
nutrients

Review

Vitamin D Effects on the Immune System from
Periconception through Pregnancy

Bianca Schröder-Heurich 1, Clara Juliane Pacifica Springer 1

and Frauke von Versen-Höynck 1,2,*
1 Gynaecology Research Unit, Hannover Medical School, Carl-Neuberg-Str.1, D-30625 Hannover, Germany;

Schroeder-Heurich.Bianca@mh-hannover.de (B.S.-H.); Clara.J.P.Springer@stud.mh-hannover.de (C.J.P.S.)
2 Department of Obstetrics and Gynaecology, Hannover Medical School, Carl-Neuberg-Str.1,

D-30625 Hannover, Germany
* Correspondence: vonversen-hoeynck.frauke@mh-hannover.de; Tel.: +49-(0)511-5328703

Received: 30 March 2020; Accepted: 11 May 2020; Published: 15 May 2020
����������
�������

Abstract: Vitamin D is a well-known secosteroid and guardian of bone health and calcium homeostasis.
Studies on its role in immunomodulatory functions have expanded its field in recent years. In addition
to its impact on human physiology, vitamin D influences the differentiation and proliferation of
immune system modulators, interleukin expression and antimicrobial responses. Furthermore,
it has been shown that vitamin D is synthesized in female reproductive tissues and, by modulating
the immune system, affects the periconception period and reproductive outcomes. B cells, T cells,
macrophages and dendritic cells can all synthesize active vitamin D and are involved in processes
which occur from fertilization, implantation and maintenance of pregnancy. Components of vitamin
D synthesis are expressed in the ovary, decidua, endometrium and placenta. An inadequate vitamin
D level has been associated with recurrent implantation failure and pregnancy loss and is associated
with pregnancy-related disorders like preeclampsia. This paper reviews the most important data
on immunomodulatory vitamin D effects in relation to the immune system from periconception to
pregnancy and provides an insight into the possible consequences of vitamin D deficiency before and
during pregnancy.

Keywords: vitamin D; pregnancy; preeclampsia; immune system; assisted reproduction; reproductive
tissue; vitamin D deficiency; recurrent pregnancy loss

1. Introduction

While chemically different types of vitamin D exist, vitamin D3 is the most active and important
form in humans with several important functions including its classical role in calcium homeostasis
and bone health. In the body, the active form of vitamin D3 (1,25-(OH)2D; calcitriol) is synthesized in
several steps. The precursor molecule cholecalciferol (vitamin D3) is formed in the skin by exposure
to UV-B light, although a small amount of vitamin D3 is also obtained from food intake and is the
major form of vitamin D in supplements (Figure 1). Cholecalciferol is further metabolized by several
hydroxylation steps, first into calcidiol (25-(OH)D) which is reflective of body stores of vitamin D
and then into the active form calcitriol (1,25-(OH)2D) [1], [2]. While the measurement of the active
vitamin D3 is not recommended due to the short half-life time in the blood, serum 25-(OH)D is used to
determine whether a patient’s vitamin D3 status is deficient, sufficient or intoxicated [3]. This precursor
form correlates with the active form of vitamin D3 in the body. In most publications included in this
review, a 25-(OH)D content of <20 ng/mL is defined as vitamin D deficient, 21–30 ng/mL as insufficient
and over 30 ng/mL as sufficient. In the studies where the thresholds deviate from this, we have
specified it further in the text. Serum 25-(OH)D concentrations can be given in the units nmol/L or

Nutrients 2020, 12, 1432; doi:10.3390/nu12051432 www.mdpi.com/journal/nutrients

http://www.mdpi.com/journal/nutrients
http://www.mdpi.com
https://orcid.org/0000-0002-1924-5695
http://dx.doi.org/10.3390/nu12051432
http://www.mdpi.com/journal/nutrients
https://www.mdpi.com/2072-6643/12/5/1432?type=check_update&version=2


Nutrients 2020, 12, 1432 2 of 20

ng/mL (to convert nmol/L to ng/mL, divide the value by 2.5). The term vitamin D is generally used
in this review to refer to vitamin D3 as well as its metabolites, unless the vitamin D metabolites or
precursors are distinguished for further clarification.
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Figure 1. Vitamin D effects on immune cells and cells of the reproductive tract. Vitamin D precursors
are ingested through food or supplements and further metabolized in the body to the active hormone,
which exerts different responses of mediators of the immune system. Vitamin D affects maturation,
differentiation, interleukin expression and immunomodulatory functions of immune cells like B
cells, T cells, Th (helper) cells, Treg (regulatory) cells, macrophages (M-phage) and dendritic cells.
The expression of immunoactive cytokines by cells of the reproductive tract like trophoblasts is
modulated by vitamin D. Vitamin D regulates hormone (e.g. progesterone, AMH and androstenedione)
and FSH and AMH receptor expression in theca and granulosa cells [4]. ESC; endometrial stem
cells; uNK uterine natural killer cells; DC dendritic cell, M-Phage macrophage; Th T helper; CAMP
cathelicidin, antimicrobial peptide; WEC whole endometrium cells; AMH anti mullerian hormone;
FSH follicle stimulating hormone.

Vitamin D deficiency is a global problem that affects all ethnic groups, especially older people,
children and pregnant women. During pregnancy an adequate supplementation of vitamin D is of
great relevance, as vitamin D deficiency is associated with adverse pregnancy outcomes, e.g. recurrent
pregnancy loss and a higher risk of preeclampsia [5,6]. In the following, we will review on the immune
modulatory effects of vitamin D in female reproductive tissues and clinically relevant outcomes.

2. Vitamin D metabolism and Synthesis in Reproductive Tissue

Over the past decades, many so far unknown actions of vitamin D have become apparent involving
regulation of genes, endothelial function and integrity [7], and the immune system which includes to
maintain tolerance and to promote protective immunity [6,8]. Vitamin D affects inflammatory responses
by modulation of the expression of genes which generate pro-inflammatory mediators or the activation
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of signaling cascades which regulate inflammatory responses [9]. B-lymphocytes, T-lymphocytes,
dendritic cells (DCs) and macrophages, which are all able to synthesize intracrine vitamin D are
modulated in their proliferation and differentiation by vitamin D (Figure 1) [5]. The influence of
vitamin D on the adaptive immune system involves inhibition of B cell proliferation and differentiation
as well as inhibition of T cell proliferation, resulting in a shift towards T helper (Th) 2 of the Th1/Th2
immune balance [5,10–14]. Furthermore, vitamin D affects the T cell response by stimulating Th2
cytokines and reducing Th17 cytokines [15,16]. An effect on immune tolerance by vitamin D on the
differentiation of regulatory T cells (Tregs) [17,18] and inhibition of maturation of dendritic cells (DC)
has also been reported [19]. Additional effects of vitamin D on the innate immune system through the
induction of antimicrobial peptides in macrophages and through an activation of 1α-hydroxylase, an
enzyme which catalyzes the synthesis of vitamin D, and the associated activation of Toll-like receptors
(TLR) on macrophages have been observed [5]. Further, vitamin D showed an anti-inflammatory effect
by inhibition of NFκB in in vitro studies [20,21].

By binding of 1,25-(OH)2D to its high affinity receptor (vitamin D receptor; VDR) the activation of
numerous target genes occurs through transcription leading either to inhibiting or activating processes
in the cell. VDR and CYP27B1 (1α-hydroxylase) are expressed in various tissues and cells and have
also been found in female reproductive tissues such as ovary (granulosa and theca cells), endometrium,
decidua and placenta [4,22–26] (Figure 2) which extended the immunomodulatory function of vitamin
D to the maternal-fetal interface during pregnancy. An association between maternal vitamin D
status and the prevalence of bacterial vaginosis in early pregnancy was found in a cohort of 469
pregnant women suggesting the immune system response to microbial invasion may be influenced by
vitamin D (18). Decidual vitamin D could have an effect on antimicrobial reactions by modulating
differentiation of macrophages [27]. In addition, the endometrial protein expression of CYP27B1 and
VDR in endometrial stroma cells as well as in decidual cells was detected, whereby the CYP27B1
mRNA levels were induced by the pro-inflammatory cytokine IL1-β in endometrial cells [22]. In a
different study of the endometrial cycle VDR was downregulated in the mid-secretory phase compared
to the early secretory phase [28]. Controversial results were described by Bergada et al. who observed
a decrease in VDR expression in the proliferative endometrium compared to the secretory phase in
a cohort of 60 women [29]. Further, the placenta and decidua are able to produce 1,25-(OH)2D and
24,25-(OH)2D and components of the vitamin D signaling pathway like CYP27B1, CYP24A1 and
VDR [30] (Figure 2). The expression of VDR on maternal decidua and fetal trophoblasts implies that
1,25-(OH)2D produced by the placenta acts in an autocrine or paracrine manner and exerts effects
on both maternal and fetal cells [31]. Liu and colleagues investigated the anti-inflammatory effect
of vitamin D in the placenta using in vitro and ex vivo mouse models. Dysregulation of vitamin
D metabolism by CYP27B1 knockout and function by VDR down regulation lead to an aberrant
inflammatory response in placental fetal cells, suggesting that vitamin D plays a regulatory role in the
immunological response at the fetal-placental interface during pregnancy [31]. In a study of Chary
et al. [32] an impairment of Tregs in pregnant women with vitamin D deficiency has been observed.
153 pregnant women with different 25-(OH)D status were assessed for regulatory T cells and IgE
receptor (CD23 and CD21) expression on B cells showing that the Treg cell population in maternal and
umbilical cord blood in the group of 25-(OH)D deficient pregnant women were lower compared to
25-(OH)D sufficient or insufficient pregnant women. B cells with CD21 and CD23 expression were
higher in maternal blood of 25-(OH)D deficient pregnant women. In addition, TGF-β and IL-10 in
maternal and cord blood were decreased in 25-(OH)D deficient and insufficient subjects. The regulatory
T cell transcription factor (FOXP3) and VDR were downregulated in the placenta in the group of
25-(OH)D deficient women while CD21 and CD23 expression were increased in 25-(OH)D deficient
and insufficient participants [32]. Recently it was shown that the inflammatory response to bacterial
infection of the placenta is closely associated with vitamin D signaling. Neutrophiles and macrophages
treated with a combination of bacterial lipopolysaccharide (LPS) and 1,25-(OH)2D showed phagocytic
capacity [33]. Epidemiological studies on placental inflammation and vitamin D levels, however,
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have been inconclusive. Puthuraya and colleagues [34] analyzed levels of vitamin D on the first day
postpartum in the serum of women who gave birth to very low birth weight infants and the incident
of placental inflammation in the same women. In a logistic regression analysis, they did not find
vitamin D deficiency and placental inflammation to be associated. Zhang and Chen et al. [33,35], on the
other hand, showed that vitamin D levels (deficient (<27.5 nM), insufficient (49.99–27.5 nM), sufficient
(≥ 50 nM)) were significantly lower in women with placental inflammation.

Nutrients 2020, 12, x FOR PEER REVIEW 4 of 20 

 

birth weight  infants and  the  incident of placental  inflammation  in  the  same women.  In a  logistic 

regression  analysis,  they  did  not  find  vitamin  D  deficiency  and  placental  inflammation  to  be 

associated. Zhang and Chen et al. [33,35], on the other hand, showed that vitamin D levels (deficient 

(<27.5 nM), insufficient (49.99–27.5 nM), sufficient (≥ 50 nM)) were significantly lower in women with 

placental inflammation. 

 

Figure  2. Components  of  vitamin D  synthesis  in  female  reproductive  tissues  and  cells  of  the 

immune system. A) Vitamin D exerts immunomodulatory effects with impact on reproductive tissues 

from the periconception period throughout pregnancy. B) Components of the vitamin D metabolic 

system are expressed  in  female  reproductive  tissues,  including ovary, decidua, endometrium and 

placenta and multiple immune cells. Proposed immunomodulatory effects of vitamin D include the 

improvement of immune balance, tolerance and maintenance of pregnancy trough effects on B cells, 

T cells, macrophages and dendritic cells. +; expression known, n.a.; not available. 

Furthermore,  1,25‐(OH)2D  has  been  shown  to  increase  production  of  cathelicidin  in 

keratinocytes, macrophages, neutrophiles [36] and placental decidua cells [37,38]. Cathelicidin is an 

antimicrobial  peptide  capable  of  inducing  bacterial  and  cellular  apoptosis.  In  an  experiment 

conducted by Liu et al. [38] infection rates and cell death were reduced in trophoblasts in vitro, when 

Figure 2. Components of vitamin D synthesis in female reproductive tissues and cells of the
immune system. (A) Vitamin D exerts immunomodulatory effects with impact on reproductive tissues
from the periconception period throughout pregnancy. (B) Components of the vitamin D metabolic
system are expressed in female reproductive tissues, including ovary, decidua, endometrium and
placenta and multiple immune cells. Proposed immunomodulatory effects of vitamin D include the
improvement of immune balance, tolerance and maintenance of pregnancy trough effects on B cells,
T cells, macrophages and dendritic cells. +; expression known, n.a.; not available.
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Furthermore, 1,25-(OH)2D has been shown to increase production of cathelicidin in keratinocytes,
macrophages, neutrophiles [36] and placental decidua cells [37,38]. Cathelicidin is an antimicrobial
peptide capable of inducing bacterial and cellular apoptosis. In an experiment conducted by
Liu et al. [38] infection rates and cell death were reduced in trophoblasts in vitro, when pre-treated
with 25-(OH)D, 1,25-(OH)2D or both. In vivo experiments showed that 62.5% of pregnant mice treated
with LPS experienced early pregnancy loss and elevated levels of TNF-α, INF-γ and macrophage
inflammatory protein 2 (MIP-2). However, a cohort pre-treated with vitamin D3 exhibited only 14.3%
early pregnancy losses and less cytokine elevation [39]. Therefore, Yates et al. [40] suggest, it might be
possible to inhibit placental inflammation by supplementing women with vitamin D in early pregnancy.

Taken together, these data show that vitamin D affects multiple arms of the immunological
response in female reproductive tissues.

3. The Effect of Vitamin D on the Immune System in the Periconception Period and in Pregnancy

By now it is an established fact that the immune system is involved in the implantation process
and pregnancy in general and takes on important roles in fertility, implantation and pregnancy.

Directly post-coitus, the seminal fluid induces a pro-inflammatory immune response, activating
neutrophils and macrophages [41], as well as cytokine and chemokine pathways [42]. This response
contributes to the endometrial remodelling necessary for implantation. It has been suggested, that the
maternal immune system acts as a quality control for semen. Less immunogenic seminal fluid leads to
impaired endometrial receptivity [41]. Induced by the reaction to paternal semen, maternal Tregs are
involved in building immune tolerance towards paternal antigens [43]. Sufficient TGF-β quantity in the
seminal fluid supports the adequate Treg activation [41]. Effective tolerance is critical to the implantation
of the embryo. In the oviduct sperm cells binding to the epithelium, stimulate an anti-inflammatory
response by upregulating TGF-β and IL-10 and thereby supporting spermatocyte passage and oocyte
fertilization [42]. In bovine oviductal fluid and secretions from bovine oviductal epithelial cells, Pillai
et al. identified maternal immune factors [44]. TNF-α is believed to play a role in pre-implantation
embryo transport by inducing local contractions. CSF1 (macrophage colony stimulating factor 1)
in oviductal epithelial cells accelerates embryo development in cattle [45]. LIF (leukemia inhibiting
factor) is known to positively impact oocyte fertilization and early embryo development in sheep and
cattle [46]. LIF and CSF were also induced by seminal fluid in mice [47], while IL-8 promotes mitosis
in endometrial cells [48].

After implantation, tolerance is upheld through repression of cytotoxic T cells, Th1 cells,
macrophages, DCs and NK cells by Tregs. Effector functions of Tregs are promoted by 1,25(OH)2D [49]
which have immuno-suppressant functions and are of critical importance to the establishment of
pregnancy. In endometrial stem cells 1,25(OH)2D reduces most cytokine production, like IL-6,
which blocks Treg development, but up-regulates TGF-β, which is capable of activating Tregs [50,51].
Further, 1,25(OH)2D has been found to promote DCs with tolerogenic properties by inhibiting their
maturation. In tolerogenic DCs 1,25(OH)2D reduces the production of Th1-activating IL-12 and
increases the production of the Th2 cytokine IL-10 [52]. These DCs also play a major role in the
activation of Treg [50,53]. It has been postulated, that the immuno-suppressant effect of Tregs under
the influence of DCs minimizes the obligatory inflammation following implantation in order to prevent
resorption of the early embryo [43]. In mice, the depletion of Tregs using an anti-CD25 antibody lead
to implantation failure and fetus rejection [54].

The adaptive immune system regulates the maternal immune tolerance towards the fetus
during pregnancy. The correct balance of Th1 cytokines like TNF-α, INF-γ and IL-2 and Th2
cytokines such as IL-4, IL-5, IL-6, IL-9, IL-10 and IL-13 [53] is of great importance for a healthy
pregnancy. The predominance of Th2 cells and humoral immunity is generally associated with normal
pregnancy [43]. 1,25-(OH)2D has been shown to selectively inhibit Th1 cells and to enhance Th2
differentiation by a direct influence on CD4+ progenitor cells [55]. By reducing Th1 cytokines and
promoting Th2 cytokines [53,55,56], 1,25-(OH)2D makes the maternal immune system especially
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sensitive to pathogens, while diminishing self-destructive mechanisms of effector T cell subsets [57,58].
Ikemoto et al. [59] recently investigated the effect of vitamin D on the Th1/Th2 balance in infertile women.
They found that more than 80% of the tested infertile women had vitamin D insufficiency or deficiency,
nearly half of which showed increased Th1/Th2 ratios. Interestingly, through supplementation of
vitamin D, the Th1/Th2 ratio was lowered significantly.

Within the innate immune system, uterine NK (uNK) cells have also been shown to respond
to vitamin D regulation. uNK cells are involved in the regulation of spiral arterial remodeling
and trophoblast invasion and are therefore critical to a successful implantation. In general,
1,25(OH)2D induces uNK cell activation [60]. After 1,25-(OH)2D and 25-(OH)D treatment for 28
h, first-trimester uNK cells synthesized less granulocyte-macrophage colony stimulating factor 2,
TNF-α and IL-6 and additionally expressed more TLR4 [37], thereby enhancing pathogen recognition
and reducing inflammation. An overview of in vitro, in vitro, observational and interventional studies
on immunomodulatory effects of vitamin D in reproductive tissues and reproductive outcomes is
given in Table 1.

Table 1. Overview of studies focusing on the immunomodulatory effects of vitamin D in reproductive
tissues and reproductive outcomes.

Reference Main Findings

In vivo studies

[31] Compared to wild-type mouse placentas, placentas of VDR and CYP27B1 knock-out mice show enhanced
proinflammatory cytokine and chemokine expression.

[39] Cholecalciferol supplementation reduces the rate of LPS-induced abortions in mice. Additionally,
cholecalciferol inhibits immunological modulations induced by LPS.

[61] Vitamin D deficient mice challenged with LPS in pregnancy have higher IP-10, MCP-1, SAP, TIMP-1,
VCAM-1, vWF and lower GCP-2 levels than vitamin D sufficient mice.

In vitro studies

[22] IL-1β induces CYP27B1 mRNA expression in human decidua cells.

[37] Decidual NK cells treated with 1,25-(OH)2D or 25(OH)D synthesize less cytokines, but more CAMP.

[38] In human trophoblasts, 1,25-(OH)2D induces CAMP expression. A 3A trophoblast cell line treated with
1,25-(OH)2D shows decreased colony forming units, when infected with E. coli.

[50]
After 1,25-(OH)2D treatment, cytokine expression in WECs from patients with unexplained RPL are

reduced and shifted toward a Th2 phenotype. In ESCs, cytokine production is overall down-reguated, but
TGF-β production is stimulated.

[51]
In WECs from RIF and normal patients, 1,25-(OH)2D reduces most cytokine production, whereas IL-8 is
elevated. In ESCs, similar 1,25-(OH)2D effects are observed, except for an up-regulation of TGF-β in the

RIF group.

[62] In women with RPL, 1,25-(OH)2D has immune regulatory effects on NK cell cytotoxicity, cytokine
secretion, degranulation process and TLR4 expression.

[63] 1,25-(OH)2D reduces IL-10 production in trophoblasts from normal and preeclamptic placentas.

[64] TNF-α-induced immune response and cytokine production in human trophoblasts is inhibited by
11,25-(OH)2D.

[65] TNF-α and IL-6 secretion and mRNA expression in human trophoblasts are reduced by 1,25-(OH)2D.

Observational studies

[32]
Treg cell population is lower in maternal blood and cord blood in 25(OH)D3 deficient pregnant women.

CD23 and CD21 B cell population is higher in maternal blood and cord blood in 25(OH)D deficient
pregnant women. TGF-β and IL-10 levels are lower.

[35] Maternal serum 25(OH)D deficiency is associated with placental inflammation.

[66]
Women with RPL have a lower level of CYP27B1 expression in chorionic villi and decidua compared with
normal pregnant women. CYP27B1 and cytokine expression (IL-10, IFN-γ, TNF-α and IL-2) co-localize in

chorionic villi and decidua cells.

[67] In women with RPL, low 25(OH)D3 levels are associated with abnormalities in cellular immunity and
cytokine production.
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Table 1. Cont.

Reference Main Findings

[68] Decidual tissues of patients with RPL show less 25(OH)D, TGF-β and VDR expression and significant
increase in IL-23 and IL-17.

[69] Natural killer-1 shift in peripheral blood NK cells was identified in nonpregnant women with RPL and
implantation failures.

[70] In women with POR and low serum 25(OH)D, NK cell levels and cytotoxicity are higher. CD19+ B cell
levels are higher, as well as the Th1/Th2 cell ratio.

Interventional studies

[59] Vitamin D supplementation in infertile women with insufficient 25(OH)D decreases Th1/Th2 ratio. In
endometrial biopsies, 1,25(OH)2D3treatment reduces IFN-γ.

[71]
Higher percentages of CD19+ B cells and NK cytotoxicity, as well as a higher percentage of

TNF-α-expressing Th cells are observed in RPL patients with low serum 25(OH)D levels and can be
regulated to some extent with 1,25(OH)2D supplementation.

[72] 25(OH)D levels and Treg/Th17 ratios are decreased in women with RPL. Vitamin D supplementation
increases Treg/Th17 ratio, VDR and CYP24A1 expression.

RCTs

[73] Vitamin D supplementation reduces Th17 cell population in peripheral blood from women with RM and
reduces Th17/Treg ratio.

[74] Patients with a history of RPL who recieved vitamin D reveal lower serum IFN-γ levels. The risk of
miscarriage is reduced by 15% compared to untreated patients.

[75] Vitamin D supplementation in women with unexplained RPL decreases serum IL-23 levels and reduces
the frequency of miscarriages.

1,25-(OH)2D, 1,25-dihydroxyvitamin D3; 25(OH)D, 25-hydroxyvitamin D3; CAMP, cathelicidin antimicrobial peptide;
CD, cluster of differentiation; CYP, cytochrome P450; E. coli, Eschericha coli; ESC, endometrial stromal cell; GCP,
granulocyte chemotactic protein; IL, interleukin; IP, interferon-gamma induced protein; LPS, lipopolysaccharide;
MCP, monocyte chemoattractant protein; NK cell, natural killer cell; mRNA, messenger ribonucleic acid; RIF,
repeated implantation failure; RPL, recurrent pregnancy loss; SAP, SLAM-associated protein; TGF, transforming
growth factor; TIMP, tissue inhibitor of metalloproteinases; TNF, tumor necrosis factor; IFN, interferon; POR, poor
ovarian response; Th, T helper cell; TLR, Toll-like receptor; Treg, regulatory T cells; VDR, vitamin D receptor; VCAM,
vascular cell adhesion protein; vWF, von-Willebrand-factor; WEC, whole endometrial cell.

4. Vitamin D, the Immune System and Adverse Reproductive Outcomes

4.1. Recurrent Pregnancy Loss

Recurrent pregnancy loss (RPL) affects 1–2% of reproductive women. The exact prevalence is
hard to estimate as it depends on the definition used [76]. According to the most recent guidelines
of the European Society of Human Reproduction and Embryology (ESHRE) [76] and the American
Society of Reproductive Medicine (ASRM) [77] RPL is defined as the loss of 2 or more pregnancies.
However, the World Health Organization (WHO) and professional associations of several countries
follow a definition of 3 or more consecutive losses before 20 weeks gestation in their guidelines [78,79].

While in 50% of women affected by RPL the underlying cause cannot be determined more frequent
pathogenic mechanisms include uterine anomalies, genetic anomalies, metabolic and endocrine
disruptions and immunologic factors.

Activation of the immune system leads to an unfavorable situation for implantation and increased
probability of RPL [80–84]. In 20% of affected women abnormalities of the cellular immune system
and autoimmune conditions, e.g. antiphospholipid antibodies (aPL) can be detected. Abnormalities
include increased peripheral and uNK cell levels, NK cell cytotoxicity, Th 1/Th2 ratios, Treg/Th17 ratios
and higher secretion of cytokines, e.g. TNF-α [69,72,85–88].

Recent studies suggest an association between vitamin D deficiency and auto- or allo-immunologic
disruption in RPL. However, most studies are observational and of the available clinical studies the
minorities are randomized controlled trials (RCT) as presented in a comprehensive review by Goncalves
et al. [89].



Nutrients 2020, 12, 1432 8 of 20

In a study by Ota et al. 47% of patients with RPL were vitamin D deficient (<30 ng/mL, n = 63) [67].
In those women a higher rate of APL-, ANA-, and thyroid peroxidase (TPO)-antibodies and higher
numbers of CD19+B- lymphocytes and NK cells were found compared to women with normal vitamin
D status (≥ 30 ng/mL, n = 70). Cytotoxicity of these cells was reduced by 1,25-(OH)2D in vitro [62,67].
Similar results were reported by Chen et al. who determined the effect of 1,25-(OH)2D on the
number of peripheral blood cells, Th1 cytokines, and NK cytotoxicity in 99 women with RPL [71].
The percentage of CD19+ B-cells and NK cytotoxicity and the proportion of TNF-α-expressing Th cells
were significantly higher in the vitamin D insufficient group than in the group with normal vitamin D
levels. After supplementation of 0.5 µg/day of vitamin D for 2 months the percentage of CD19+ B-cells
and of TNF-α-producing Th cells as well as NK cytotoxicity was significantly lower after treatment
when compared with before treatment. In an observational study by Rafiee et al. a decline in the Th17
frequency and Treg cells and in the ratio of Th17/Treg in women who were treated with lymphocyte
immune therapy was observed [73]. The decrease was significantly more in the study arm which
additionally received vitamin D. In one RCT vitamin D supplementation of 0.25 µg daily starting ≤ 6
weeks gestation was associated with a significant reduction of IFN-γ levels and an increase of successful
pregnancies. However, the results were not statistically significant most probably due to small sample
size [74]. In the second RCT 77 pregnant women with a history of RPL and similar vitamin D and IL-23
levels at study start were assigned to 2 groups [75]. While the study group received oral vitamin D
(400 IU/d daily) and vaginal progesterone (400 mg daily), the control arm received placebo tablets and
vaginal progesterone (400 mg daily). IL-23 levels decreased in the study group and increased in the
control group and IL-23 and vitamin D showed an inverse relationship. However, while the incidence
of RPL was less in the study arm the results were not significantly different from the control arm when
confounding factors were additionally considered.

Some studies investigated whether vitamin D status and exposure impacts immunologic aspects
of the endometrium and the maternal-fetal interface. Whole endometrial cells from women with a
history of RPL (n = 8) secreted significant higher amounts of IFN-γ compared to women with at least 1
healthy life birth without spontaneous abortions or infertility (n = 8) [50]. After 1,25(OH)2D3 exposure
from women with RPL produced significantly less IFN-γ. Both groups converted 25-(OH)D to active
vitamin D suggesting a comparable capacity of the endometrium to produce or respond to vitamin D
in RPL. Also, expression of VDR, CYP27B1 and CYP24A1 was similar between women with RPL and
the control group [90].

In contrast VDR and CYP27B1 expression levels were reduced in chorionic villi and decidua
in RPL compared to gestational age matched women with voluntary pregnancy termination [66,91].
While in the RPL group serum 25-(OH)D concentrations were also reduced they might correlate with
VDR expression levels at the maternal-fetal interface and contribute to poorer outcomes. In RPL levels
of the anti-inflammatory cytokine IL-10 were significantly reduced in chorionic villi and decidua while
inflammatory cytokine levels (TNF-α, IL-2, IFN-γ) were markedly increased compared to the control
group [66]. Similar results were obtained by Li et al. in decidual tissue who reported lower 25-(OH)D
and TGF-β concentrations, lower VDR expression and higher concentrations of IL-17 and IL-23 in RPL
cases [68].

The available data suggest that low vitamin D concentrations could be a contributor to immunologic
alterations in RPL and one may speculate that vitamin D3 might be a therapeutic option in this specific
group of women. Although immunologic benefits of vitamin D were reported in several observational
studies the 2 small randomized controlled trials failed to show a significant correlation between
vitamin D supplementation and the incidence of RPL. Therefore, further randomized clinical studies
with sufficient numbers of participants at best starting preconception are required to investigate the
association between vitamin D deficiency, supplementation and RPL.
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4.2. Recurrent Implantation Failure

Recurrent implantation failure (RIF) is diagnosed when good-quality embryos repeatedly fail
to implant after transfer in several IVF treatment cycles. The main pathological factors of recurrent
implantation failure involve a) the blastocyst, b) the endometrium and c) a combination of a) and b).
Investigations of endometrial biopsies in RIF patients revealed maturation defects of the endometrium,
a disbalance of immune cells and a specific transcriptomic signature [92]. Rajaei et al. compared the
cytokine production after 1,25-(OH)2D treatment of whole endometrial cells and endometrial stromal
cells from women with RIF and healthy fertile controls [51]. 1,25-(OH)2D reduced production of IL-10,
TGF-β, IFN-γ, IL-6 and IL-17 and increased IL-8 levels in whole endometrial cells. In endometrial
stromal cells a similar trend was observed except for an up-regulation of TGF-β in RIF patients.
Endometrial cells from healthy and RIF patients produced comparable levels of vitamin D which
underlines the importance of adequate circulating concentrations.

4.3. ART Outcomes

Assisted reproductive technology (ART) is a term used to describe the various procedures that
use the manipulation of oocytes and sperm to achieve a pregnancy. Procedures of ART include
intrauterine insemination, in vitro fertilization - IVF, intracytoplasmic sperm injection (ICSI) and
freezing of embryos. Since the end of the 1970s, ART has been increasingly used by many couples with
an unfulfilled wish to have children to initiate a successful pregnancy. With infertility affecting over
80 million people worldwide [93] a total of around 8 million children were born worldwide following
ART until 2019 [94]. Studies from the ART field suggest an impact of vitamin D status on fertility and
ART outcomes.

Vitamin D deficiency is prevalent among infertile women [95] and assumed to contribute to
impaired fertility [96,97] although studies that link ART outcome to vitamin D levels have revealed
inconsistent results. Various studies have shown that vitamin D sufficiency is associated with an
increase in pregnancy rates and live births [27,96,98–100]. In a retrospective cohort study of 188 infertile
women undergoing IVF vitamin D deficiency was related to lower pregnancy rates in non-Hispanic
white patients, but this effect was not observed in vitamin D sufficient Asian women [98]. However,
controversial studies of Aleyasin et al. [2] and Firouzabadi et al. [97] propose that vitamin D status
(Firouzabadi et al.: deficient (<10 ng/mL), insufficient (10–29 ng/mL), sufficient (30–100 ng/mL)) had
no effect on ART outcome. Aleyasin and co-workers showed that in a study population of 101 women
who have undergone ICSI those participants with sufficient follicular fluid 25-(OH)D levels had a lower
embryo quality compared to women with insufficient or deficient follicular fluid 25(OH)D levels [2].
A positive correlation was found between serum and follicular 25-(OH)D levels, which indicates that
follicular vitamin D level is reflective of body stores of vitamin D.

In a systematic review and meta-analysis of 11 cohort studies including 2,700 women the
associations between vitamin D levels and ART outcomes has been analyzed by Chu et al. [27]. In all 11
included studies the clinical pregnancy rate was reported as a main outcome, whereas in seven studies
with 2,026 patients the live birth rate was additionally reported. A clinical pregnancy (OR 1.46, 95% CI
1.05–2.02) and live birth (OR 1.33, 95% CI 1.08–1.65) was more likely in women with sufficient vitamin D
status than in deficient or insufficient women. On the other hand in six studies involving a total of 1,635
patients, no difference in miscarriage rate in women with sufficient, deficient or insufficient vitamin D
concentrations following ART was found (OR 1.12, 95% CI 0.81–1.54). In a retrospective cross-sectional
study of 157 women it was investigated whether poor ovarian response (POR) is associated with serum
levels of vitamin D and pro-inflammatory immune reactions in infertile women with previous IVF and
embryo transfer failures [2]. Women with POR and low vitamin D concentrations (<30 ng/mL) showed
increased levels of CD19+B and CD19+CD5+ B-1 cells and increased TNF-α/IL-10 and IFN-γ/IL-10
producing Th cell ratios compared to women with normal ovarian response and/or normal vitamin D
status. Furthermore, CD56+ NK cell concentrations (%) and NK cytotoxicity in peripheral blood were
higher in women with POR and low vitamin D status compared to the other groups [70]. Given the
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overall positive effect of vitamin D on ART outcomes, the treatment of vitamin D deficiency could
provide an important additional treatment option for many infertile women. However, there is a
great lack of further large cohort and randomized studies along all ethnic groups that investigate the
association of ART outcomes, the immune system and vitamin D levels.

5. Pregnancy Complications

5.1. Preeclampsia

Preeclampsia is a hypertensive disorder of pregnancy that presents in the second half of gestation
with the clinical picture of new onset hypertension accompanied by proteinuria or the onset of
other evidence of end organ damage [101]. In many women which ultimately develop preeclampsia
invasion of cytotrophoblast and extravillous trophoblast of the maternal decidua in the first trimester
of pregnancy is disturbed contributing to abnormal placentation. Several lines of evidence suggest
a contribution of a dysregulated immune system in the impaired interaction between trophoblasts
and decidual stroma. Components of the innate and adaptive immune system may participate in the
disease development with some of them being regulated by vitamin D.

While a Th2 dominance is a feature of healthy pregnancies [102], in preeclampsia Th1 cells
dominate and the ratio of Th1/Th2 cells is increased [102,103]. A disbalance of Th1 and Th2 cells
contributes to the increased release of Th1 cytokines, e.g. TNF-α and IL-6 [103–108] so that the robust
inflammatory and physiologic response of pregnancies is further enhanced in preeclampsia [109,110].
High local concentrations of cytokines are involved in deficient placentation, leading to restricted
proliferation, migration and invasion of trophoblasts [111,112]. Inflammatory cytokines are also capable
of eliciting endothelial cell dysfunction [113] and may contribute to the elicitation of the detrimental
effects on the maternal systemic endothelium that most likely mediate the disease manifestations
of preeclampsia.

Seasonal patterns in preeclampsia suggest a role for vitamin D and sunlight, because of a higher
incidence of the disease in winter and a lower incidence in summer [114,115]. Compared with
normal pregnancies, preeclampsia is characterized by marked changes in vitamin D and calcium
metabolism [116]. Systematic reviews and meta-analyses and several observational studies suggest that
low maternal serum 25-(OH)D concentrations are associated with a higher preeclampsia risk [117–121].
Vitamin D deficiency in pregnancy <50 nmol/L was associated with an almost 4-fold odds of severe
preeclampsia [122] and vitamin D deficiency <37.5 nmol/L was even associated with a 5-fold risk of
developing the disease [117]. 25-(OH)D levels have been shown to be even lower among early onset
preeclamptic patients with small-for-gestational age infants compared to those preeclamptic women
with adequate fetal growth, suggesting that vitamin D may impact fetal growth through placental
mechanisms [123,124].

However, not all of the data regarding vitamin D status and preeclampsia prevalence are
consistent [125–127]. A nested-case control study conducted in first trimester found that total and
free 25-(OH)D levels were not independently associated with subsequent preeclampsia [126]. In a
prospective cohort of 221 Canadian high-risk women no difference in preeclampsia prevalence was
observed related to 25-(OH)D concentration [127]. Of note, the available studies are conducted
in different populations and differ in their experimental set-up, definition of vitamin D deficiency,
inclusion criteria and possible confounders.

While numerous clinical and experimental studies indicate a benefit of vitamin D supplementation
for preeclampsia prevention there are only few well-designed clinical trials which suggest a reduction
of preeclampsia risk with vitamin D supplementation. In a controlled trial in London in the 1940’s
–1950’s including 5,644 women a reduction of 31.5% in preeclampsia incidence was seen in women
who received a dietary supplement containing vitamins (2,500 IU vitamin D), minerals and fish oil in
comparison to the control group who did not receive any supplement [128]. Haugen et al. reported a
27% reduction in the risk of preeclampsia in a cohort of 23,423 nulliparous women in Norway who
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took 400–600 IU vitamin D supplements per day compared to women without supplementation [129].
However, the authors indicate that the n-3 fatty acid intake levels could have contributed to the
potential benefit [129]. In a small RCT performed in Iran women at high-risk due to a history of
preeclampsia were randomized to either placebo (N = 72) or 50,000 IU of vitamin D (N = 72) every two
weeks until 36 weeks gestation [130]. The probability to develop preeclampsia was 1.94 times higher
in the control compared to the vitamin D intervention group (95% CI 1.02–3.71). In contrast, a small
RCT conducted in India with 400 participants, found no association of vitamin D supplementation
(1,200 IU vitamin D/d and 375 mg calcium/d) and a reduced risk for preeclampsia but a reduction in
diastolic blood pressure of 8 mmHg [131]. While vitamin D supplementation of 4,000 IU/d starting
at 12 to 16 weeks’ gestation has been determined in an RCT as safe and most effective in achieving
sufficient circulating 25-(OH)D concentrations [132], more well-designed randomized trials are needed
to confirm a benefit of supplementation for preeclampsia risk reduction.

There are several possible mechanisms how vitamin D deficiency could be involved in
pathophysiologic processes that cause preeclampsia, including the regulation of maternal and
placental immunological and inflammatory responses, as it has been demonstrated in experimental
models [31,133]. The placenta itself expresses the VDR and 1α-hydroxylase and thus produces the
active metabolite of vitamin D [134], suggesting autocrine and paracrine functions of vitamin D in the
placenta. There is evidence that vitamin D regulates key target genes associated with implantation,
trophoblast invasion and implantation tolerance [134]. Maternal vitamin D deficiency may alter
the balance of Th1 to Th2 cells in favor of Th1 cells at the implantation site and maternal-fetal
interface [135]. In this line, higher expressions of Th1 cytokines have been described in placentas
of preeclamptic pregnancies [136]. In addition, placental production of vitamin D is decreased in
preeclampsia compared to placentas from healthy pregnancies [137,138]. The lack of local vitamin D
which modulates immune function, e.g. Th1 and Th2 cells and downregulates TNF-α, IL-6 and IFN-γ
expression in the placenta might contribute to the increase of those inflammatory cytokines [63–65].
The maternal response to impaired placentation and reduced placental perfusion in preeclampsia may
equally be affected by vitamin D status. Maternal vitamin D deficiency may contribute to the increased
systemic inflammatory response that characterizes preeclampsia as well as to endothelial dysfunction
through direct effects on angiogenesis gene transcription [64,139–142].

5.2. Preterm Birth

Preterm birth occurs before 37 weeks gestation and is a major contributor to neonatal morbidity
and mortality with an estimated global prevalence of 10.6% [143]. There are several reasons for preterm
birth, including intrauterine infection and inflammation. Labor is a well-coordinated process and itself
involves the activation of inflammatory cascades, recruitment of immune cells into the reproductive
tissues and the release of inflammatory cytokines [144]. Premature activation of these mechanisms
leads to preterm labor and can result in preterm birth.

In a systematic review and meta-analysis of 6 RCTs and 18 observational studies maternal vitamin
D deficiency was associated with an increased risk of preterm birth while vitamin D supplementation
reduced the risk by 43% (pooled RR 0.57; 95% CI 0.36–0.91) [145]. Two vitamin D supplementation
studies performed in South Carolina and a post-hoc analysis suggest that improved vitamin D status
(deficient (≤20 ng/mL), insufficient (>20 – <40 ng/mL), sufficient (≥ 40 ng/mL)) in pregnancy goes along
with improved health outcomes and reduced preterm birth risk [146,147]. Achieving a 25-(OH)D serum
concentration ≥40 ng/ml significantly decreased the risk of preterm birth compared to ≤20 ng/mL.
In contrast to these data, in a Cochrane meta-analysis of 7 trials involving 1640 pregnant women a
beneficial role of vitamin D supplementation on preterm birth risk compared to no intervention or
placebo wasn’t demonstrated (RR 0.66, 95% CI 0.34–1.30) [148].

Nevertheless, it seems biological plausible that a sufficient vitamin D status might help prevent
preterm birth. Activation of T cells at the maternal-fetal interface and the cervix contributes to the
proinflammatory response during preterm labor. Vitamin D may be important in suppressing the
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maternal immune response specifically Th1 cell mediated inflammatory reactions. A sufficient vitamin
D status might also reduce the risk of preterm birth by maintaining myometrial quiescence. Myometrial
contractility is dependent on calcium release within the muscle cell and this process is regulated
by vitamin D [149,150]. Bacterial infection is one trigger of preterm birth. Laboratory studies have
demonstrated links between maternal vitamin D status and placental antibacterial responses [31,37,38].
As mentioned above vitamin D is a potent inducer of the antimicrobial protein cathelicidin in the
placenta and may act to potentiate placental innate immune responses [151,152].

There is biological plausibility for a protective effect of sufficient maternal vitamin D levels
in pregnancy on preterm birth risk supported by results of observational and randomized studies.
However, there is still a need for future research to focus on well-designed larger randomized trials
and exploration of mechanisms of how vitamin D impacts physiologic processes.

6. Conclusions

In recent years, the role of vitamin D in human physiology has been redefined. The effects of
vitamin D are no longer based solely on calcium homeostasis and bone health, but have been extended
to include its role as an immunomodulator and in the female reproductive system.

It is known that cells of the immune system are controlled by vitamin D and that vitamin
D synthesis takes place in reproductive tissues. Additionally, vitamin D plays an important role
in fertility, embryo implantation and maintenance of pregnancy. Studies have demonstrated that
vitamin D status affects the probability for RPL and RIF, but there is a lack of randomized clinical
trials that extend the triage of vitamin efficiency, its supplementation and RPL or RIF. There are
also controversial data on the effects of vitamin D deficiency on ART outcomes with some of these
studies demonstrating an association of vitamin D deficiency with poorer treatment success, but this
is in contrast to other studies that show that vitamin D deficiency has no impact on ART outcome.
Furthermore, an association between vitamin D and pregnancy complications, e.g. preeclampsia
prevalence, has also been demonstrated, but here also the data are not consistent, probably due to the
different study populations and designs.

In the present review we aimed to summarize current knowledge on the role of vitamin D in
regulating immune function in reproductive tissues and outcomes. Data from the experimental and
observational studies support a link between vitamin D and regulation of the innate and adaptive
immune system. The few available in vitro and in vitro studies suggest in particular a modulation
of the Th cell system by vitamin D status and associations to reproductive outcomes. However,
the available evidence is insufficient to draw any conclusion on which vitamin D level should be aimed
for to benefit from immune system modulation and achieve favorable reproductive outcomes with
regards to fertility, implantation and pregnancy. Therefore, future well-designed clinical studies are
needed to confirm a causal relationship of vitamin D deficiency and adverse modulation of the immune
system, the effect of vitamin D supplementation and an improvement of reproductive outcomes
in humans.
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