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ARTICLE INFO ABSTRACT

In pre-post studies when all outcomes are completely observed, previous studies have shown that analysis of
covariance (ANCOVA) is more powerful than a change-score analysis in testing the treatment effect. However,
there have been few studies comparing power under missing post-test values. This paper was motivated by the
Behavior and Exercise for Physical Health Intervention (BePHIT) Study, a pre-post study designed to compare
two interventions on postmenopausal women's walk time. The goal of this study was to compare the power of
two methods which adhere to the intent-to-treat (ITT) principle when post-test data are missing: ANCOVA after
multiple imputation (MI) and the mixed model applied to all-available data (AA). We also compared the two ITT
analysis strategies to two methods which do not adhere to ITT principles: complete-case (CC) ANCOVA and the
CC mixed model. Comparisons were made through analyses of the BePHIT data and simulation studies con-
ducted under various sample sizes, missingness rates, and missingness scenarios. In the analysis of the BePHIT
data, ANCOVA after MI had the smallest p-value for the test of the treatment effect of the four methods.
Simulation results demonstrated that the AA mixed model was usually more powerful than ANCOVA after MI.
The power of ANCOVA after MI dropped the fastest as the missingness rate increased; in most simulated sce-
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narios, ANCOVA after MI had the smallest power when 50% of the post-test outcomes were missing.

1. Introduction

In a pre-post study a treatment is evaluated by measuring responses
both before and after the study for each participant in a treatment
group and a control group. Pre-post study designs have been widely
used in clinical trials, psychology, education, and sociology. For ex-
ample, our research was motivated by the Behavior and Exercise for
Physical Health Intervention (BePHIT) Study, a pre-post study designed
to compare two interventions intended to promote walking in post-
menopausal women [1].

When there is complete follow-up, previous studies have shown
that, in terms of testing the treatment effect, analysis of covariance
(ANCOVA) is more powerful than a comparison of change scores [2-5].
However, in reality, missing data, in particular loss to follow-up, is very
common in pre-post studies. For instance, in the BePHIT study, 17% of
the participants did not finish the study. With unbalanced sample sizes
for pre- and post-test levels in each treatment group, a regular ANCOVA
or change score analysis cannot be conducted without dropping any
subjects. Therefore the most straightforward method for handling
missing values is to exclude all the subjects with missing data. This type
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of analysis is called the complete-case (CC) analysis. The CC analysis is
usually not recommended, since it throws away information collected
in the study and does not follow the intent-to-treat (ITT) principle for
clinical trials [6,7]. Nowadays, one popular way to handle missing data
is multiple imputation (MI) [6]. For instance, in pre-post studies,
missing follow-ups can be simulated multiple times using the baseline
outcome value and measured covariates and the results of the analysis
of each complete data set are combined to account for the uncertainty
introduced by the imputations [8]. Another approach often used for
data with repeated measures is the mixed model, where all available
pre- and post-test values are regressed over treatment and timepoint
indicators, assuming some variance-covariance structure for the re-
peated measures.

The main goal of this study was to compare the power of two
analysis methods which adhere to ITT principles: the mixed model and
ANCOVA after MI for pre-post studies when missing post-test is present.
We also wanted to compare these methods to two methods that do not
adhere to an ITT principle: ANCOVA and the mixed model using only
completely observed cases. These methods were first compared in the
context of our motivating example (BePHIT) and then in simulation
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studies based on the BePHIT data. A parallel set of simulations com-
paring the type I error rate of the four methods were conducted as well.

2. Motivating example

The Behavior and Exercise for Physical Health Intervention
(BePHIT) Study was a randomized controlled study of a 12-week
walking intervention conducted on postmenopausal women between
January 2008 and March 2009 [1]. The primary outcome was the
change in time for women to finish a one-mile walk. In addition to one-
mile walk time, anthropometric and psychometric measures were ob-
tained at pre- and post-test.

After passing the selection criteria, 71 participants were stratified by
BMI and randomized into either a coach group or a no-coach group. For
women in the coach group, a trained coach was assigned. The role of
the coach was to explain the intervention, provide the first week's steps
goal, train subjects to use a pedometer and the Interactive Voice
Response (IVR) system to collect data, and offer help during the in-
tervention. Women in the no-coach group received similar instructions,
training, and help, except that they were not informed that they had
access to a coach. Although both groups received a treatment, to be
consistent with the terminology in this paper, we will refer to the coach
condition as the treatment and the no coach condition as the control.

Among the 71 randomized participants, 35 were assigned to the
treatment group and 36 to the control group. For the control group,
baseline walking time was only available for 35 patients. In total, 12
(17%) patients dropped out before the post walking test, 4 of whom
were in the treatment group and 8 in the control group. The drop out
rate did not differ significantly across the two groups (p = 0.20). The
original study reported 2 withdrew and 12 did not complete in the
treatment group, and 7 withdrew and 11 did not complete in the con-
trol group [1]. In that study, “completed” was defined as completing all
post-test assessments within 30 days after the end of the walking in-
tervention. These post-test assessments included the walk test and an-
thropometric and psychometric measures not considered in this paper.
Those who had their post-test score recorded but did not finish all their
anthropometric and psychometric measures were also included in this
analysis, which led to fewer dropping out here.

3. Analysis methods for pre-post studies with complete data and
missing data

3.1. Pre-post studies

A pre-post study is a randomized controlled study where outcome
values are measured both before and after the study. As opposed to
treatment-control studies where the outcome variable is only measured
once, pre-post studies allow investigators to account for the level of the
outcome variable before the treatment is applied. Different from a one-
group pre-post design, a treatment-control pre-post study controls for
secular trends [9,10]. In the BePHIT study, for instance, besides the
intervention, the improvement of women's one-mile walk time may
have been caused by some other factors, such as a national walking
campaign, affecting the women during the same time period. A one-
group pre-post study fails to consider these factors; however a treat-
ment-control pre-post study accounts for secular trends by comparing
the results from the treatment group to a control group observed over
the same period of time.

If we let /& be the randomization process, T be the treatment pro-
cess, and (Ypre;r, Ypost,t) and (Ypree, Ypostc) be the pre- and post-test mea-
sure of a treated and control participant, respectively, then a pre-post
study design can be illustrated by the following:

T
R - Yi)re,t - Yioost,t
fR i Ypre,c - Ypost,c
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3.2. Analysis of pre-post studies with complete data

Many analysis approaches for pre-post studies have been discussed
[2,3,5,9,11,12]. Arguably the two most common analysis methods are
the change score analysis and Analysis of Covariance (ANCOVA) [2].
We discuss these two methods and their statistical power in the fol-
lowing.

3.2.1. Change score analysis

A change score analysis first obtains the difference in outcome va-
lues before and after the experiment, and then regresses the difference
on the treatment assignment using the following model:

Y —-Xi=oac +aaili + ¢ (@)

where Y; is the post-test outcome level for subject i, X; is the pre-test
outcome level for subject i, T; is the indicator variable for treatment
assignment, and ¢; is the error term for subject i (g; iid N (0, 62)). Note
that ¥; — X; is the change score for subject i during the experiment. In
the model above, ac; quantifies the effect of treatment assignment on
change in outcome level from pre to post. Since T; is a binary variable,
the change score test is equivalent to a two-sample t-test comparing the
mean of Y; — X; between treatment and control groups.

3.2.2. ANCOVA

Unlike the change score method, in ANCOVA, post-test value (Y;) is
treated as the outcome variable and pre-test value (X;) is treated as a
predictor. The ANCOVA model can be expressed as:

(2)

Yi=ano + an i + anXi + &,

where T; and ¢; are as defined in the change-score model. ANCOVA
assumes that pre-test values are measured without error [5]. This as-
sumption holds for variables, such as weight and height, that can be
measured precisely. However, it is often violated for self-reported
measurements and educational or psychological tests. In the model
above, ayu; is the effect of treatment assignment on the post-test scores
adjusting for the pre-test scores.
The ANCOVA model (2) can also be written as

Y - X = opo + am T + apXi + &, 3)

where oy, = ax, — 1 from (2) [2,5]. Thus, ANCOVA can be viewed as an
extension of the change score model (1) to include pre-test level X; as a
predictor.

3.2.3. Power comparison: change score analysis vs. ANCOVA
Oakes and Feldman compared the detectable treatment effects of
the change score and ANCOVA models [5]. Assume

1. Var(X;) = Var(Y;) = o2 regardless of the experimental group,
2. Number of subjects in each group is the same, and
3. Pre-test is measured without error.

Under the assumption of normally distributed errors, the detectable
treatment effect for the change score analysis at type-I and type-II error
rates of a and f§ is

3

\/402(1 — ) (Zi—asa + Z1_p)?
AC =
m

and the detectable treatment effect for ANCOVA is

[262(1 — p*)(Zi a2 + Zy_p)*
Ap = V " s

where p = Corr(X;, Y;), Z, is the xth quantile of the standard normal
distribution, and m is the number of subjects in each experimental
group. Therefore we have



W. Xi et al.

Ac _ [ 2
Aa \/1+p'

Assuming 0 < p <1,

(€]

1< 8 <3
Ap

Thus, with complete data, the detectable treatment effect for
ANCOVA is always less than or equal to the detectable treatment effect
for the change score analysis. Also, from (4) we can see that the dis-
crepancy in power increases as the correlation between pre- and post-
test decreases.

3.3. Missing data

Both the change score analysis and ANCOVA require complete
follow-up of subjects. Unfortunately, missing post-test data are very
common in pre-post studies since participants may drop out because
they moved, are unsatisfied with their performance in the study, etc.
For instance, in the BePHIT study, 17% of the patients dropped out
prior to study completion.

Post-test data could be missing completely at random, at random, or
not at random [6]. Missing completely at random (MCAR) means the
missing data does not depend on anything in the data collecting process
(e.g., data missing due to a data entry error). We say a study has data
missing at random (MAR) when the missingness only depends on ob-
served data, but not those data that are missing (or would have been
observed). A subject being removed from a study due to an unhealthy
pre-test is an example of MAR. When MAR does not hold, we say that
data are not missing at random (NMAR). For example, data would be
NMAR if subjects drop out because they know their post-test outcome
will be poor.

3.3.1. Statistical methods for missing data

Commonly used methods for handling missing data include: com-
plete-case (CC) analysis, weighting adjustments, imputation, and
model-based methods [6,13,14]. We focus in this paper on three natural
approaches to handling loss to follow-up in a pre-post study. First, one
can remove the data for subjects with post-test missing and carry out a
complete-case (CC) analysis. Second, the change score model can be
generalized to a mixed model, in which unequal sample sizes for pre-
and post-test levels is allowed. Finally, ANCOVA could be applied fol-
lowing imputation of the missing data. These three approaches are
summarized below.

3.3.2. Complete-case (CC) analysis

The most straightforward way to deal with missing data is to delete
all subjects with any missing observations, no matter if data were
partially collected or not. The dataset obtained after deleting all sub-
jects with missing values is called a complete-case dataset and the
analysis of these data is called a complete-case (CC) analysis. The CC
analysis is simple to conduct and unbiased under MCAR. In certain si-
tuations, it is also unbiased under MAR. For instance, when estimating
the regression model of Y on X;, X, ...,X, where Y is incompletely ob-
served, the estimation conditions on the values of the X's. Thus, the CC
analysis is unbiased if the missingness only depends on the X's but not
the Y [6,14]. As a result, the CC ANCOVA model is unbiased if the
missingness of post-test values only depends on the pre-test values.

In addition to the possibility of bias, another disadvantage of the CC
analysis is that information is thrown away by deleting subjects.
Estimation based on a CC analysis may result in larger variances than
methods for incomplete data. Also, since CC analysis does not include
all subjects randomized in the final analyses, it does not adhere to the
intent-to-treat (ITT) principle of clinical trials [7]. It is for these reasons
that CC analyses are usually not employed in intervention studies.
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3.3.3. Mixed models

The mixed model is a regression model that includes both popula-
tion-level and subject-level effects. It assumes responses are MAR. For a
pre-post study with one treatment group and one control group, a
mixed model can be written as:

YU=OCM0+CZM1E+C(M2PJ'+CZM3T£><P]'+bi+€ij. (5)

Here, Yj is the response of subject i at time point j (j = 1,2), T; and P,
are indicators of treatment group and post-test, respectively, and b; is a

random subject effect (b; iid N (0, 0)), which is independent of the

inde
random error g (g~ PN 0, 05 ).
Note that if we subtract the pre- and post-test outcomes we get

Yo—Ya =0+ awsTi + &,

where § = ¢, — ¢,. Thus, when there is no missing data, the maximum
likelihood estimate of ay; is equivalent to the treatment effect (ac;) in
the change score model (1). However, unlike the change score model,
the mixed model can include data on subjects with just one of the two
outcome values.

An alternative formulation of the mixed model may also be used to
analyze pre-post data:

Yj=oamo+ o Ti + ove P + a3 Tt X P + ¢y, (6)
where ¢ iid N©,d2), e iid N(©,02), Cov(ey, ep) =1, and

Cov(e;;, e;2) = 0 for i # i’. The major practical difference between (5)
and (6) is that (5) assumes a positive correlation between pre- and post-
measures (which is expected in a pre-post study) while (6) permits
positive and negative correlations. Expression (6) is often referred to as
a marginal formulation of a mixed model since the regression function
does not include subject-specific effects.

Sullivan et al. consider a different mixed model for studies with
missing follow-up in which post-test and an auxiliary outcome (po-
tentially the main outcome measured at an earlier time point following
randomization) are modeled using a linear mixed model containing
fixed effects of treatment and a baseline covariate (potentially the pre-
test value of the outcome). Though a useful approach in some settings,
the Sullivan et al. model cannot be applied in studies with a single post-
test and loss-to-follow-up and hence will not be considered further.

3.3.4. Multiple imputation (MI)

The general idea of multiple imputation is to fill in the missing data
several times and obtain several “complete” data sets, then conduct the
statistical inferences based on those completed data sets [6,15]. Com-
pared to single imputation, multiple imputation accounts for variability
in the estimate for the missing value.

The general procedure for MI can be summarized as three steps:

Step 1: Fill in the missing data N times and get N complete data sets.
Step 2: Analyze each of the N data sets separately using analysis
methods for complete data.

Step 3: Use Rubin's rules to combine the analysis results for the N
data sets and obtain the final result [16].

For pre-post data with only post-test values Y;, missing, a regression
model of Y, on pre-test (Y;) and some selected covariates is first esti-
mated using all observations with observed values of Y;, [17]:

YiZ = b() + bl)(l + bz){z + "'+bp—2XP—2 + bp_llfil.

At imputation k k=1, ..,N), new coefficients
b,ﬁ*) = (b, by, ....by—1)" are sampled from the posterior predictive dis-
tribution (by|Yoys) and then the missing value Y, is sampled from
(Yizklb,g*), X;, Y1), where X; = (X1, ... Xip—2)" are the values of the cov-
ariates of subject i in the imputation model.

Consider a linear regression model

Y=XB+e¢,
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where Y is a length n vector of outcomes, X is an n X p covariate ma-
trix, B is a length p vector of regression parameters, and ¢ is a length n
vector of errors (¢ ~ N (0, 0%I)). Assume the outcomes Y are partially
observed, the covariates X are completely observed, the missing data
mechanism in Y is MAR, and that o2 is known. Suppose we are inter-
ested in estimating §. Let § o and §,, be the complete-case (CC) ML
estimator and MI estimator of @8, respectively. It has been shown that
[18]:

E@Bw) =EBc) =8
Var (B ) = Var(B o) + %[Var(ﬁ co) — o2XTX)]. @
Thus, both the CC ML and MI estimates are unbiased, but their
variances differ. Since Var (8 co) — 02(X™X)7! is positive-definite, we
see that the variance of the MI estimator is always larger than the
variance of the ML estimator using only complete cases. The above
results can be generalized to unknown ¢? [18]. Thus, when analyzing
pre-post data using the ANCOVA model, estimates from both CC and MI
analyses are unbiased, but the standard errors from the CC analysis
should be smaller.

4. Analysis of the BePHIT data
4.1. Analyses

Logistic regression was used to determine whether or not dropping
out was related to any pre-test measures. The estimated odds ratios
(ORs) from univariate logistic models and their p-values are listed in
Table 1. Only waist-hip ratio was associated with missing post-test
(p = 0.04). People with larger waist-hip ratio were more likely to drop
out of the study. Since waist-hip ratio was related to the dropout rate,
the missing data mechanism was not MCAR.

David et al. used linear mixed models to analyze the pre-post
changes [1]. Here we analyzed the data using a mixed model (with all
available data), ANCOVA after MI, and the corresponding CC analyses
(the mixed model with CC and ANCOVA with CC). Results from each
method were compared. The ANCOVA model is valid here since the
primary outcome, time for one-mile walk, can be assumed to be mea-
sured without error. For both the all-available-data mixed model and
ANCOVA after ML, all 70 participants with a baseline walking time were
included. One subject in the control group was excluded due to missing
both pre- and post-test scores. For the two CC analyses, only partici-
pants with both baseline and post-intervention walking time were used
(n = 58).

We used the marginal formulation of the mixed model (6) and the

Table 1
Logistic regression analysis of drop out in BePHIT.
Variable Coefficient SE Odds Ratio p-value
Design and Outcome
Treatment (Coach) —-0.83 0.67 0.44 0.21
Pre-test walk time 0.11 0.16 1.12 0.47
Baseline Anthropometrics
Pulse rate 0.04 0.03 1.05 0.12
Waist/hip (+ 0.1 units) 1.23 0.59 3.42 0.04
BMI 0.11 0.08 1.12 0.16
Baseline Psychometricsf
Negative exercise thoughts 0.32 0.52 1.38 0.54
Exercise stage of change 0.21 0.42 1.23 0.62
Social support from family —-0.16 0.48 0.86 0.75
Social support from friends -0.94 0.71 0.39 0.19
Walking Self-efficacy -0.17 0.17 0.84 0.32
Self-efficacy to walk 30 min 0.19 0.21 1.21 0.38
Exercise goals 0.12 0.36 1.12 0.74
Exercise planning —0.36 0.54 0.70 0.50

+ Measures under this category are all quantitive scores. More details about
these measures can be found in Ref. [1].
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Table 2
Regression Estimates for Imputation Model in BePHIT analysis.

Variable Estimate SE p-value
Intercept -3.07 4.23 0.47

Design and Outcome
Treatment (Coach) 0.01 0.40 0.98
Pre-test walk time 0.78 0.11 <0.0001

Baseline Anthropometrics
Pulse rate —0.01 0.02 0.61
Waist/hip 2.56 4.01 0.52
BMI 0.16 0.05 <0.01

Baseline Psychometrics
Negative exercise thoughts -0.28 0.39 0.48
Exercise stage of change 0.15 0.28 0.60
Social support from family 0.29 0.30 0.35
Social support from friends —-0.26 0.36 0.48
Walking Self-efficacy -0.13 0.14 0.37
Self-efficacy to walk 30 min 0.14 0.14 0.31
Exercise goals 0.29 0.34 0.41
Exercise planning —0.54 0.55 0.33

Kenward-Roger method was used for computing denominator degrees
of freedom [19-21]. In MI, post-test values were imputed using a model
that included the 12 baseline measures listed in Table 1, including
treatment. To preserve the reproducibility of the imputation, missing
values were imputed 20 times based on a rule of thumb proposed by
White et al. [15]. Imputed data were analyzed using the ANCOVA
model (2) and results were combined using the standard MI combining
rules [6,15].

The imputation model was fit using the completely observed cases
to check whether the variables were predictive of post-test. The esti-
mates from the imputation model are listed in Table 2. The R? of the
imputation model was 0.6975. However, only two variables, pre-test
walk time and BMI, were significant at the 0.05 level.

4.2. Results

Estimates and tests of a treatment effect for the four methods are
summarized in Table 3. All four methods showed no coach effect on the
change in one-mile walk time. This result is consistent with those re-
ported by David et al. [1]. As we can see, the results from the two mixed
models were very similar. However, there were obvious differences in
both the estimates and hypothesis tests between the two ANCOVA
analyses. When MI was used, the estimated effect for treatment changed
from —0.08 to —0.24, and its corresponding standard error changed
from 0.38 to 0.63.

ANCOVA after MI gave the most significant test of treatment among
all four methods. The treatment effect tests from the two ANCOVA
methods were more significant than from the two mixed models. Within
each model, the test of treatment effect using all available cases was
more significant than using complete cases only.

5. Simulation study
5.1. Data generation

Simulation studies were conducted to compare the power and the

Table 3

Comparison of the BePHIT treatment effects from the four analysis methods.
Method Variable Estimate SE t p-value
Mixed Model, CC Trt. X Post —0.048 0.38 -0.13 0.8995
Mixed Model, AA Trt. X Post —0.049 0.38 -0.13 0.8959
ANCOVA, CC Treatment —0.084 0.38 —-0.22 0.8251
ANCOVA, MI Treatment —0.242 0.63 -0.39 0.7005

Abbreviations: CC, complete-case analysis; AA, all-available-case analysis.
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type I error rate of the ITT and complete-case analysis methods. The
coefficient values used in the data generation process were, for the most
part, based on the results from the BePHIT analysis. The data sets used
to compare power were generated from the following model:

Y; = 17.946 — 0.811P, — 2WH; — T, X P; + b; + ¢, 8)

i=1, .on; j=12 b 29 N(03.069); ;%9 N(0,1.005). Here ¥ is the
outcome of subject i at time j and P, and T; are indicator variables of
post-test and treatment, respectively. The variable WH; is the waist-hip
ratio of subject i, which was generated from N (0.938, 0.121) to mimic
the distribution in the BePHIT data. Under our data generation model,
Corr(Y;, Y,) = 0.753 which was the value in the BePHIT data.

Although the estimated main effect of treatment was not O in the
BePHIT analysis, it was set to zero in (8) so that the expected outcome
value of the two groups was the same at baseline. Also, a main effect of
waist-hip ratio was added because waist-hip ratio was significantly
related to missing follow-ups in the BePHIT study. Its coefficient was
adjusted to —2 so that waist-hip ratio was, on average, significantly
associated with the outcome. In the original analyses of the BePHIT
study, the interaction effect of treatment and time was not significant.
However, in order to conduct power comparisons in the simulation
studies, the coefficient for this interaction effect was adjusted to —1 so
that, on average, it was significant for all the analysis models.

The model used to generate the data for the type I error rate com-
parisons was similar to (8), except that the interaction between treat-
ment and time was set to 0.

Two different group sizes were considered: m = 35 (i.e., the BePHIT
sample size) and m = 100 per group (2m = n). For each group size, 500
data sets were simulated. Post data were then set to be missing at rates
of 20%, 30%, 40%, and 50% missingness. At each percentage of miss-
ingness, missing data were generated as missing completely at random
(MCAR) and missing at random (MAR). For MAR, missingness was
generated under four different conditions: dependent on waist-hip
ratio, dependent on both waist-hip ratio and pre-test level, dependent
on waist-hip ratio, pre-test level, and treatment, and dependent on
waist-hip ratio, pre-test level, treatment, and the interaction between
pre-test level and treatment. To generate the missing data, a Bernoulli
indicator was drawn for each subject with the probability defined by
the following logistic regression model:

log — odds of missing follow — up =y, + y,WH, + ,Ya + 5 T;

+ % (Ya X T). (&)

The v’s were first estimated using the BePHIT data. However, since
the analyses of the drop out rate in the original study showed very
different effects of the three main effect terms (Table 1), the coefficients
of WH; and T; were adjusted so that their effects would be similar to the
pre-test level's. The coefficient of WH; was adjusted by forcing the odds
ratio of drop out to be two for a one standard deviation change in waist-
hip ratio. The coefficient of T; was adjusted by forcing the odds ratio of
drop out for the treatment group versus the control group to be four. In
the last simulated scenario, MAR dependent on waist-hip ratio, pre-test
level, treatment, and the interaction between pre-test level and treat-
ment, the coefficient of ¥;; was adjusted such that the average effect of
Y;; between the two groups was the same as in the previous scenarios,
and the coefficient of T; was adjusted such that the average treatment
effect was the same as in the previous scenarios. Our choice of main
effects and interaction coefficient resulted in control subjects with
smaller Y;; being more likely to drop out and intervention subjects with
larger Y;; being more likely to drop out. The y’s were set to 0 when the
missingness did not depend on their corresponding variables. Finally, y,
was adjusted for each percentage of missingness. Table 4 provides the
values of the coefficients for each scenario.
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5.2. Analyses

For each scenario mentioned above, simulated data sets were ana-
lyzed by both mixed models and ANCOVA after multiple imputation
(MI). Since outcome values were generated from a model containing
waist-hip ratio, in addition to the mixed model and ANCOVA model
mentioned in Section 3, each method was also conducted with waist-hip
ratio in the analysis model. For comparison purposes, we also per-
formed complete-case (CC) analyses using the same mixed models and
ANCOVA models. The mixed model used for the analysis was:

Yj = om0 + aan T + o By + oz T X By + oy WH; + ey, (10)

where ¢; is as defined in (6). Similar to the BePHIT study analysis, the
Kenward-Roger method was used for computing denominator degrees
of freedom [19-21]. The ANCOVA model used for the analysis was:
Yio = Byo + BuYa + BT + B WH + &,
where ¢; id N (0, o?). When waist-hip ratio was not included in the
analysis model, a4 in the mixed model (10) and §,; in the ANCOVA
model (11) were set to 0. For MI, missing follow-ups were imputed 20
times using the following imputation model:

(1)

Y, = 510 + 611Yil + 5127; + ﬁ[sWHi + 614Yi1 X T + ﬁ]syil X WH;
+ B Ti X WH,.

That is, the predictors in the imputation model were all the main
effects that were used in generating the data and all their two-way
interactions. The statistical software used for both data generation and
analyses was SAS 9.4 (SAS Inc., Cary, NC). The DATA step was used to
generate the data, the REG procedure was used to fit the ANCOVA
model, the MI and MIANALYZE procedures were used to do the mul-
tiple imputation, and the MIXED procedure was used to fit the mixed
model.

5.3. Results

Fig. 1 compares the power of the tests of a treatment effect for each
method when waist-hip ratio was included in the analysis models and
m = 35 subjects per group. Here a was set to 0.05. The power of each
method decreased as the percentage of missingness increased. The
complete-case (CC) ANCOVA was the best in terms of the power when
percentage of missingness was smaller (20% and 30%). When missing
proportion became larger (40% and 50%), the all-available-case mixed
model yielded similar results to CC ANCOVA. Under MCAR, ANCOVA
after multiple imputation (MI) was slightly more powerful than the
mixed model using all available data when the percentage of missing-
ness was smaller (20% and 30%). Under MAR, ANCOVA after MI and
the mixed model using all available data were still comparable when
post data were missing at 20%. However, the power of ANCOVA after
MI decreased dramatically as the percentage of missingness increased
and for most scenarios was the least powerful method when 50% of the
post data were missing. When the true logit model for drop out included
an interaction between treatment and pre-test (Y;;), the power of the CC
mixed model was considerably lower than all other methods when
20-40% were missing follow-up; when 50% were missing follow-up,
the power of the CC mixed model was comparable to the power of
ANCOVA after MI. When m = 100 per group, the power of each test was
very high (mostly >0.9) and CC ANCOVA and the all-available-case
mixed model had very similar power under each scenario (Fig. S1 in the
Supplementary Materials). Similar trends in power were observed when
waist-hip ratio was omitted from the analysis model (Figs. S2 and S3 in
the Supplementary Materials).

Coefficient estimates and standard errors of the power simulations
are provided in Table S1 — S8 in the Supplementary Materials. For the
most part, all four methods produced unbiased estimates. The one ex-
ception to this trend was when the CC mixed model was applied to data
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Table 4
Coefficients for log-odds of missing follow-up used in the simulation study.
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% Missingness Missing Mechanism % " )2 % Y

20 MCAR —1.386 0 0 0 0
MAR (WH) —3.252 1.989 0 0 0
MAR (WH + Pre) —4.910 1.989 0.094 0 0
MAR (WH + Pre + Trt) —5.603 1.989 0.094 1.386 0
MAR (WH + Pre + Trt + Pre X Trt) —3.251 1.989 —0.039 —3.319 0.265

30 MCAR —0.847 0 0 0 0
MAR (WH) —2.713 1.989 0 0 0
MAR (WH + Pre) —4.371 1.989 0.094 0 0
MAR (WH + Pre + Trt) —5.064 1.989 0.094 1.386 0
MAR (WH + Pre + Trt + Pre X Trt) —2.712 1.989 —0.039 —3.319 0.265

40 MCAR —0.405 0 0 0 0
MAR (WH) —2.271 1.989 0 0 0
MAR (WH + Pre) —3.929 1.989 0.094 0 0
MAR (WH + Pre + Trt) —4.622 1.989 0.094 1.386 0
MAR (WH + Pre + Trt + Pre X Trt) —2.270 1.989 —0.039 —3.319 0.265

50 MCAR 0 0 0 0 0
MAR (WH) —1.866 1.989 0 0 0
MAR (WH + Pre) —3.524 1.989 0.094 0 0
MAR (WH + Pre + Trt) —4.217 1.989 0.094 1.386 0
MAR (WH + Pre + Trt + Pre X Trt) —1.864 1.989 —0.039 —3.319 0.265

Abbreviations: MAR (WH), missingness dependent on waist-hip ratio, MAR (WH + Pre), missingness dependent on waist-hip ratio and pre-test level; MAR
(WH + Pre + Trt), missingness dependent on waist-hip ratio, pre-test level, and treatment assignment; MAR (WH + Pre + Trt + Pre x Trt), missingness dependent
on waist-hip ratio, pre-test level, treatment, and the interaction between pre-test level and treatment.

with missingness dependent on an interaction between treatment and
pre-test; in that scenario the treatment-time interaction effect (i.e., the
treatment effect of interest) was biased (between 6 and 13% across
missingess rates). The all-available-case mixed model consistently had
smaller standard errors of the estimates than the CC mixed model, while
the reverse was true for the ANCOVA analyses due to the relationship
defined in (7). Also, the estimates were more accurate and precise at the
larger sample size (m = 100 per group).

Fig. 2 compares the type I error rate of the tests of a treatment effect
for each method when m = 35 per group and waist-hip ratio was in-
cluded in the analysis models. Type-I error rates were similar under
MCAR and when missingness only depended on WH, though in the
latter scenario the type-I error rate for CC ANCOVA was inflated under
50% missingness. When missingness depended on treatment alone or
treatment and pre-test, the mixed models generally exhibited deflated
type-I error rates and with the exception of one case (ANCOVA after MI
when missingess depended on WH, pre-test, treatment, and the pre-test
by treatment interaction) the type-I error rates for the ANCOVA models
were close to the nominal level. When there was interaction between
treatment and pre-test in the missingness model, type-I error rates were
deflated under ANCOVA after MI at the higher missingness rates and
were inflated under the mixed models when 50% were missing post-
test. Differences in type-I error rate were more variable when m = 100
per group with no single method consistently providing the lowest or
highest type-I error rates (Fig. S4 in the Supplementary Materials). Si-
milar trends in type-I error rate were observed when WH was excluded
from the regression models (Figs. S5 and S6 in the Supplementary
Materials).

6. Discussion
6.1. Summary

In the BePHIT data analyses, p-values were smaller for ANCOVA
than for mixed models when testing the treatment effects. Also, for both
ANCOVA and mixed models, p-values were smaller for ITT analyses
(ANCOVA after MI and the AA mixed model) than CC analyses.
However, the treatment effects estimated by ANCOVA after MI and CC
ANCOVA were remarkably different (—0.08 for CC vs. —0.24 for MI),
as were the standard errors (0.38 for CC vs. 0.63 for MI). It is also
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interesting that the p-value from CC ANCOVA was smaller than the p-
value from the all-available-data mixed model. Thus, for the BePHIT
data, the benefit of switching the CC mixed model to the CC ANCOVA
model outweighed the benefit of switching the CC mixed model to the
all-available-data mixed model.

The simulation studies showed that all four methods, ANCOVA after
multiple imputation (MI), ANCOVA for complete cases (CC), the all-
available-case mixed model, and the CC mixed model, generally pro-
duced unbiased estimates of the treatment effect when waist-hip ratio
was included in the analysis model. The only exception was the CC
mixed model under MAR dependent on waist-hip ratio, pre-test value,
treatment, and the interaction between pre-test value and treatment. In
this scenario, the treatment effect was confounded by pre-test in com-
plete case analyses since the presence of an interaction in the miss-
ingness model resulted in an inverse association between assignment to
treatment and pre-test. When there is no missing data, the mixed model
(5) is equivalent to the change score model (1), which does not account
for pre-test. Thus, it is not surprising that the complete case change
score analysis produced a biased treatment effect while the CC
ANCOVA analysis provided an unbiased treatment effect since it adjusts
for pre-test. This result implies that among CC analyses, treatment ef-
fect estimates from an ANCOVA model are more robust to missingness
pattern than the change score analysis.

As expected, the simulation studies showed that ANCOVA was more
powerful than the mixed model for CC analyses, and the mixed model
was generally more powerful when all available data were used. Also,
since CC ANCOVA provides more precise estimates than ANCOVA after
MI [18] and ANCOVA is more powerful than the mixed model [5], it
was not surprising that CC ANCOVA had the largest power under al-
most all scenarios. In some situations, the difference in power between
the ANCOVA and mixed model analyses could be explained, in part, by
the mixed models exhibiting type-I error rates below nominal levels,
but this was not true in general. Also, the benefit in power from CC
ANCOVA generally did not come at the cost of an inflated type-I error
rate.

The results from the simulation studies were not consistent with the
analyses of the BePHIT data. The simulation studies suggested that
ANCOVA after MI was almost always the least powerful method for
testing the treatment effect, while this approach resulted in the smallest
p-value in the BePHIT analysis. This discrepancy may be the result of
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Fig. 1. Power comparisons for analysis models including WH and m = 35 per group.

using different imputation models between the simulation studies and interactions, while the imputation model for the BePHIT studies also
the BePHIT analyses. The imputation model in the simulations included included some baseline anthropometric and psychometric measures.
only the variables used in generating the data and their two-way This resulted in a difference in the R? of the imputation model for the
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Fig. 2. Type I Error Rate Comparisons for Analysis Models with WH and n = 35.
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two studies: R? = 0.6975 for the BePHIT study, while the average R? was
smaller for each simulated scenario when 20% of the data were missing
(between 0.61 and 0.65).

6.2. Comparison with similar studies

Although many papers have compared analysis methods for pre-post
studies when data are completely observed [2-5,22] considerably fewer
have compared methods under missing post-test values. Liu et al. [23]
and Hyer and Waller [24] compared mixed models to ANCOVA models
applied to complete cases. Mehrotra et al. imputed missing post-test
values, applied a robust regression model to the pre-post changes, and
compared the approach to more standard analyses for missing long-
itudinal data (weighted generalized estimating equations and mixed
models) [25]. Mehrotra et al.’s work was similar to ours in that they
compared ITT analysis methods, one of which involved imputation.
However, the authors did not consider ANCOVA models which many
consider the preferred analysis approach for complete data [5]. Fur-
thermore, Mehotra et al. considered studies with several follow-ups and
thus imputations were based on more observable outcome data than in
two group pre-post studies.

Sullivan et al. considered missing data in a univariate outcome, a
multivariate outcome, and a baseline covariate and compared MI, ap-
plied both overall and by randomized group, with a complete case
analysis and a mixed model. While there are some similarities between
our study and Sullivan et al.'s, there are two key differences. First,
Sullivan et al. only considered a large sample size in their simulations
(n = 600 total). While large sample sizes such as these may be common
in clinical trials, many studies with pre-post designs involve much fewer
subjects. For instance, our motivating study BePHIT consisted of 35
women per treatment group. Another example is a recent crossover
study on depression and healthier food choices, where a total of 58
women were recruited [26]. Thus, motivated by the BePHIT study, we
considered scenarios with small sample sizes. The second major dif-
ference between our study and Sullivan et al.’s is the type of mixed
model considered in the ITT analysis; we considered a model for pre-
test and post-test with a time-dependent treatment effect while Sullivan
et al. considered a mixed model for post-test and an auxiliary outcome
adjusting for pre-test. Our mixed model provides a treatment effect on
the pre-post change in the outcome and thus is an extension of the
commonly used change-score analysis to accommodate missing data.
From our experience, the Sullivan et al. model is not as common since,
in a study with a single post-randomization follow-up, if a subject is
lost-to-follow-up, they will not have any information on the main out-
come or the auxiliary outcome.

Despite the differences in the settings of the simulations, Sullivan
et al. also observed that complete case analysis (CCA) was more effi-
cient than multiple imputation (MI) for pre-post studies [27]. When
there were multiple follow-ups, Sullivan et al. found that the mixed
model was more efficient than MI, though MI outperformed CCA since
the intermediate outcome was ignored in CCA but used in the im-
putation model.

6.3. Limitations

The simulation settings were based on the BePHIT data and thus
may not be reflective of studies whose outcome variables and covariates
come from different distributions or with different designs (e.g., un-
equal numbers in each treatment group). Only four missing data me-
chanisms were considered in the simulations. These scenarios were
chosen based on the analyses of the BePHIT study. However, many
other missing mechanisms are possible in biomedical studies. For ex-
ample, if the subject dropped out the study because she knew that her
post-test one-mile walk would be very bad, the data would be not
missing at random (NMAR). However, this scenario, along with many
other scenarios of missing data were not considered.
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6.4. Recommendations

Even though CC ANCOVA appeared to be the most powerful
method, it is usually not recommended since it does not adhere to the
ITT principle of clinical trials [7]. In most simulated scenarios, the all-
available-data (AA) mixed model provided a power benefit over AN-
COVA after MI. Even in those scenarios where the power of ANCOVA
after MI was larger than the power of the AA mixed model, the two
powers were very close (e.g., Fig. 1(a) at 20 and 30% missingness).
Besides the power loss in ANCOVA after MI, ANCOVA requires no
measurement error in the outcome [5] and MI is more time consuming
than fitting a mixed model. Therefore, for ITT analyses of pre-post
studies with loss to follow-up, the AA mixed model is recommended.
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