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Abstract: Non-target screening (NTS) has gained interest in recent years for environmental monitor-
ing purposes because it enables the analysis of a large number of pollutants without predefined lists
of molecules. However, sample preparation methods are diverse, and few have been systematically
compared in terms of the amount and relevance of the information obtained by subsequent NTS
analysis. The goal of this work was to compare a large number of sample extraction methods for
the unknown screening of urban waters. Various phases were tested for the solid-phase extrac-
tion of micropollutants from these waters. The evaluation of the different phases was assessed by
statistical analysis based on the number of detected molecules, their range, and physicochemical
properties (molecular weight, standard recoveries, polarity, and optical properties). Though each
cartridge provided its own advantages, a multilayer cartridge combining several phases gathered
more information in one single extraction by benefiting from the specificity of each one of its layers.

Keywords: emerging contaminants; high-resolution mass spectrometry; micropollutant fingerprint;
non-target screening; solid phase extraction; statistical analysis; urban waters

1. Introduction

The presence of organic micropollutants in the aquatic environment is a major issue in
many countries due to their potential ecotoxicological impact on aquatic organisms as well
as their potential risks for human health. European directives concerning the quality of
surface waters advocate better control of the presence of micropollutants, but they deal with
priority organic molecules that are well known by scientists for their high environmental
impact [1]. However, a lot of emerging molecules (e.g., substitutes of forbidden molecules,
metabolites, and degradation byproducts) enter the environment due to human activities
through wastewater effluents. The survey of these unknown molecules using non-target
screening (NTS) enables us to anticipate further regulation on water quality [2]. This
analytical approach has undergone high development in the last decade thanks to the
spreading of high-resolution mass spectrometry, but it requires powerful analytical systems
and computational software as well as non-specific sample preparation methods [3].

The increased resolving power of high-resolution mass spectrometry such as time-of-
flight mass spectrometry (TOF-MS) or Orbitrap-MS allows the accurate mass measurement
and isotopic pattern identification [4]. Therefore, these techniques are suitable for the
development of three main screening strategies based on accurate-mass databases [5,6]:
multi-residue target screening [7], suspect screening [8–10], and NTS [11,12]. Contrary to
target and suspect screening which aim to evaluate the presence of molecules based on
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a preliminary list, NTS is the characterization of substances present in a sample without
any prior information, based on full scan analysis that enables the acquisition of all peaks
comprised within a range of masses. It thus requires the subsequent selection (e.g., by
statistical analysis) of features of interest (i.e., specific signal characterized by its retention
time and m/z ratio) followed by their tentative identification with the use of databases and
literature information [13,14].

In combination with high-resolution mass spectrometry acquisition methods, the com-
putational technique for data processing is of primary interest. Molecular identification
depends on high-resolution data precision [13] but also on the software possibilities to
deconvolute, filter, re-align signals [15], associate raw formulas to features of interest and
finally compare with existing spectra libraries for identification [16,17]. NTS studies can be
performed using proprietary software (e.g., Agilent Masshunter and MPP, Waters Unifi,
Thermo Compound Discoverer, ABSCiex MarkerView, SpectralWorks AnalyzerPro, associ-
ated with ChemSpider, SciFinder, METLIN, PubChem, or MassBank libraries) as well as
free ones (e.g., MZmine, R, EnviMass, and MetFrag) [18] for the identification of molecules,
using the information on the fragments. The qualification of a single sample requires a lot of
computational treatment, and statistical studies are relevant as a complementary approach
to assess organic contamination by comparing different samples. Statistical approaches
in NTS have been used to differentiate samples in time [19] and space [20] or to highlight
variations during processes [11]. Binary comparison, principal component analysis (PCA),
and Venn diagrams are examples of methods that can be applied to a sample set in order to
isolate features of interest (e.g., molecules in common between samples or specific to groups
of samples) [21]. Discriminated samples can be further characterized, and molecules of
interest can then be identified.

Data analysis and statistical evaluation of samples being time-consuming, the quality
of acquired data must be guaranteed. Sample preparation is essential to ensure the de-
tection of as many molecules as possible and thus needs to be as unselective as possible.
Different strategies and methods can be used in order to reach this objective and also to
prevent samples from contamination. Direct injection of water samples can be employed to
avoid potential contaminations or losses during sample preparation. However, the low
concentration of molecules and interferences with other constituents of the sample (e.g.,
solid particles, colloids, or organic matter) can prevent the detection of trace organic com-
pounds. Preparation techniques such as filtration [22], concentration [23], and solid-phase
extraction [24] are widely used for targeted quantitative analysis and for NTS to decrease
interferences and to concentrate the samples.

Most NTS studies employ a sample preparation step that is considered to be as
“exhaustive” as possible, and little information is available about the efficiency of SPE
for NTS purposes. For target screening purposes, knowing the properties of the targeted
molecules makes it easier to select the most appropriate cartridge and phase. Concerning
NTS studies, the choice of a cartridge is trickier given that, for example, the choice of a
cartridge that is recommended for polar compounds will only retain polar compounds and
thus, will leave the non-polar compounds un-retained. As a result, most non-target studies
employ universal phases such as Oasis HLB to retain as many compounds as possible.
Validating the extraction and analysis steps is also a challenge for NTS. The choice of
standards to assess cartridge efficiency or to evaluate and correct matrix effects are tricky
since the compounds studied in NTS are supposed to be unknown. Therefore, a mix of
internal standards composed of a large variety of molecules (in terms of molecular weight,
polarity, acidity, functional groups, etc.) is often used to assess the efficiency of the method
in recovering and analyzing a large panel of compounds [25–28]. In addition to the injection
of internal standards, various methods can be used to check the stability of the instrument
or to correct the standard deviation of each feature, such as the injection of a pooled sample
(consisting of a mix of all samples to be analyzed), regularly during the sequence. These
normalization methods were recently reviewed for NTS applications in lipidomics [29].
Finally, using replicated injections to discard signals that are not repeatable and that could
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lead to false-positive identifications is a commonly used step in NTS studies [25,28,30–32].
Still, only a few studies compared the efficiency of different preparation methods for NTS
purposes. One study showed that non-target strategies clearly discriminated the signals in
terms of number and type of features obtained with several preparation methods (liquid-
liquid extraction and solid-phase extraction on two cartridges) while the extraction yields
of targeted molecules were not significantly different between those techniques [33]. In all
cases, the properties of the cartridge, the pH of the sample, as well as elution solvents, and
conditioning solvents will play a major role in the selection of molecules finally detected
in the analyzed sample. A literature review revealed that numerous phases (e.g., HLB,
ENV+, C18, X-CW, X-AW, X-C, and X-A, individually or in series), different sample pH, and
different conditions of elution were used in NTS studies for environmental applications
(Table 1). Several studies used a multilayer cartridge (composed of HLB, ENV+, X-AW,
and X-CW) developed to extract a wide range of micropollutants [27].

Table 1. Examples of SPE cartridges, pH of samples, and elution solvents used for sample preparation in environmental
studies using non-target screening for the analysis of water samples.

Matrix pH SPE Cartridge Elution Solvents Ref

Surface water and wastewater
(influent and effluent) N.A. a HLB N.A. a [8]

Surface water, groundwater
and Drinking water 2 HLB, MCX

Acetonitrile (HLB)
Acetonitrile, Acetonitrile + 5%

ammonia (MCX)
[34]

Surface water,
wastewater influent

and effluent
6.7 Multilayer (HLB, ENV+,

X-AW, X-CW)

Methanol/Ethyl acetate
(50:50, v/v)

+ 2% ammonia and methanol/
Ethyl acetate (50:50,

v/v) + 1.7% formic acid

[11,26,27,35–37]

Landfill leachate and
groundwater 7 and 3 ENV+ Methanol [21]

Wastewater effluent 2 MCX and Strata X
in series Methanol + 5% ammonia [38]

Wastewater (influent
and effluent) N.A. a HLB Methanol [39]

Surface water N.A. a Multilayer (HR-X,
HR-XAW, HR-XCW)

Ethyl acetate; methanol;
methanol + 2% ammonia and

methanol + 1% formic acid
[5]

Wastewater effluent N.A. a MAX and MCX in series

Methanol/ethyl
acetate/formic acid (69:29:2,

v/v) (MAX)
methanol/ethyl

acetate/ammonia
solution (67.5:27.5:5, v/v)

(MCX)

[10]

Riverbank filtration system N.A. a HLB Methanol [32]
a N.A. = Not Available.

The overall objective of this work was to assess the influence of the extraction method,
in particular the type of SPE phase/cartridge, on the non-targeted HRMS analysis of organic
contaminants in urban water. To reach this objective, we pursued the following specific
aims: (i) to test different nature of phases to extract a large range of micropollutants in urban
waters, based on a panel of 9 commercially-available stationary phases and designed for a
variety of applications (i.e., from non-polar/moderately polar to more polar compounds
and ionic species); (ii) to develop a strategy based on relevant indicators to compare the
results, such as the number of detected molecules, their range, and characteristics; and
(iii) to apply the optimized SPE method and the developed data analysis strategy to urban
water samples.
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2. Results and Discussion
2.1. Comparison of the Cartridge Retention Ability

In this section, the retention abilities of several cartridges (ENV+, X-A, X-AW, X-CW,
HLB pH 2, HLB pH 6, Multilayer, X-C, C18 ENV+, SDBL, and C18) were compared on the
basis of different indicators.

2.1.1. Discrimination of Cartridges Based on Optical Properties

To get a preliminary overview of the diversity of retained organic materials, optical
properties (UV absorbance at 254 nm and 3D-spectrofluorescence spectra) of one sample
from a river located in an urbanized area (Marne River) were measured before and after
extraction (i.e., on the water phase during the SPE loading step). These optical properties
are commonly used to characterize dissolved organic matter (DOM). As DOM is composed
of molecules of various sizes and polarities with which micropollutants can interact, the
behavior of DOM can be related to the behavior of micropollutants. Based on these interac-
tions (e.g., hydrogen bonding, hydrophobic, van der Waals, or dipole-dipole interactions),
fluorescence can be used for a better understanding of the fate of micropollutants, for
example, in advanced wastewater treatment processes such as adsorption onto activated
carbon [40]. DOM retention on SPE cartridges was evaluated to characterize their ability
to retain a large variety of organic materials but also to determine if it can hinder the
detection of micropollutants. DOM is indeed known to sometimes reduce the adsorption
of target compounds on SPE cartridges (competition effect) and to limit the ionization of
molecules for their detection in mass spectrometry [41,42]. The good retention of DOM on
SPE cartridges could thus be detrimental to the detection of organic molecules in non-target
analyses. Figure 1 presents the retention of DOM on each SPE cartridge based on the
percentage change of UV absorbance at 254 nm before and after extraction. The highest
recoveries were obtained for X-A, X-AW, X-C, and the Multilayer phases (recoveries ≥ 90%).
Other cartridges exhibited significantly lower retention of organic materials (<60%). Espe-
cially, extractions with the HLB cartridge retained fewer organic materials (~60%). SDBL,
X-CW, and HLB (pH 6) do not seem to be appropriate phases for a large screening of
organic material.
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Figure 1. Retention of DOM based on UV absorbance at 254 nm (UV254) for different SPE cartridges.
UV254 retention (%) was calculated as the percentage change between UV254 of the Marne River
sample and UV254 measured at the outlet of each cartridge (during the loading phase).

For a better evaluation of the quality of DOM retained on the cartridges, 3D-fluorescence
spectra were acquired from the Marne River sample before and after extractions. Fluores-
cence regional integration (FRI) was performed [40,43], calculating the regional fluorescence
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intensities for each excitation-emission matrix (EEM) spectrum. The EEM spectrum of
the Marne River sample before extraction (Supplementary Materials Figure S1) exhibited
mainly two fluorophores: one in the region III of FRI and the other in region V. They corre-
spond to large molecules like polysaccharides and humic-like substances [23,44,45]. Other
fluorophores (regions I and II) were also observed, representing more hydrophilic and
smaller molecules, proteins, and aromatic amino acids [46]. Table 2 presents fluorophores
retention depending on the phase of SPE used. Similar results were obtained with other
indexes derived from [43] (data not shown).

Table 2. DOM retention (%) based on fluorophores for different SPE cartridges (indexes FRI derived
from [43]).

Index C18 C18
ENV+ ENV+ HLB

pH 2 HLB Multilayer SDBL XA XAW XC XCW

Region
I FRI 84 85 64 70 58 71 58 94 89 55 49

Region
II FRI 76 69 67 68 58 86 48 96 90 59 47

Region
III FRI 72 46 46 55 55 73 27 92 86 50 28

Region
IV FRI 68 62 64 65 45 80 41 93 86 53 45

Region
V FRI 70 47 50 56 53 55 28 93 86 48 28

As expected, the cartridges retained aromatic proteins and humic-like materials (re-
gions I, III, and V [37,40]). Higher retention was observed for XA and XAW (≥85%). Like
the results obtained with UV absorbance, the extractions on SDBL and XCW phases led to
poor DOM retention (retentions generally lower than 50%). It is interesting to note that
regions II and IV were well retained by XA, XAW, and Multilayer (≥80%). They can be
associated with the retention of simpler, more polar, and nitrogenous compounds [47].
Based on EEM spectra, these three cartridges seem to be the most efficient to retain hy-
drophobic materials as well as smaller and more polar compounds for global screening of
the molecules present in the sample.

2.1.2. Discrimination of Cartridges Based on HRMS Features

Samples were then analyzed by HRMS, and differences between SPE cartridges were
investigated through criteria classically used in omics studies. A PCA of the HRMS features
found in the different extracts of the Marne River sample was performed to quickly identify
similarities and differences between the feature sets obtained from each cartridge (Figure 2).

All cartridges were clearly discriminated by the first two components of the PCA
(covering 45.3% of the total variance), which indicated that each type of SPE phase extracted
specific sets of HRMS features. The first component (PC 1) was mostly correlated with the
features derived from the Multilayer cartridge and explained 30% of the dataset variability.
The second component (PC 2) explained 15% of the variability and discriminated all
individual cartridges. Polymeric cartridges (ENV+, SDBL, and C18/ENV+) were all
clustered near the center of the PCA, meaning that they all extracted similar features.
Cartridges for which sample loading was performed at pH 2 (HLB pH 2 and XA) also
exhibited similar behavior. Features from anionic exchange cartridges (XA and XAW) were
almost identical.

To better understand the repartition of cartridges obtained by the PCA (Figure 2),
fingerprints (i.e., bubble plots of all detected features) were compared between the most
different cartridges (XCW, ENV+, HLB, and the Multilayer cartridge) for the Marne river
sample (Figure 3).
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Figure 3. Fingerprints of detected features from the Marne River sample after SPE on ENV+ (blue),
HLB (orange), Multilayer (green), and XCW (red) cartridges. The size of bubbles is proportional to
the area of the feature.

The Multilayer cartridge displayed the most intense features on the entire m/z range,
whereas ENV+ displayed more intense features for m/z < 400, and HLB retained more
intense features with m/z > 400. XCW showed more intense signals at retention times
greater than 15 min (i.e., less polar compounds), whereas most intense signals on the two
other individual cartridges were obtained at retention times before 15 min. Thus, the PC 2
component of the PCA may describe the polarity of the retained features on each cartridge.
This hypothesis is supported by the fact that the C18 cartridge, which is designed for less
polar compounds, was close to the XCW one on the PCA. Finally, a comparison of common
features retained by the cartridges was performed (Figure 4).
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The first thing to notice is that the Multilayer cartridge had the biggest set size among
the studied cartridges, meaning that it retained the highest number of features. The two
closest cartridges in terms of retained features were the ENV+ and C18/ENV+ cartridges
with 49 common features, which is not surprising given the similar nature of the phases. The
cartridge involved in the highest number of intersections was the SDBL (23 intersections
for 210 features intersected); however, the cartridge with the highest number of features
intersected was the Multilayer one (20 intersections for 212 features intersected). Therefore,
the Multilayer was the cartridge with the highest number of specific features (323 features
only found in this cartridge), but also the one with the highest number of intersected
features, making it the most interesting cartridge for non-target studies by retaining the
most extensive set of features.

Compared to the results obtained when considering the optical properties (Section 2.1.1),
the cartridges that retained more fluorescent organic materials exhibited a lower number of
HRMS features (e.g., XA, XAW). On the contrary, SDBL and XCW showed low retention of
fluorescing materials but a high number of HRMS features. This could be due to the com-
petition of DOM with organic compounds for the adsorption on the SPE cartridge [41,48]
or to matrix effects in the HRMS analysis. Interestingly, this behavior can also be observed
for the same cartridge used at different pH. Extraction on HLB at pH 6 gave a high number
of features in HRMS and low retention of fluorescing organic materials (fluorophores),
contrary to the extraction on HLB at pH 2. Notably, the Multilayer cartridge exhibited both
retention of fluorophores and a large number of HRMS features; this cartridge thus seemed
less affected by organic content.
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2.2. Characterization of the Cartridge Retention Ability with Different Matrices

Based on the previous observations (HRMS fingerprints and DOM retention), five
cartridges were retained for further investigation with different matrices: the Multilayer
cartridge (highest number of retained features and highest intensities), HLB at pH 6
(universal cartridge, used in many studies), ENV+ (universal cartridge, representing the
polymeric cartridges clustered in the PCA), XAW (high retention of fluorophores) and
XCW (retaining more apolar compounds). Three types of samples were extracted and
compared, with the increasing complexity of matrix (i.e., presence of organic and inorganic
constituents): Ultrapure water (Milli-Q), surface water (Marne River), and wastewater
effluent (WWe).

2.2.1. Recoveries of Internal Standards

To compare the different SPE cartridges and evaluate the corresponding matrix effects,
the recovery of internal standards was first calculated (Figure 5).
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In Milli-Q, recoveries ranged from 4% to 63% for atenolol-d7, from 35% to 112%
for caffeine-d9, from 113% to 154% for carbamazepine-d8 and from 40% to 155% for
sulfamethoxazole-d4. Carbamazepine-d8 exhibited an overall great recovery with all car-
tridges and showed the least differences between cartridges. On the contrary, atenolol-d7
gave lower recoveries, and sulfamethoxazole-d4 and caffeine-d9 exhibited large differences
in recoveries between cartridges. Carbamazepine-d8 has the highest log Kow among
the four molecules; its better recovery on all cartridges could be explained by its lower
hydrophilicity. Extractions were all carried out at pH = 6.5–7, meaning that, for atenolol-
d7, caffeine-d9 and carbamazepine-d8, the acidic form was predominant, whereas, for
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sulfamethoxazole-d4, its basic form is predominant. The only molecule showing a sig-
nificant difference between XAW and XCW cartridges (designed for compounds with
pKa < 5 and pKa > 8, respectively) was atenolol-d7 (pKa = 9.6), with a better recovery
on XCW as expected. The strong acidity (pKa of sulfamethoxazole-d4 = 1.6) or basicity
(pKa of caffeine-d9 and carbamazepine-d8 are 14 and 13.9, respectively) of the three other
compounds may explain their less contrasted retention of those two cartridges. Overall,
the Multilayer cartridge gave the highest recoveries of those standards (despite a quite
poor recovery of caffeine-d9).

Lower recoveries of caffeine-d9 were recorded with the Marne River and WWe samples
for all five cartridges as compared to the Milli-Q water sample. The three universal
cartridges (Multilayer, HLB, and ENV+) were more affected by complex matrices. The ionic
XCW cartridge showed the least difference in recoveries for the three matrices. However,
the XAW cartridge exhibited a very low recovery of most internal standards from the
Marne River sample, while the two other samples (Milli-Q and WWe) showed similar
recoveries. Better retention of caffeine-d9 was expected on the XCW cartridge because of
its high pKa value of 14. Compared to other cartridges, recoveries of caffeine-d9 on XCW
was low but more consistent across the different types of water. Its lower recovery can be
explained by the employed elution step that was recommended by the cartridge supplier
for specific compounds (Alprenolol, Acetaminophen, and Clomipramine). The elution step
could be optimized with this cartridge to obtain better recoveries for internal standards
such as caffeine-d9 as well as for the total number of features retained.

An unexpected high signal was obtained for carbamazepine-d8 and sulfamethoxazole-
d4 in the Marne River sample after SPE, leading to excessive recovery values (>1000%),
which were therefore not included in Figure 5. The extraction of those two components
on WWe, led to signal suppression as compared to the Milli-Q sample. Such matrix
effects were previously reported in wastewater effluent with ion suppression of 34% for
sulfamethoxazole, 5.4% for caffeine, and 23% for carbamazepine on Strata-X cartridges [49].
Atenolol-d7 exhibited various behaviors, with a signal enhancement for HLB and XAW,
signal suppression for ENV+, and both signal suppression (WWe sample) and signal
enhancement (Marne River sample) for the Multilayer cartridge and XCW.

Matrix effects (i.e., signal suppression or enhancement) or adsorption competition
on the cartridge were observed for all detected internal standards. A high suppression
was especially observed for the XAW cartridge, in accordance with the impact of adsorbed
organic materials already described in Section 2.1.2.

2.2.2. Range and Properties of Retained Features

The number of features retained on each cartridge was compared for the WWe and
the Marne River sample (Table 3). As mentioned previously, the Multilayer cartridge
displayed the highest number of features compared to the other cartridges, which explains
its widespread use in non-target screening studies [27,35,36]. HLB and ENV+, commonly
considered as “universal cartridges”, were also quite efficient for the Marne River sample,
retaining 32% and 47% fewer features than the Multilayer cartridge, respectively. They
also retained the highest number of features from the WWe sample, ENV+ being the most
efficient. XCW retained 11% more features from the Marne River sample than ENV+, which
suggests the presence of cationic substances in this sample. Table 3 displays the properties
of the features retained on each cartridge for both samples.

The Multilayer cartridge retained globally bigger molecules than other cartridges, as
seen from both average m/z and weighted average m/z. For the two types of samples, HLB
also retained features with larger molecular sizes and ENV+ smaller ones. When those
values were not weighted by the feature area, no clear trend could be observed. The polarity
of retained features (as described by the average retention) was also not significantly
different between the cartridges. However, it can be noted that the Multilayer cartridge
average retention of features from the Marne River sample (46% ACN) was equal to the
mean of the average retention of all four other cartridges (i.e., the four phases used in the
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Multilayer cartridge). For the WWe sample, the total area of the detected features followed
the same ranking order as the total number of features (i.e., ENV > HLB > XAW > XCW).
However, this was not the case for the Marne River sample, for which ENV+ exhibited
15% less detected features compared to HLB but a slightly more intense total signal. This
observation indicates that the molecules retained on ENV+ were more ionizable, therefore
different from HLB, or better retained, as it was demonstrated by the difference in their
fingerprints (Figure 3). The Multilayer cartridge showed the highest total intensity among
all cartridges, which demonstrates its ability to retain a large number of compounds with a
high signal. This property is clearly beneficial for NTS studies to obtain clean mass spectra
and thus to allow easier identifications.

Table 3. Properties of features retained on various SPE cartridges. The average retention is given as the percentage of
acetonitrile in the mobile phase (ACN) needed to elute a given feature. The weighted values correspond to the average
parameter, weighted by the intensity of each individual marker.

Number of
Features

Sum of
Detected Areas Average m/z Weighted

Average m/z
Average Retention

(% ACN)

Weighted Average
Retention
(% ACN)

Marne River
ENV 315 4.25 × 106 306.6403 300.0973 43 41
HLB 403 4.20 × 106 367.9942 379.1581 44 43
XAW 49 8.69 × 105 295.4186 323.9237 52 52
XCW 350 3.43 × 106 404.9278 366.7695 48 46

Multilayer 594 5.84 × 106 470.6467 441.9003 46 44
WWe

ENV 301 2.72 × 107 306.7059 339.2997 37 33
HLB 201 1.75 × 107 337.8578 311.8444 35 27
XAW 149 9.03 × 107 345.6214 384.1570 34 22
XCW 100 8.32 × 106 297.6594 367.0206 28 23

Multilayer 7515 4.89 × 107 461.3586 416.1775 47 35

The distribution of m/z values was visualized for both types of the sample matrix
and for each cartridge (Figure 6). To the authors’ knowledge, this representation has not
yet been used for the characterization of HRMS data, although it is useful for identifying
differences between samples. Comparison of the cartridges shows that ENV+ was less
effective in retaining molecules with m/z > 600, whereas HLB covered a larger range of
m/z. It is interesting to note that the Multilayer cartridge combined the ranges of m/z
distribution of ENV+, HLB, XAW, and XCW.

2.3. Application: Evaluating a Disinfection Treatment by Performic Acid

The above-mentioned indicators showed that the Multilayer cartridge was the most
efficient among the different tested cartridges and that it is the most suitable to be used as
a universal cartridge. It was therefore tested in a real-case application to characterize the
evolution of organic compounds during a disinfection treatment of wastewater effluents by
performic acid (PFA). Raw wastewater effluent and the same effluent treated with 30 ppm
of PFA (contact time of 10 min) were extracted with the Multilayer cartridge and analyzed
by HRMS (Figure 7).

The Multilayer cartridge allowed the detection of a wide number of compounds
covering the whole range of m/z values at low and high retention times. Sample after
treatment showed a significant decrease in the area of the markers with a retention time
between 17 and 21 min and an increase for the markers between 5 and 7 min compared to
the non-treated wastewater.
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This observation suggests that compounds with lower polarity (i.e., higher retention
time) were transformed into more polar ones by the treatment. Table 4 displays the
distribution of the number of markers before and after treatment in different zones defined
by the m/z and retention time ranges. Zone 2 (bigger and more polar molecules) exhibited
a significant increase in both the number of markers and their total area. Zone 1 and zone 3
(molecules with m/z < 500) showed a decrease by almost a third of the number of markers
after treatment, and a decrease in their total intensity as well. Finally, PFA treatment slightly
increased the number of markers in zone 4 (bigger and less polar molecules), but the overall
intensity of signals decreased in that zone. Globally, these results show that PFA treatment
formed more polar molecules and removed a larger proportion of small molecules.
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Table 4. Distribution of markers before and after PFA treatment.

Before PFA After 30 ppm PFA

Number of
Markers

Sum of
Detected

Areas

Number of
Markers

Sum of
Detected

Areas

Zone 1
m/z: 0–500

Retention Time: 0–10 min
4861 2.51 × 108 3781 1.85 × 108

Zone 2
m/z: 500–1000

Retention Time: 0–10 min
996 0.35 × 108 2301 1.36 × 108

Zone 3
m/z: 0–500

Retention Time: 10–25 min
2795 1.43 × 108 1728 0.75 × 108

Zone 4
m/z: 500–1000

Retention Time: 10–25 min
2770 2.93 × 107 3557 1.95 × 108

3. Materials and Methods
3.1. Chemicals and Standards

All standards were obtained from Sigma-Aldrich (Dr. Ehrenstorfer, Augsburg, Ger-
many, purity > 99%). Methanol (MeOH), ammonia (35%), hydrochloric acid (37%), and
formic acid (98%) were LCMS grade and purchased from Fischer Scientific (Illkirch Cedex,
France). Ethyl acetate (EtAc), dichloromethane (DCM), and acetone were obtained from
Merck (Darmstadt, Germany), and acetonitrile (ACN) was purchased from Biosolve
(Dieuze, France), at analytical grade. HPLC water (Milli-Q) was produced from deionized
water using a Millipore Milli-Q system (IQ 7000, Merck, Darmstadt, Germany) equipped
with an LC-pak polisher (Merck, Darmstadt, Germany).

Deuterated standards were used to evaluate matrix effects from different samples, to
evaluate the extraction efficiency on the various SPE phases, and to correct the retention
time of the chromatograms. A mixed solution of 4 deuterated compounds (atenolol-
d7, caffeine-d9, carbamazepine-d8, sulfamethoxazole-d4) was prepared in MeOH at a
concentration of 10 mg/L for further injection in samples.

Before sampling and analysis, glassware was washed with TFD4 (Franklab, Montigny-
le-Bretonneux, France), rinsed with deionized water, and calcined at 500 ◦C to remove any
trace of organic contamination.

3.2. Sample Collection and Preliminary Preparation

Various types of samples were used: Milli-Q water produced in the laboratory, surface
water under anthropic pressure (Marne river, France), and wastewater effluent (WWe).

Thirty liters of water from the Marne River were collected from a bridge at Chennevières-
sur-Marne (GPS coordinates: 48.79071188130754, 2.5215935793518462) downstream the
wastewater treatment plant of Marne Aval (Noisy-le-Grand, France). The sample was
collected in 3 × 10 L amber glass bottles and filtered the same day, using 0.7 µm glass fiber
filters (GF/F Whatman). After homogenization, aliquots of 500 mL were prepared and
completed to 1 L with Milli-Q water in order to avoid potential matrix effects occurring
during the SPE loading step. The initial pH and dissolved organic carbon (DOC) were
8.5 and 1.89 mg C/L, respectively. Some samples were acidified, either to pH 6.5 with 50 µL
of formic acid or to pH 2–3 with 400 µL of formic acid according to recommendations for
specific SPE cartridges.

Ten liters of treated effluent were collected in June 2019 from the wastewater treatment
plant of Seine Amont (Valenton, France) in 10 L amber glass bottles and filtered on 0.7 µm
glass fiber filters (GF/F Whatman). The initial pH and DOC were 7.9 and 7.1 mg C/L,
respectively. One liter subsamples were acidified to pH 6.5 with 50 µL of formic acid.
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3.3. SPE Cartridges
3.3.1. Selection of Cartridges

Strata-X cartridges (500 mg, 6 mL) (Phenomenex, Le Pecq, France) are ionic-based
polymeric sorbents, chosen to retain compounds according to their pKa: Strata X-AW (for
pKa < 5), Strata X-CW (for pKa > 8), Strata X-A (for pKa < 2), Strata X-C (for pKa > 10.5).
Oasis HLB (200 mg, 6 mL) (Waters, Milford, MA, USA) is a reversed-phase cartridge used
to select a wide range of substances, including neutral, basic, acidic, and polar ones. Silica-
based cartridges Strata C18 (200 mg, 6 mL) and Strata SDBL (500 mg, 6 mL) (Phenomenex,
Le Pecq, France) are employed to retain neutral hydrophobic and non-polar molecules.
ENV+ (500 mg, 6 mL) (Biotage, Glamorgen, UK) is a polymeric phase appropriate for the
retention of polar analytes. C18/ENV+ (400 mg, 6 mL) (Biotage, Glamorgen, UK) is a
layered cartridge composed of the previous ENV+ phase as the bottom layer and a C18
phase as the top layer to improve the range of analytes possibly extractable. Finally, a
homemade Multilayer cartridge made of Oasis HLB (200 mg), Isolute ENV+ (150 mg),
Strata X-AW (100 mg), and Strata X-CW (100 mg) was prepared according to the method
developed by Kern et al. [27].

3.3.2. Extraction Protocol

Samples were spiked with the mix of internal standards at 100 ng/L, 24 h prior
to extraction and stored at 4 ◦C. Experimental conditions for conditioning, loading, and
elution on each cartridge followed recommendations of suppliers, or the method developed
by Kern et al. for the Multilayer cartridge [27], and are described in Table 5. All extractions
were carried out on Visiprep (Sigma-Aldrich, Augsburg, Germany) and Autotrace (AT280,
Caliper) SPE systems. All cartridges were loaded with 1 L of sample at pH 6–7, except
for Strata X-A (pH 2–3 recommended) and Oasis HLB, for which both pHs were tested.
Before elution, the cartridges were dried for 30 min. After elution, the extracts were stored
in the dark at 4 ◦C prior to their analysis. SPE extracts were evaporated under a stream of
nitrogen, then reconstituted in 1 mL of Milli-Q water and MeOH (80/20, v/v), and filtered
through 0.2 µm PTFE filters before a 10 µL injection on the analytical system.

Table 5. Description of the methods used for water sample extraction on the different SPE cartridges.

Cartridge Sample Conditioning Washing Eluting

X-A 1 L pH 2–3
Marne

10 mL MeOH
10 mL Milli-Q 10 mL MeOH 10 mL MeOH + 5% formic acid

X-AW 1 L pH 6–7
Marne, MQ, WWe

10 mL MeOH
10 mL Milli-Q 10 mL MeOH 5 mL MeOH + 5% ammonia

5 mL MeOH + 5% formic acid

X-C 1 L pH 6–7
Marne

10 mL MeOH
10 mL Milli-Q pH = 2

10 mL MeOH
+ 0.1 M HCl

5 mL MeOH + 0.1M HCl
5 mL MeOH + 5% ammonia

X-CW 1 L pH 6–7
Marne, MQ, WWe

10 mL MeOH
10 mL Milli-Q 10 mL MeOH 5 mL MeOH + 5% formic acid

5 mL MeOH + 5% ammonia

HLB

1 L pH 2–3
Marne

1 L pH 6–7 Marne, MQ,
WWe

10 mL MeOH
10 mL AcEt
5 mL DCM

10 mL Milli-Q

No washing
5 mL MeOH
5 mL AcEt
5 mL DCM

ENV+ 1 L pH 6–7
Marne, MQ, WWe

10 mL MeOH
10 mL Milli-Q

5 mL Milli-Q /MeOH
(95/5, v/v)

5 mL MeOH
5 mL acetone + 5% ammonia

C18 1 L pH 6–7
Marne, MQ, WWe

10 mL MeOH
10 mL Milli-Q No washing 5 mL MeOH

5 mL acetone + 5% ammonia

C18/ENV+ 1 L pH 6–7
Marne

10 mL MeOH
10 mL Milli-Q No washing 5mL MeOH

5mL acetone + 5% ammonia

SDBL 1 L pH 6–7
Marne

10 mL MeOH
10 mL Milli-Q pH = 4 No washing 5 mL MeOH

5 mL acetone + 5% ammonia

Multilayer 1 L pH 6–7
Marne, MQ, WWe

10 mL MeOH
10 mL Milli-Q No washing

6 mL AcEt/MeOH (50/50, v/v) +
1.43% ammonia

3 mL AcEt/MeOH (50/50, v/v) +
1.7% formic acid
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3.4. UV-Visible and 3D Fluorescence Analyses

Spectroscopic measurements were performed on samples before and after filtration
on the SPE cartridges (loading phase). UV-Visible analyses were conducted on a spec-
trophotometer (UviLine 9400, Secomam, Aqualabo, Champigny-sur-Marne, France), and
3D-fluorescence spectra were obtained by a spectrofluorometer (FP-8300, Jasco, Pfungstadt,
Germany). Those apparatuses were both equipped with a Xenon lamp and a 1 cm-quartz
cell. For the fluorescence spectra, EEM were generated by scanning excitation wavelengths
from 240 to 450 nm (every 5 nm), and the emission wavelengths were detected between
250 to 600 nm (every 2 nm), at a scan speed of 1000 nm/min and response at 0.1 s. To
avoid any effect of the intern filter, samples with an absorbance at 254 nm higher than 0.1
were diluted.

3D-fluoresence indexes where chose according to previous studies [40,43]. Fluores-
cence regional integration (FRI) was performed, regions I to V were calculated and compared.

3.5. LC-HRMS Analyses

LC-HRMS analyses of the Marne River samples were conducted on SYNAPT HDMS
QTOF (Waters) coupled with a Nano ACQUITY UPLC system (Waters). The column was an
ACQUITY UPLC Peptide BEH C18, 130 Å (100 µm × 100 mm, 1.7 µm). The mobile phase
was Milli-Q water with 0.1% formic acid (A) and ACN (B) following the gradient described
in Supplementary Materials Table S1, for a total run time of 40 min. Analyses were
performed in positive mode (ESI+) with screening between 50 and 1000 m/z. LC-HRMS
analyses of Milli-Q and WWe samples were performed with a Vion–UPLC-IMS-QTOF
(Waters) equipped with an ACQUITY UPLC BEH C18 (2.1 × 100 mm, 1.7 µm) column and
the corresponding pre-column. The mobile phase was Milli-Q water + 0.1% formic acid
(A) and ACN + 0.1% formic acid (B) following the gradient described in Supplementary
Materials Table S1, for a total run time of 34 min. Analyses were performed in positive
mode (ESI+) with screening between 50 and 1000 m/z. To ensure data quality, several steps
were implemented.

Quality insurance procedure: Before each analysis, a quality reference standard,
consisting of 9 components (Acetaminophen, Caffeine, Leucine enkephalin, Reserpine,
Sulfadimethoxine, Sulfaguanidine, Terfenadine, Val-tyr-val, Verapamil), was injected five
times to check the system performance by calculating the mass error deviation, the average
peak width and, when available, the CCS (collision cross section) error for those compounds.
If the mass error deviation was higher than 2 ppm or the peak width was longer than
3.0 sec, a system calibration was conducted. The same procedure was repeated until the
expected conditions were met. Each sampling sequence began with three blank injections
to wash the column and five pool injections to stabilize the column. The pool sample
consists in a mix of equal volume of each sample and is used as a quality control. Each
sample was then injected in randomized triplicate to minimize the effect of instrumental
deviation. For data treatment, only the features detected in every replicate of a given
sample were considered. Every 10 injections, a pool was re-injected to monitor the system.
The clustering of these pool samples in the PCA was checked to assess the reproducibility
of the system.

Raw HRMS data were exported directly after acquisition and converted in *.mzML
format via MSConvert (Version 3) [50,51] for further treatment in R software (Version 3.6.2).
Pre-treatment of raw data was performed with the Patroon package [52], using OpenMS
for peak picking and alignment. Features that were not present in all replicates of a given
sample were discarded. PCA was performed with the FactoMineR [53] and factoextra [54]
packages, and Upset diagrams were plotted with the UpSetR package [55].

The extraction efficiency of an SPE cartridge was determined based on the area of
detected internal standards in the samples compared to the area of a standard mix injected.
The number of detected features and the total area of the signal (i.e., sum of the areas of
each feature) were compared for each cartridge. The average m/z and average retention of
a sample were calculated from the m/z values and retention times of each feature detected
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in the sample. Retention was expressed as the percentage of ACN needed to elute a given
feature at the corresponding retention time. Values of average m/z and average retention
were also weighed by the area of each feature.

4. Conclusions

The goal of this work was to compare the efficiency of several commercially available
SPE cartridges and of a homemade Multilayer cartridge (as developed by Kern et al. [27]) for
non-target screening purposes. Various parameters were monitored, such as the recovery
of a limited number of analytical standards, the number and properties of detected features
in HRMS, or the global retention of DOM (through 3D fluorescence measurements) on each
cartridge. The Multilayer cartridge was the most effective at retaining internal standards
and a large range of HRMS features, and it was not as affected by the adsorption of DOM
as other cartridges (i.e., adsorption competition effects and/or matrix effects). It seemed
to take advantage of the four phases involved in its composition (HLB, ENV+, XCW, and
XAW) in terms of diversity of compounds (i.e., polarity and molecular size).

Although the other cartridges had some specificity missed by this Multilayer cartridge
(e.g., an important number of specific features was only retained on the ENV+ cartridge),
its efficiency in extracting a great number of compounds was clearly demonstrated. This
observation could be further confirmed by using different analytical tools (e.g., gas chro-
matography) or different ionization modes and sources to increase the range of molecules
detected. Moreover, a further investigation involving the tentative identification of some
retained features could be performed. The optimization of extraction conditions (e.g.,
masses and combinations of sorbents, types, and volumes of eluting solvents) could also
be investigated to retain an even greater number of features. It would finally be useful to
better characterize the chemical space (log Kow, pKa, chemical functions, etc.) covered by
each cartridge. A larger number of internal standards covering a broader range of chemical
properties could thus be studied. This could help determine the relevance of each type of
cartridge towards specific purposes (e.g., the detection of a larger number of polar or ionic
compounds or some specific families of molecules).

Supplementary Materials: The following are available online. Figure S1: EEM matrices of Marne
river (A) before extraction, (B) after extraction on X-A, (C) after extraction on HLB, (D) after extraction
on C18/ENV+, (E) after extraction on SDBL, (F) after extraction on the Multilayer cartridge, Table S1:
Description of the gradient used for non-target analysis.
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