
status of B cells and CD8+ T cells was associated with poor
prognosis in patients with KIRP (Figure 4B), and the number of
CD8+ T cells and Treg cells increased with tumor progression
(Figures 4C, D).
A B C

D

FIGURE 3 | Differential expression of hub genes in KIRP and survival curves of hub genes. (A) In the TCGA cohort, the expression of 12 hub genes in the tumor
were higher than that in normal tissues, ***p < 0.001. (B) Immunohistochemical results of EOMES and PDCD1 in tumor and normal tissues. (C) mRNA expression
levels of CCL5, FASLG, EOMES, and PDCD1 detected by RT-qPCR in tumor and normal tissues. (D) The high expressions (red line) of CCL5, CD2, CD8A, CD8B,
EOMES, FASLG, GZMA, and PDCD1 were associated with poor prognosis.
August 2021 | Volume 12 | Article 657951
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Immune Microenvironment Landscapes of
the Five Immune Subtypes
Based on the 12 hub genes, the KIRP samples of the TCGA
cohort were clustered into five subtypes (C1: 71 samples, C2: 52
samples, C3: 29 samples, C4: 87 samples, and C5: 44 samples)
(Figures 5A–C). The prognostic outcomes of the five subtypes
showed significant statistical differences (Figure 5D). The
abundance of six types of immune cells (B cells, CD4+ T cells,
CD8+ T cells, neutrophils, macrophages, and myeloid dendritic
cells) was compared among the five subtypes (Figure 5E). The
number of patients at different tumor stages in the immune
subtypes is shown in Figure 5F. We also compared the ssGSEA
score, immune score, stromal score, and tumor purity of the five
immune subtypes (Figures 6A, B). Among the immune
subtypes, C1 and C3 showed the highest abundance of the six
immune cell types with the highest ssGSEA, immune, and
Frontiers in Immunology | www.frontiersin.org 8
stromal scores. C4 and C5 showed a moderate abundance of
the six immune cell types along with moderate ssGSEA, immune,
and stromal scores. Notably, C2 showed the lowest abundance of
the six immune cell types with the lowest ssGSEA, immune, and
stromal scores. On the other hand, tumor purity showed the
opposite trend among these immune subtypes. Interestingly, in
C1 and C3, which were rich in immune components, the
percentage of patients at high tumor stages (III/IV) in C1 was
18.2%, and that in C3 was 44.8%.

Predictions of Immunotherapeutic
Responses Among the Five Immune
Subtypes
Among the five immune subtypes, C1 and C3 had the lowest
TIDE and highest T-cell dysfunction scores. C4 and C5 had
moderate TIDE and T-cell dysfunction scores. C2 showed the
A

B

C D

FIGURE 4 | The expressions of hub genes were positively correlated with the infiltration level of CD8+ T cells. (A) The expression of 12 hub genes showed a
negative correlation with tumor purity, and a positive correlation with the infiltration level of CD8+ T cells. (B) Relationship between immune cell infiltration and overall
survival in KIRP patients. (C) As the tumor progresses, the proportion of CD8+ T cells continues to rise. (D) The proportion of Treg cells continues to rise as the
tumor progresses.
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highest TIDE and lowest T-cell dysfunction scores (Figure 7A).
The details of TIDE and T-cell dysfunction scores of each KIRP
sample are presented in Supplementary Table 3. A sample with
the TIDE score greater than 1.15 was defined as a false responder
to immunotherapy, and a sample with the TIDE score less than
1.15 was defined as a true responder to immunotherapy. The
percentage of true responders to immunotherapy decreased in
the following order: C3 (96.6%) > C1 (81.7%) > C4 (44.8%) > C5
(29.5%) > C2 (7.7%) (Figure 7B). The expression of four
immune checkpoint genes (LAG3, PD-L1, PD-1, and CTLA4)
and two hub genes (CCL5 and FASLG) decreased in the
following order: C3 > C1 > C4 > C5 > C2 (Figure 7C). Based
on these findings, C1 and C3 were considered the high
immunotherapy response group, C4 and C5 were considered
the median immunotherapy response group, and C2 was
considered the low immunotherapy response group.

Validation of the Immune Subtypes
of KIRP
The GEO cohort was clustered into five subtypes based on the 12
hub genes to validate the immune subtypes of KIRP as identified
in the TCGA cohort (Figures 8A–C). C1 and C3 had the highest
Frontiers in Immunology | www.frontiersin.org 9
abundance of immune cells, especially CD8+ T cells and myeloid
dendritic cells. This observation was consistent with the results of
the TCGA cohort (Figure 8D). In terms of immune-related
gene-set enrichment score, immune score, stromal score, and
tumor purity, the analysis results of the GEO cohort showed the
same trend as that of the TCGA cohort (Figures 9A, B). In terms
of the expression of two hub genes (CCL5 and FASLG) and four
immune checkpoint genes (LAG3, PD-L1, PD-1, and CTLA4),
the analysis results of the GEO cohort also exhibited the same
trend as that of the TCGA cohort (Figure 9C). These comparable
results between the TCGA and GEO cohorts indicated that the
immune subtypes of KIRP identified in this study existed
in KIRP.

Comparing the Immune Subtypes With
Histological and Molecular Subtypes
Some studies have previously proposed the existence of two
different histological subtypes and four different molecular
subtypes in KIRP: type 1 with pale cytoplasm and small cells
and type 2 with eosinophilic cytoplasm and large cells. Type 2
KIRP presented at a higher tumor stage more often than type 1
(29, 30). Molecular subtype KIRP.C1 was enriched in type 1
A B C

E FD

FIGURE 5 | Consensus clustering of KIRP samples in the TCGA cohort. (A) Heat map of sample clustering at k = 5. (B) Cumulative distribution function CDF curve
for k = 2–9. (C) Relative change in area under the CDF curve when k = 2–9. (D) Survival curve of five immune subtypes. (E) The abundance of six immune cells
among five immune subtypes, ***p < 0.001. (F) Histogram of tumor stages of five immune subtypes.
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KIRP and associated with the MET mutation and gain of
chromosome 7. Molecular subtype KIRP.C2a was enriched in
type 2 KIRP and associated with DNA methylation cluster 2.
Molecular subtype KIRP.C2b mainly consisted of type 2 and
unclassified KIRP and was associated with SETD2 mutation and
DNA methylation cluster 1. Molecular subtype KIRP.C2c-CIMP
was enriched in type 2 KIRP and associated with
hypermethylation of the CDKN2A promoter and mutation of
FH (30). In the TCGA cohort, we compared the immune
subtypes identified with the histological and molecular
subtypes. In terms of histological subtypes, C3 was mainly
composed of type 2 and C2 was mainly composed of type 1.
The composition ratio of the histological subtypes was
comparable among C1, C4, and C5 (Figure 10A). C3 was
mainly presented in type 2 (Figure 10B). With regard to
molecular subtypes, KIRP.C2a accounted for a large
proportion of C3, whereas KIRP.C1 was dominant in C1, C2,
Frontiers in Immunology | www.frontiersin.org 10
C4, and C5 (Figure 10C). C3 was mainly presented in KIRP.C2a
and KIRP.C2c-CIMP. C2 mainly appeared in KIRP.C1 and
KIPR.C2b (Figure 10D).
The Mutation Frequency of TTN Was
Lower in the High Immunotherapy
Response Group Than in the Low/Medium
Immunotherapy Response Group
In the TCGA cohort, the genes with a mutation frequency greater
than5%weredifferent in thehighand low/mediumimmunotherapy
response groups. MUC16, KMT2C, MET, TTN, and MUC4 were
commonbetween the twogroups.OBSCN,ARID1A,FAT1,USH2A,
CENPF, HELZ2, and WDFY3 were specific to the high
immunotherapy response group. SETD2, KIAA1109, CUBN,
KMT2D, MACF1, PCLO, DNAH8, KDM6A, LRP2, PBRM1,
PCF11, PKHD1, and SYNE1 were specific to the low/medium
A

B

FIGURE 6 | Immune components of five immune subtypes in the TCGA cohort. (A) Heat map of 29 immune gene sets of five immune subtypes. (B) The immune
score, stromal score and tumor purity of five immune subtypes, ***p < 0.001, **p < 0.01, ns p > 0.05.
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immunotherapy response group. The difference in the mutation
frequency of TTN was most significant between these two groups.
The high response group was 7% and the low/medium group was
17% (Figures 11A, B). GSEA performed on these two groups
revealed that multiple immune-related functions and pathways
such as eosinophil chemotaxis, eosinophil migration, IgG binding,
interleukin-12 secretion, MHC class II protein complex, allograft
rejection, graft-versus-host disease, the intestinal immune network
for IgA production, systemic lupus erythematosus, and type I
diabetes mellitus were significantly enriched in the high
immunotherapy response group (Figures 11C, D).
DISCUSSION

Tumor immunotherapy targeting immune checkpoints has
shown encouraging therapeutic effects. Because of the
Frontiers in Immunology | www.frontiersin.org 11
differences in individual responses of patients, screening of the
beneficiary population for specific tumor subtypes and
identifying new targets and biomarkers to develop single-
therapy drugs and combined therapy programs still need to be
intensively performed. Based on the computational biology
method and the in-depth analysis of the multidimensional
data of 289 patients with KIRP in the TCGA cohort and 103
patients with KIRP in the GEO cohort, our research shows the
following. 1) There is a certain number of potentially functional
immune cells in the tumors of patients with KIRP but the
tumor-infiltrating CD8+ T cells are exhausted, causing them to
fail to exert their antitumor effects. 2) The C1 and C3 immune
subtypes that we identified may have the highest clinical benefit
in reversing CD8+ T-cell exhaustion. Our comprehensive
evaluation of the tumor immune microenvironment of
patients with KIRP suggests that these patients may be
suitable for immunotherapy that reverses CD8+ T-
cell exhaustion.
A B

C

FIGURE 7 | Prediction of immunotherapy response of five immune subtypes in the TCGA cohort. (A) Heat map of dysfunction scores, exclusion scores, and TIDE
scores of five immune subtypes. (B) Histogram of responder of five immune subtypes (true responder: C1 81.7%, C2 7.7%, C3 96.6%, C4 44.8%, C5 29.5%).
(C) Gene expression levels of PD-1, PD-L1, CTLA4, LAG3, FASLG, and CCL5 among five immune subtypes, ***p < 0.001, **p < 0.01, *p < 0.05, ns p > 0.05.
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Based on the comprehensive evaluation of the tumor immune
microenvironment of patients with KIRP, we identified 12 hub
genes that were closely related to this tumor microenvironment.
These 12 hub genes were highly expressed in these patients and
showed a strong correlation with CD8+ T cells. The roles of these
12 hub genes in tumors can be divided into two major groups:
those with immunostimulatory functions (CD2, CD8A, CD8B,
CD3D , CD3E , EOMES , and GZMA) and those with
immunosuppressive functions (PDCD1, CTLA4, FASLG, and
CCL5). Some of these genes are cancer suppressor genes. CD2,
CD8A, CD8B, CD3D, and CD3E are membrane proteins on the
surface of T cells and play an important role in the immune
recognition and activation of T cells (31–33). EOMES has an
important effect on the development of NK cells and the
differentiation of CD8+ T cells (34, 35). GZMA, a cytotoxic
Frontiers in Immunology | www.frontiersin.org 12
protein secreted by NK cells and cytotoxic T cells, can induce
caspase-dependent cell death (36). At present, the role of NKG7
in cancer has not been elucidated. In addition, some of these
genes are involved in the formation of an immunosuppressive
microenvironment in the tumor. CTLA4 is an inhibitory receptor
found on the surface of T cells. It can downregulate the activity of
T cells after binding to CD80 and CD86 on antigen-presenting
cells (37, 38) (Figure 12). PDCD1 belongs to the cell-surface
immunoglobulin superfamily. After interacting with PD-L1, the
proliferation and activity of tumor-specific T cells are inhibited
(39) (Figure 12). FASLG is a member of the tumor necrosis
factor superfamily. Soluble FASLG can kill effector immune cells
and cause immune tolerance (40, 41) (Figure 9). In adoptive cell
immunotherapy, when genetically engineered Fas receptor-
negative T cells are used for cancer treatment, Fas receptor-
A B C

D

FIGURE 8 | Consensus clustering of KIRP samples in the GEO cohort. (A) Heat map of sample clustering at k = 5. (B) Cumulative distribution function (CDF)
curve for k = 2–9. (C) Relative change in area under the CDF curve when k = 2–9. (D) The abundance of six immune cells among five immune subtypes,
***p < 0.001, *p > 0.05.
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negative T cells show longer durability and stronger antitumor
immunity both in the periphery blood and in tumors of tumor-
bearing animals (42). The chemokine CCL5 can recruit Treg cells
to enhance immune tolerance (43) (Figure 12). In our study,
CCL5 and Treg cells also showed a strong correlation
(Supplementary Figure 2). Additionally, CCL5 produced by
immune cells can promote tumor growth and proliferation by
regulating macrophage production of metalloproteinases or
Frontiers in Immunology | www.frontiersin.org 13
inducing epithelial–mesenchymal transformation in tumor cells
(44, 45). There is evidence that drugs blocking the CCR5–CCL5
axis or reducing CCL5 production can be used in the clinical
setting (46). It is worth noting that in addition to the common
immune checkpoint targets such as PD-1, we found that CCL5
and FASLG may play an important role in the formation of the
KIRP tumor immunosuppressive microenvironment; however,
studies on the role of CCL5 and FASLG expression in KIRP
A B

C

FIGURE 9 | Immune components and expression levels of immune checkpoints among five immune subtypes in the GEO cohort. (A) Heat map of 29 immune gene
sets of five immune subtypes. (B) The immune scores, stromal scores, and tumor purity of five immune subtypes. (C) Gene expression levels of PD-1, PD-L1,
CTLA4, LAG3, FASLG, and CCL5 among five immune subtypes. ***p < 0.001, **p < 0.01, *p < 0.05, ns p > 0.05.
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have not been performed. Therefore, whether CCL5 and FASLG
and their receptors can be used as new targets for KIRP
immunotherapy remains to be further studied.

The main finding of this study was to identify that patients
with KIRP are suitable for receiving immunotherapy that can
reverse CD8+ T-cell exhaustion. In our study, we found a strong
co-expression relationship between some genes with
immunosuppressive effects and those with immune-promoting
effects in the purple module, indicating that the greater the
Frontiers in Immunology | www.frontiersin.org 14
activation potential and antitumor potential of CD8+ T cells,
the greater the possibility of inhibition. In addition, our results
showed that in the tumor of patients with KIRP, the numbers of
Treg cells with immunosuppressive effects and CD8+ T cells
continue to increase with tumor progression. This finding is
consistent with the observation that the number of CD8+ T cells
in RCC is positively correlated with the tumor grade but because
of the immunosuppressive environment in renal cell carcinoma,
TILs with lower proliferative activity cannot exert their function
A B

C D

FIGURE 10 | Comparison of multiple KIRP subtypes. (A) Percentage of histological subtypes in immune subtypes. (B) Percentage of immune subtypes in histological
subtypes. (C) Percentage of molecular subtypes in immune subtypes. (D) Percentage of immune subtypes in molecular subtypes.
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effectively (47, 48). Survival analysis showed that CD8+ T cells
were significantly associated with poor prognosis of patients with
KIRP. Based on the above findings, we can infer that KIRP
belongs to the “hot” tumor category. Although there is a certain
number of CD8+ T cells around KIRP tumor cells, because of an
immunosuppressive environment and the expression of
immunosuppressive receptors by CD8+ T cells, CD8+ T cells
are exhausted, resulting in the inability of CD8+ T cells to exert
their antitumor effects. Therefore, reversing exhausted CD8+ T
cells and restoring their antitumor ability could be a reasonable
choice in KIRP immunotherapy.

To find potentially suitable patients who could benefit the
most from the treatment of reversing CD8+ T-cell exhaustion,
Frontiers in Immunology | www.frontiersin.org 15
we clustered a TCGA cohort of KIRP into five immune subtypes
based on 12 hub genes associated with CD8+ T cells and
validated these immune subtypes in the GEO cohort. C1 and
C3 had the highest immune component, T-cell dysfunction
score, and percentages of true responders to immunotherapy
(C1: 81.7%, C3: 96.6%). C2 had the lowest immune component
and T-cell dysfunction score. In terms of percentages of true
esponders to immunotherapy, C2 had the lowest one (7.7%). C4
and C5 had moderate immune components, T-cell dysfunction
scores, and percentages of true responders to immunotherapy (C4:
44.8%, C5: 29.5%). Therefore, among the five immune subtypes,
high immunotherapy response subtypes C1 and C3 could obtain
the best efficacy of reversing CD8+ T-cell exhaustion therapy. The
A B

C D

FIGURE 11 | Landscapes of mutant genes in immunotherapy response groups and GSEA results. (A) The waterfall plot of genes with mutation frequency greater
than 5% in the high immunotherapy response group. (B) The waterfall plot of genes with mutation frequency greater than 5% in the low/medium immunotherapy
response group. (C) GO enrichments of GSEA between the high response group and low/medium group. (D) KEGG enrichments of GSEA between the high
response group and low/medium group.
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low immunotherapy response subtype C2 was not suitable for
reversing CD8+ T-cell exhaustion therapy. It is worth noting that
although C1 and C3 are both subtypes of high immunotherapy
response, the number of patients at higher tumor stages (III/IV) in
C1 was 18.2% and that in C3 was 44.8%. This finding suggests that
immunotherapeutic interventions for early-stage patients of type
C1 may be effective in preventing patients from transitioning to
late stages.

In conclusion, based on an in-depth analysis of the multiomic
and multidimensional data of KIRP from the largest sample
available currently, we found that patients with KIRP whose
immune microenvironment exhibits “hot” tumor characteristics
are suitable for receiving therapy that causes the reversal of
CD8+ T-cell exhaustion, and their C1 and C3 immune subtypes
Frontiers in Immunology | www.frontiersin.org 16
may achieve the best therapeutic effect. Genes such as CCL5 and
FASLG may play a crucial role in the formation of the KIRP
immunosuppressive microenvironment. Given the limited high-
quality clinical data of KIRP, further experimental and clinical
studies are required to confirm the above findings and explore
the corresponding immunotherapy regimens.
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GLOSSARY

TCGA The Cancer Genome Atlas
KIRP kidney renal papillary cell carcinoma
FASLG Fas ligand
CCL5 C–C motif chemokine ligand 5
RCC renal cell carcinoma
TIIC tumor infiltrating immune cell
CTLA4 cytotoxic T-lymphocyte-associated protein 4
TIM-3 T-cell immunoglobulin mucin family member 3
PD-1 programmed cell death 1
ccRCC clear cell renal cell carcinoma
GEO Gene Expression Omnibus
WGCNA weighted gene co-expression network analysis
ME module eigengene
GS gene significance
MS module significance
PPI protein–protein interaction
KM Kaplan–Meier
ssGSEA single-sample gene set enrichment analysis
TIDE tumor immune dysfunction and exclusion
GSEA gene set enrichment analysis
GO Gene Ontology
KEGG Kyoto Encyclopedia of Genes and Genomes
GZMA Granzyme A
CD2 CD2 molecule
PDCD1 programmed cell death 1
CD8A CD8A molecule
CD3D CD3D molecule
EOMES Eomesodermin
NKG7 natural killer cell granule protein 7
CD3E CD3E molecule
CD8B CD8B molecule
HPA The Human Protein Atlas
LAG3 lymphocyte activating 3
PD-L1 programmed cell death 1 ligand 1
MET tyrosine–protein kinase Met
SETD2 histone-lysine N-methyltransferase SETD2
CDKN2A cyclin-dependent kinase inhibitor 2A
TTN Titin
MUC16 Mucin 16
KMT2C lysine methyltransferase 2C
MUC4 Mucin 4
OBSCN obscurin
ARID1A AT-rich interaction domain 1A
FAT1 FAT atypical cadherin 1
USH2A Usher syndrome type IIa protein
CENPF centromere protein F
HELZ2 helicase with zinc finger 2
WDFY3 WD repeat and FYVE domain-containing 3
SETD2 SET domain-containing 2
KIAA1109 transmembrane protein KIAA1109
CUBN cubilin
KMT2D lysine methyltransferase 2D
MACF1 microtubule actin cross-linking factor 1
PCLO Piccolo presynaptic cytomatrix protein
DNAH8 dynein axonemal heavy chain 8
KDM6A lysine demethylase 6A
LRP2 LDL receptor-related protein 2
PBRM1 polybromo 1
PCF11 PCF11 cleavage and polyadenylation factor subunit
PKHD1 polycystic kidney and hepatic disease 1 protein
SYNE1 spectrin repeat-containing nuclear envelope protein 1
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