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Abstract: The mucopolysaccharidoses (MPSs) include 11 different conditions caused by specific
enzyme deficiencies in the degradation pathway of glycosaminoglycans (GAGs). Although most MPS
types present increased levels of GAGs in tissues, including blood and urine, diagnosis is challenging
as specific enzyme assays are needed for the correct diagnosis. Enzyme assays are usually performed
in blood, with some samples (as leukocytes) providing a final diagnosis, while others (such as dried
blood spots) still being considered as screening methods. The identification of variants in the specific
genes that encode each MPS-related enzyme is helpful for diagnosis confirmation (when needed),
carrier detection, genetic counseling, prenatal diagnosis (preferably in combination with enzyme
assays) and phenotype prediction. Although the usual diagnostic flow in high-risk patients starts with
the measurement of urinary GAGs, it continues with specific enzyme assays and is completed with
mutation identification; there is a growing trend to have genotype-based investigations performed
at the beginning of the investigation. In such cases, confirmation of pathogenicity of the variants
identified should be confirmed by measurement of enzyme activity and/or identification and/or
quantification of GAG species. As there is a growing number of countries performing newborn
screening for MPS diseases, the investigation of a low enzyme activity by the measurement of GAG
species concentration and identification of gene mutations in the same DBS sample is recommended
before the suspicion of MPS is taken to the family. With specific therapies already available for most
MPS patients, and with clinical trials in progress for many conditions, the specific diagnosis of MPS
as early as possible is becoming increasingly necessary. In this review, we describe traditional and the
most up to date diagnostic methods for mucopolysaccharidoses.

Keywords: mucopolysaccharidoses; glycosaminoglycans; enzyme replacement therapy; tandem
mass spectrometry; newborn screening.

1. Introduction

The mucopolysaccharidoses (MPSs) comprises 11 lysosomal diseases in which there is a deficiency
in a specific step of the degradation of glycosaminoglycans (GAGs). This deficiency leads to storage
of GAGs in tissues and to a range of clinical consequences, which may include CNS impairment,
depending on the specific MPS type [1,2]. Each MPS is clinically heterogeneous, with severe and
attenuated cases within each MPS type, a fact that may be related to small variations in the residual
enzyme activity, conditioned by the genetic variation present in the patient [3].
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The diagnosis of MPSs is currently based on the evaluation of GAGs, measurement of enzyme
activities and identification of genetic variants. The correct diagnosis enables specific therapeutic
measures (available for most MPS patients) to be taken, and also phenotype prediction, carrier
identification, genetic counseling, and prenatal diagnosis. As therapy outcomes seem to be better
when the disease is identified early in life, screening for MPS in high-risk groups and even newborn
screening programs for selected MPS types are taking place [2,4–8].

This chapter provides an overview of the tools available for the diagnosis of MPS, and it discusses
the use of these tools in the investigation of suspected patients, in the screening of high-risk groups
and in newborn screening.

2. Clinical Suspicion and High-Risk Groups

Where no newborn screening program is available, physicians face the challenge of recognizing
an MPS patient in the early stages of the disease, before irreversible damage has developed. In many
cases, patients with MPSs and other LDs (lysosomal disorders) may present specific signs that are
highly suggestive of the diagnosis [9]. Nevertheless, delayed diagnoses are still common and even
efforts to increase awareness may have a limited impact [10,11]. In this section, we will discuss the
strategies for the selective screening of MPS in high-risk groups.

In some case reports, a presenting manifestation was the key to the suspicion of MPS [12–14].
In those cases, MPS-related signs and symptoms were already present (see Table 1), although the
diagnosis was not considered before. On the other hand, it seems very unlikely that patients
presenting with an isolated manifestation will be diagnosed with MPS if not under a selective
screening program and/or a simultaneous screening for several disorders with overlapping signs
and symptoms. Among the possible isolated manifestations of MPS, developmental delay and
osteoarticular manifestations may be relevant for screening programs that aim at the early diagnosis of
these conditions.

Table 1. Signs and symptoms that should raise clinical suspicion of MPS.

Sign/Symptom of MPS
MPS Types

I II III IV VI VII IX Plus

Head and neck

Coarse facial features + + + + + + +

Hypertrichosis/thick scalp hair + + + + + +

Hearing loss + + + + + + +

Macrocephaly/scaphocephaly + + + + +

Corneal clouding + + + +

Abnormal dentition + + + + + +

J-shaped sella turcica + + + + +

Osteoarticular

Short stature + + + + + +

Joint stiffness + + + + + + +

Hip dysplasia + + + + + + +

Thoracolumbar kyphosis + + + + + +

Genu valgum + + + + +

Odontoid dysplasia + + + +

Claw hands + + + + +

Bullet-shaped phalanges + + + + +

Carpal tunnel syndrome + + +

Joint laxity +
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Table 1. Cont.

Sign/Symptom of MPS
MPS Types

I II III IV VI VII IX Plus

Cardiovascular
Valve thickening / dysfunction + + + + + +

Left ventricular hypertrophy + + + + + + +

Neurological

Developmental delay/intellectual
disability + + + + +

Ventriculomegaly + + + + +

Dilated perivascular spaces + + + +

Hyperactive / aggressive behavior + +

Airways Recurrent respiratory infections + + + + + + +

Obstructive airway disease + + + + + +

Abdomen
Hepatomegaly/splenomegaly + + + + +

Umbilical/inguinal hernia + + + +

Others

Abnormal granulation in leukocytes + + + + + + +

Fetal hydrops + + +

Proteinuria +

Cytopenias +

A plus sign (+) indicates that the manifestation is associated to that specific mucopolysaccharidosis (MPS) disorder.
MPSPS: mucopolysaccharidosis-plus syndrome.

In the early stages of neuronopathic forms of MPS, particularly MPS III, developmental delay or
regression of skills may be the only prominent manifestation. In a study that included 944 unrelated
patients with an intellectual disability of unknown cause, seven patients were diagnosed with an
inborn error of metabolism, none of them with MPS [15]. Regardless of the low diagnostic yield,
urinary GAGs are usually included in many protocols for the investigation of intellectual disability in
the first-line investigation [16].

Patients with attenuated phenotypes of MPS are likely to consult rheumatologists and orthopedists
before being diagnosed, due to several osteoarticular manifestations, including stiff joints and carpal
tunnel syndrome [17,18]. A study that screened 55 patients with osteoarticular problems of unknown
etiology found one with attenuated MPS II [19]. In another study, 188 patients with juvenile idiopathic
arthritis were screened for MPS IX, all with normal results [20]. Finally, a recent study in 425 adult
subjects with carpal tunnel syndrome performed in Denmark failed to find any cases of MPS I, MPS II
or MPS VI [21].

The low diagnostic yields of those studies that focused on single manifestations may be explained
by the rarity of MPS as compared to other causes of intellectual disability and osteoarticular problems.
Considering the rarity of MPS and the nonspecific nature of isolated manifestations, investigating
patients with a combination of manifestations is also a reasonable approach. For instance, in a
study from Malaysia, high-risk patients were selected based on having at least two of a list of eight
signs and symptoms related to MPS [22]. Among the 60 patients investigated, 15 of them were
diagnosed with an MPS disorder. As there is a significant variation in the estimated birth prevalence
of the mucopolysaccharidoses across the world [23,24], it is also important to emphasize that studies
describing the diagnostic yield of the screening of high-risk groups may not be reproducible in
different populations.

To aid clinicians in recognizing high-risk groups that should be investigated by selective screening,
the combination of signs and symptoms of MPS may be summarized in suspicion scores or mnemonics.
Using the data of patients included in the Hunter Outcome Survey (HOS), HUNTER, was developed,
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a mnemonic screening tool for MPS II (Hernia/Hearing, Unusual faces, Nasal obstruction, Tongue and
Tonsils, Enlarged liver and spleen, Respiration/Range of Motion). The mnemonic score was weighted
according to the likelihood of the sign or symptom to be specifically associated with Hunter syndrome.
A score of six or more was found to have a 95% accuracy for the diagnosis of MPS II, as assessed in the
HOS sample, although that was not validated in the clinical setting [25].

Focusing on the cardiologists, a list for the identification of systemic and cardiovascular “red
flags” for the clinical suspicion of MPS in children was proposed: valve diseases, cardiomyopathy;
hump/spinal column malformations; and the triad inguinal hernia + respiratory infections + hip
dysplasia [26]. For adults, the same authors proposed as red flags: non-inflammatory aortopathy;
corneal opacity; and retinitis. Other similar red flags were proposed for pediatric endocrinologists
when evaluating children with short stature [12].

Besides the signs and symptoms, information on family history is also very important for
the suspicion of MPS. Since MPS types are either autosomal recessive or X-linked, a male-to-male
transmission of the phenotype makes it unlikely to be caused by an MPS disorder. Table 2 summarizes
high-risk groups, for whom an investigation for mucopolysaccharidoses and other differential diagnoses
is suggested.

Table 2. High-risk groups for MPS.

Phenotype Main Types of MPS Differential Diagnoses

“Hurler-like phenotype” (Coarse facial
features, hepatosplenomegaly, dysostosis

multiplex and claw hand deformities)

I, II, VI, VII and
MPSPS

Multiple sulfatase deficiency, GM1
gangliosidosis, Galactosialidosis,
Mucolipidosis, Oligosacaridosis

Progressive joint disease with
childhood onset

IX; attenuated forms
of other types of MPS

Camptodactyly-arthropathy-coxa
vara-pericarditis syndrome, Blau

syndrome, Progressive
pseudorheumatoid dysplasia,

Multicentric carpotarsal osteolysis
syndrome, Czech dysplasia

Nonimmune hydrops fetalis I, IV and VII
Malformations, Chromosomal

disorders, other LDs, infections,
skeletal dysplasias

Developmental delay/regression and
Hyperactivity/aggressive behavior III Several other metabolic, genetic and

acquired causes of mental retardation

Spondyloepiphyseal dysplasia IV
Dyggve-Melchior-Clausen dysplasia

and other spondylo-epi(meta)physeal
dysplasias

GM1: gangliosidosis type I; LDs: lysosomal disorders; MPSPS: mucopolysaccharidosis-plus syndrome.

3. Biomarkers

Biomarkers are analytes that can be measured and used to indicate a pathological or physiological
process, thus they allow discrimination within disease vs. non-pathological events. If well-chosen,
a biomarker can be helpful for diagnosis, prognosis, and they might also be useful to monitor therapeutic
efficacy [27–29].

At present, with the advent of robust tools such as next-generation sequencing and tandem mass
spectrometry, our knowledge of disease mechanisms and pathophysiology has increased, allowing the
identification of biomarkers that have a higher probability of being informative [30].

As MPSs are primarily associated to the GAG storage, GAGs are a natural biomarker for these
diseases [1,31]. There are different subclasses of GAGs that can be accumulated according to the specific
enzymatic defect: dermatan sulfate (DS), heparan sulfate (HS), keratan sulfate (KS) and hyaluronan
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(HA) [1,32]. This accumulation can also vary according to the residual levels of enzyme activity, type of
genetic variant, and environmental factors [33,34].

Urinary GAGs (uGAGs) analyses with dimethyl methylene blue (DMB) (Figure 1) and
electrophoresis (Figure 2) have been the most used biomarkers for MPS [35–39]. This marker
has also been used with reliable results as a surrogate marker in clinical trials of enzyme replacement
therapy (ERT) [40–43]. Careful evaluation should be performed of the long-term measurements
of GAGs due to influence of age (Figure 1), anthropometric variables, renal function, phenotype
correlations, and potential causes for false-negative results [32,39,44–46]. KS also might be used as a
marker for skeletal dysplasia [47].
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Figure 1. Distribution of urinary glycosaminoglycans by age. MPS I: mucopolysaccharidosis
type I; MPS II: mucopolysaccharidosis type II; MPS IIIA: mucopolysaccharidosis type IIIA; MPS
VI: mucopolysaccharidosis type VI; MPS VII: mucopolysaccharidosis type VII; DMB: dimethyl
methylene blue.

To quantify GAGs in different matrices, liquid chromatography tandem mass spectrometry has
been used [48]. GAGs can be quantified in: urine [34,49–54], serum/plasma [34,48,54–56], dried
blood spots [57–59] (Figure 3), amniotic fluid [60], cerebrospinal fluid [34,61], cultured cells [34],
and tissues [62]. Some of these assays can be used for newborn screening of MPSs [57,63] or even to
allow the discrimination of specific disease subtypes [53].

Besides the use of direct markers by analysis of GAGs, indirect markers are also useful. These
are molecules that are not the primary storage material, but affect cells, tissues or organs due to the
primary storage [32]. Fibroblast growth factor-2 (FGF-2) is a molecule with high affinity for HS [64],
thus it can be useful for HS detection [65].

The heparin cofactor II-thrombin complex (HCII-T) is also affected by GAG metabolism [32,66].
It has been shown that when DS levels are elevated, HCII-T levels are also elevated [67]. HCII-T is
also elevated in the serum of MPS I, II, III, IV and VI patients [68]. This marker has also been used for
long-term ERT studies in MPS I, II and MPS VI patients [67,69,70]. The biomarker levels are affected by
high-titers of antibodies [67,71].
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Figure 2. Electrophoresis of urinary glycosaminoglycans. CS: chondroitin sulfate, HS: heparan sulfate,
KS: keratan sulfate. Top wells: 1, 2, 4, 5, 7, 8, 10, 11, 13, 15, 17 & 20 are not suggestive of MPS. 3, 16 &
18: Patients with DS suggestive of MPS VI (but confirmation with enzyme assay is needed). 6 & 12:
Patients with DS and HS (perform enzyme assay for MPS I, II, and VII). 9, 14 & 19: patients with KS
(perform enzyme assay for MPS IVA & IVB).

Another biomarker that can be used is dipeptidyl peptidase (DDP) IV (CD26). Surface-enhanced
laser desorption/ionization time of flight (SELDI-TOF) mass spectrometry showed the elevation of
DDP-IV in serum of MPS patients, followed by a reduction post-bone-marrow-transplantation (BMT)
or ERT [72,73].

The lysosomal impairment seen in the MPS due to the GAG storage also leads to a complex
dysfunction that affects secondary markers from cascades downstream, such as glycosphingolipids,
phospholipids, and cholesterol [74–79]. Glycosphingolipids (GSLs) such as the gangliosides GM1 and
GM3 can be used as markers for CNS impairment [75,77,80]. These GSLs have also been used as markers
for therapeutic efficacy post-gene-therapy [81] and post-intrathecal-ERT [82]. Bis (monoacylglycerol)
phosphate (BMP) is a phospholipid located within the endosomal/lysosomal membrane that contributes
to the degradation of glycosphingolipids and transportation of cholesterol. MPS I, II and IIIA patients
presented higher plasmatic levels of BMP compared to controls [83].
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Figure 3. A. Chromatograms of glycosaminoglycans analyzed in dried blood spots from liquid
chromatography tandem mass spectrometry in dried blood spots of a control and an MPS IIIB patient.
B. Table shows the area counts of the chromatograms. HS-NS: heparan sulfate (0S and NS); MPS IIIB:
mucopolysaccharidosis type IIIB.

It is also well established in the pathophysiology of MPS that the progressive GAG storage leads
to constant inflammation and immune responses, furthermore, several inflammatory and oxidative
stress markers can be used as biomarkers for MPS [84–92].

Nonetheless, several biomarkers have been proposed for the diagnosis and follow-up of MPS
patients. However, no biomarker has yet been truly elevated or reduced post-treatment for all
MPS subtypes. uGAGs have been widely used, but they do not directly correlate to the clinical
impairment and still have limitations for some MPS subtypes. Furthermore, no biomarker can
predict and discriminate between severe phenotypes, although great progress has been made with the
quantification of GAGs in the CSF with correlations with brain magnetic resonance imaging (MRI).
However, long-term studies are still required.

4. Enzyme Assays

In several cases, the biochemical investigation of an MPS started with the analyses of
glycosaminoglycans (GAG) in urine before the enzyme assay; this is performed because the GAG
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storage is due to a primary defect in the enzymatic activity. This analysis in urine can then drive more
robust specific enzyme assays, saving time and costs. The GAG monitoring also offers the advantage
of treatment monitoring.

For post-natal evaluations, the sample types that are most used are the dried blood spots (DBS),
plasma, leukocytes, and fibroblasts, while, for the pre-natal investigations, chorionic villi and amniotic
fluid are most used. In the post-natal period, the gold standard is the quantification of enzymes in
leukocytes or fibroblasts, and the results for DBS require confirmation [4,93].

Fibroblasts offer the advantage of minimizing the variation effects in temperature and shipping
due to the cell culture in the lab. The use of fibroblasts also means a larger amount of sample in which
a larger number of cells can be cultured and assays can be repeated, without the need for a new sample
collection. The disadvantages of the use of fibroblasts are related to the invasive collection of skin
biopsies and a longer turnaround time for the results (cell culture usually takes about 2 to 4 weeks),
and sometimes there is a risk of contamination with no cell growth. This procedure is also more
expensive. Leukocytes from whole blood are an alternative to the enzyme assay without the need for
cell culture, thus it allows a faster turnaround time of less than 2 weeks. This is very useful, for example
in a post-natal investigation of families with a history of MPS I. In most cases, leukocyte samples
provide enough cell counts for the analyses, or, if cells are not enough, a new sample collection might
be requested [94]. Furthermore, leukocyte samples are highly susceptible to temperature variations,
which are a big issue in tropical countries. To avoid sample deterioration, it is usually recommended
that samples must arrive in the laboratory within 24 to 48h post-draw [95].

Plasma samples may be useful for the assay of some MPS enzymes (associated with MPS I, MPS
II, MPS IIIB, and MPS VII) when leucocytes cannot be obtained, especially when the sample cannot
be shipped immediately after collection. In this case, plasma could be obtained and stored frozen
until shipment is possible. Generally, leukocytes are preferable as a more reliable source of enzymes.
However, after careful usage of plasma for MPS I and VII evaluation, we have found false positives.

DBS is a very interesting alternative, mainly for several regions where the shipment of blood or
skin biopsies is a challenge; and it is already the sample of choice for newborn screening programs [5].
However, as described for leukocytes, proper sample collection and shipping are critical for the success
of the analysis. The date of collection should always be written on the card to aid the interpretation of
results. The card should be dried at room temperature for at least 4 h. Due to the temperature-sensitive
nature of some enzymes in a DBS [96], cards should be stored at 4◦C after drying and shipped as
promptly as possible; the longer the period of time between collection and analysis, the higher the
risk of a false positive result. There is no doubt about the power of the use of DBS in enzyme assays
for screening, nonetheless, this sample is still not considered a gold standard, such as fibroblasts or
leukocytes, because there is a smaller number of cells per spot. There is also a need for further studies
with regards to the stability of the enzyme activity in DBS, especially for samples exposed to longer
shipping times and increased temperatures. Thus, positive results in the DBS screening should be
confirmed in leukocytes and or fibroblasts [94].

The most common reaction employed is based on the quantification of enzyme activity in
biological fluids through catalysis. In several methods for lysosomal enzyme quantification,
there is the use of endpoint quantification that is then determined by the substrate or product
concentration at a specific timepoint after sample addition. Most enzyme assays for lysosomal disorders
diagnosis rely on spectrofluorometry, which uses enzyme-specific substrates with a fluorogenic radical
(4-methylumbelliferyl) to generate a fluorophore product that will absorb energy at a specific wavelength
and then emit it at another, longer wavelength to determine the quantity of product produced.
Spectrophotometry is also a widely used technique based on chromophores (as p-nitrochatechol sulfate
specific for arylsulfatase B) that excite themselves and emit colors depending on the energy released by
the change from the basal to the excited state [2] (Table 3).
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Table 3. Diagnosis of each MPS according to the methodology and sample types.

MPS Type * Deficient Enzyme Methods Samples

MPS I α-L-iduronidase Spectrofluorometry, MS/MS, DMF-F L, F, DBS, CV, A
MPS II Iduronate-2-sulfatase Spectrofluorometry, MS/MS, DMF-F L, F, DBS, CV, A

MPS IIIA Heparin sulfamidase Spectrofluorometry, MS/MS L, F, CV, A, DBS
MPS IIIB N-acetylglucosaminidase Spectrofluorometry, MS/MS L, F, DBS, CV, A
MPS IIIC N-acetyl-transferase Spectrofluorometry L, F, CV, A*
MPS IIID N-acetylglucosamine-6-sulfatase Spectrofluorometry L, F, CV, A*
MPS IVA N-acetylgalactosamine-6-sulfatase Spectrofluorometry, MS/MS L, F, DBS, CV, A
MPS IVB ß-galactosidase Spectrofluorometry L, F, DBS, CV, A
MPS VI Arylsulfatase B Spectrophotometry, MS/MS L, F, DBS, CV, A
MPS VII ß-glucuronidase Spectrofluorometry, MS/MS L, F, DBS, CV, A

L: leukocytes, F: fibroblasts, CV: chorionic villi, A: amniocytes, MS/MS: tandem mass spectrometry, DMF-F: digital
microfluidics methods use DBS as sample. No published results for the analysis of MPS IIIC and D in dried blood
spots (DBS) by MS/MS until this moment. * MPS IX has a peculiar presentation and is not usually searched in the
diagnostic work-ups.

To assure the quality of the enzymatic assays, it is important to always include positive and
negative controls to analyze an additional enzyme, to confirm the integrity of the sample. There is
also the possibility of multiple sulfatase deficiency (MSD), in which the reference enzyme should be a
sulfatase to perform the differential diagnosis. With regards to mucolipidosis II/III (ML II/III) lysosomal
enzymes are not targeted to specific cell types and excreted in the extracellular matrix, leading to high
enzyme activity in plasma and DBS and low activity in fibroblasts. Nonetheless, careful examination
must be taken in fibroblasts because the finding of an enzymatic defect does not exclude the possibility
of MLII/III [93].

Specific enzyme deficiencies are associated with each MPS subtype. Some patients have very low
enzyme levels in vitro, but normal levels in vivo; this is known as pseudodeficiency due to genetic
polymorphisms affecting the activity of one of these lysosomal hydrolases in the in vitro testing,
but it is not significant for the in vivo GAG degradation. The potential presence of an enzymatic
pseudodeficiency poses a limitation for enzymatic tests and should be investigated whenever the results
from an enzymatic assay do not concur with the clinical phenotype of the patient. Pseudodeficiency
has been reported for MPS I, IIIB, IVB, VI, and VII, usually associated with specific gene variants [97].

It is important to emphasize that the residual levels of the enzyme are not related to the phenotype
or disease severity. Biochemical tests in urine (GAG assays) or in cells (enzyme reactions) elucidate the
diagnosis, but molecular testing is very important to characterize the disease and, in some cases, it aids
the phenotype prediction [4], which is also important to rule out pseudodeficiency.

5. Molecular Genetics Analyses

Although enzyme activity assay is considered the gold standard for the diagnosis of MPS disorders,
molecular genetic testing is recommended [98] and, whenever possible, diagnostic conclusions should
be made taking the clinical, biochemical, and molecular genetics results into consideration.

Molecular analysis is helpful for: (a) the confirmation of an MPS diagnosis when an enzyme
assay in leukocytes or fibroblasts is not possible, as a diagnosis cannot depend only on urinary GAGs
and/or enzyme assay in DBS [99]; (b) the confirmation of an MPS diagnosis when the results of enzyme
activity analysis are not clear (especially when a high residual activity is observed, or when the sample
conditions for enzyme assay are not ideal); (c) in cases with low enzyme activity and normal urinary
GAGs, where molecular analysis is required to discriminate pseudodeficiency, carrier status and
normal status [100]; (d) Phenotype prediction, which may be important for management decisions
as some mutations have been associated with milder phenotypes—MPS I (p.Ser633Trp), MPS IIIA
(p.Arg206Pro, p.Ser347Phe/p.Asp444Gly and p.Glu369Lys/p.Pro128Leu), MPS IIIC (p.Gly262Arg and
p.Ser539Cys)—while others have been associated with the severe phenotype—MPS I (p.Trp402Ter
and p.Gln70Ter), MPS II (p.Ser333Leu and IDS total gene deletions), MPS IIIA (p.Arg433Gln) [101,
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102]—(e) identification of the suitability of the patient to a mutation-specific therapy, such as stop
codon read-through [103–105]; (f) prenatal diagnosis, alternatively or in addition to biochemical
diagnosis [106,107]; (g) diagnosis of MPS-like syndromes (such as MPSPS, which results from
non-enzymatic lysosomal protein deficiency, and therefore has increased GAG excretion with normal
activity of the MPS-related enzymes.)

There is a high allelic heterogeneity among genes associated with MPS, which is the main
cause of the wide spectrum observed in these disorders and cannot always be correlated with
residual enzyme activity [108]. To date, more than 2200 mutations have been reported in all
11 genes related to MPS, with the majority of individuals showing private mutations (~70%) [109,110].
This broad mutational spectrum is composed mostly by missense/nonsense variants (64.6%), followed
by small deletion/insertions/indels (19.6%), splicing defects (8.1%), complex rearrangements (4%), gross
deletion/insertion/indels (3.6%) and defects in regulatory regions (0.2%) (http://www.hgmd.cf.ac.uk/ac)
(Table 4).

Table 4. Review of disease-causing mutations in the Mucopolysaccharidosis.

Disorder Gene Chr. Pathogenic Variants
Reported *

Mutation Type (%)

M/N S R SD/SI/SID GD/GI/GID CR

MPS I IDUA 4p16 292 56.9 15.8 0.3 23.6 2.4 1
MPS II IDS Xq28 659 49.8 9.3 0 29.1 8.8 3

MPS IIIA SGSH 17q25 150 76.6 2 0 18.7 2.7 0
MPS IIIB NAGLU 17q21 177 67.3 4.5 0 23.7 4.5 0
MPS IIIC HGSNAT 8p11 72 55.6 19.4 0 16.7 6.9 1.4
MPC IIID GNS 12q14 25 28 16 0 40 8 8
MPS IVA GALNS 16q24 348 74.4 9.8 0 11.5 3.4 0.9
MPS IVB GLB1 3p21 234 76 7.3 0 15.4 1.3 0
MPS VI ARSB 5q14 208 76 5.2 0 15.4 3.4 0
MPS VII GUSB 17q21 66 81.8 7.6 1.5 7.6 1.5 0
MPS IX HYAL1 3p21 3 33.4 0 0 33.3 0 33.3

MPSPS # VPS33A 12q24 1 100 0 0 0 0 0
Total 2235 64.6 8 0.2 19.6 3.6 4

Chr: chromosome, M/N: missense/ nonsense, S: splicing, R: regulatory, SD: small deletions, SI: small insertions, SID:
Small indels, GD: gross deletions, GI: gross insertions, GID: Gross indels, CR: complex rearrangements. # MPSPS:
mucopolysaccharidosis-plus syndrome; *: HGMD professional 2019.1 (accessed on: August 15 2019).

Different molecular approaches for rapid detection of disease-causing mutations are available,
each one with its own indications and limitations [102]. Sanger sequencing remains the gold standard
method for the identification of genetic variations (point mutations and small insertions and deletions)
in these monogenic disorders. However, due to the high level of allelic heterogeneity and the fact
that this methodology can only analyze one DNA segment/exon at a time, it is a labor-intensive,
time-consuming and expensive process. Currently, this methodology is used to investigate subjects in
a family with a known mutation in a specific MPS gene.

In general, sequence analysis has the potential to detect pathogenic variants in 88.2 to 98.8% of
probands with the MPS phenotype, mostly point mutations and small insertions/deletions. For the
detection of other types of variants, such as complex rearrangements, there are methods based
on gene-targeted deletion/duplication analysis as quantitative polymerase chain reaction (qPCR),
long-range PCR, Multiplex Ligation-Dependent Probe Amplification (MLPA), gene-targeted microarray
designed to detect single-exon and multi-exon deletions or duplications that can be used to complement
the molecular strategy.

Furthermore, new technologies, such as next-generation sequencing (NGS), are becoming more
accessible and relatively affordable for the MPS diagnostic routine. This technology was revealed
as a powerful approach to overcome the wide clinical and genetic heterogeneity of MPS, allowing
the simultaneous screening of several MPS-related genes with shorter turn-around times for the final
report. NGS applications include the sequencing of a PCR-amplified set of specific genomic regions

http://www.hgmd.cf.ac.uk/ac
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(NGS gene panel or Targeted NGS, TNGS), and the sequencing of whole exome (WES) and whole
genome (WGS).

The TNGS of MPS-associated genes is an interesting option for mutation detection in terms of
cost and availability and could be the best option if the clinical and biochemical findings point towards
a particular MPS type/subtype, increasing diagnostic yield. One of the advantages of this approach,
compared to whole-exome and whole-genome analysis, is that less effort in terms of bioinformatics
and computational power is required, since a significantly lesser amount of data is analyzed. The
previous results of three custom panels designed to amplify the coding regions of 11 MPS-associated
genes demonstrated the high sensitivity and specificity of a TNGS approach to mutation identification
when compared to the gold standard (Sanger sequencing), leading to the detection of 250 variants and
a 90% breadth of coverage of the targets [7].

In this scenario, WES/WGS could be valuable diagnostic tools: (a) to find novel genes associated
with rare conditions, as the newly discovered MPS like syndrome (MPSPS) [111,112]; (b) to expand
the recognized phenotypic spectrum of a well-known disease [113–116]; (c) to elucidate complex
phenotypes, as reported by the group of Kaissi et al., when the genetic confirmation of MPS genes
involved in a pair of siblings adds to the obscure nature of the disease [117] and (d) as a first-tier
diagnostic tool for MPS, with subsequent traditional biochemical testing (GAG quantification and
enzyme assay) to confirm molecular diagnosis, in an inversion of the traditional diagnostic algorithm,
which may be a trend for the future if the cost of sequencing and the number of laboratories that
continue to perform sophisticated enzyme assays continues to decrease [118].

Ethical aspects are one of the main challenges of WES/WGS due to incidental findings, such as the
identification of pathogenic mutations in genes not related to the main investigation [119]. Careful
consideration will also need to be given to variants of unknown significance (VUS), identified through
NGS. An in-depth analysis of this type of variant should be taken into consideration to decide the most
appropriate clinical management.

6. Newborn Screening

Newborn screening is extremely powerful for conditions that are not too rare and whose patients
are usually asymptomatic at birth. MPSs are progressive, debilitating, and often life-threatening
conditions. The correct diagnosis for these conditions usually takes several years, in what is known as
the “MPS odyssey”, and treatment is already approved for several of the MPS subtypes. Thus, NBS for
MPS is tremendously important once early diagnosis leads to early intervention, which could make a
significant difference in the patient’s outcomes and prevent debilitating manifestations [120].

Since 2016, MPS I has been officially added to the recommended uniform screening panel (RUSP) in
the United States, allowing several states to universally screen for this disorder, while others are still in
preparation [121–124] (https://www.newsteps.org/resources/newborn-screening-status-all-disorders)
(Figure 4). The state of Illinois, in the USA, is also universally screening for MPS II, in addition to MPS
I [125]. Screening for MPS is also routine in Taiwan, including MPS I, II and VI [126,127] and in some
regions of Italy [120,128]. Pilot studies for screening of MPS, mainly for MPS I, were performed in
Austria [129], Belgium [130], Brazil [100], Mexico [131] and few other countries.

The current major methodologies employed for the screening of MPS are the quantification of
the lysosomal enzymes by digital microfluidics (DMF) with currently available assays for MPS I and
II, although this platform is limited by the number of enzymes that can be multiplexed in a single
assay [132–134]. On the other hand, tandem mass spectrometry has been widely used for the NBS of
MPS I and now it is available for the screening of MPS II, IIIB, IVA, VI, and VII [135].

https://www.newsteps.org/resources/newborn-screening-status-all-disorders
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Figure 4. Map with the regions where screening is regular or in pilot stages. Currently, several states of
the United States of America (USA) are universally screening for MPS I, and the state of Illinois (IL)
is also screening for MPS II. Some centers in Italy are conducting screening for MPS I and Taiwan is
screening for MPS I with pilot studies for MPS II and VI. IL: Illinois, MPS I: mucopolysaccharidosis
type I, MPS II: mucopolysaccharidosis type II.

Another strategy that has been employed for pilot studies of MPS I, II and III is based on the
quantification of GAGs as a first-tier, followed by a second-tier assay for enzyme quantification [57,58].
Despite the fact this is a very useful assay, the false positive rates were much higher than with enzyme
assays as the first-tier [122]. Thus, this approach is now employed for the confirmation of cases whose
enzyme assays are abnormal [120,136,137].

Now that multiplexing assays are available for the screening of MPS I, II, IIIB, IVA, VI, and VII,
more centers are expected to start pilot studies for several of the MPSs. Molecular assays can also
be performed by next-generation sequencing (NGS) allowing for the identification of variants, but
careful interpretation should be performed with variants of unknown significance. With the advent of
high-throughput screening methods and the pressure from advocacy groups, it is likely that MPS NBS
will soon become a reality. This will also enable reproductive decisions and help genetic counseling.
The impact that diagnosing and treating an MPS patient has in the family is tremendous: early
intervention can slow down disease progression and improve quality of life for the patient and their
family [138].

7. Diagnostic Work-Up

We propose that for every patient with suspected MPS, samples of urine (typically 15–20 mL) and
of EDTA blood (typically 8 mL, or two purple cap tubes) are obtained. Urine should be kept frozen until
processed. The blood should be kept in the fridge (4–8 ◦C until shipped to the laboratory, which should
occur as soon as possible). When the blood arrives at the diagnostic laboratory, leukocytes should
be isolated, plasma should be obtained and DBS should be prepared. The leukocyte pellet and the
plasma should be kept frozen, and the DBS should be allowed to dry at least for 4 h and then it should
be kept in the freezer (–20 ◦C) in an individual plastic bag, preferably with desiccant. If the sample
will not be able to arrive at the diagnostic lab in 3–4 days, plasma and DBS should be obtained after
collection (plasma should be kept in the freezer and DBS in the fridge, until shipment to the diagnostic
laboratory).
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The diagnostic lab could start the investigation by measuring urinary GAGs and identifying the
GAG species present in the urine. If GAGs are increased and/or GAG pattern is abnormal, blood
samples should be retrieved from the fridge or freezer and processed for the measurement of the
activity of specific MPS enzymes, according to the GAG results and clinical suspicion, which usually
leads to the diagnosis of the specific MPS type and enables specific therapy to be introduced whenever
available. Thereafter, DNA could be obtained from the blood (leukocytes or DBS) and the specific gene
sequenced. With the mutations identified, the family could benefit from phenotype prediction, carrier
identification, genetic counseling, and prenatal diagnosis. A summary of the proposed diagnostic
flow-chart is presented in Figure 5.
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Figure 5. Proposed flow-chart for the investigation of MPS in high-risk patients. GAG: glycosaminoglycans,
DMB: dimethyl methylene blue, TLC: thin-layer chromatography, MPS: mucopolysaccharidosis, WBC:
white blood cells, DBS: dried blood spots, DNA: deoxyribonucleic acid. *GAGs can also be analyzed by
liquid chromatography tandem mass spectrometry.

When the enzyme assays in leukocytes (or fibroblasts) is not possible, it is recommended to
postpone the diagnosis confirmation in the cases that present urinary GAGs and/or enzyme assays in
plasma or DBS until the results of the molecular analysis are available. When urine is not available, it is
recommended to measure GAG species in DBS by tandem mass spectrometry, to have a demonstration
of the functional impact of the enzyme deficiency and/or mutation profile.

Babies tested in the newborn screening programs who present decreased enzyme activity should
have, due to the high prevalence of pseudodeficiency, GAG species measured and a genetic analysis
performed in the blood sample before the suspicion of an MPS diagnosis is taken to the family.

The increased use of NGS as a primary investigation method, especially when WES and WGS
are performed, frequently leads to the finding of genetic variants in the MPS genes, even in patients
who were not primarily investigated due to an MPS suspicion. We recommend that, in these cases,
enzyme measurement and GAG analyses are performed to allow the estimation of the pathogenicity
of the variants identified. This is very important, as NGS has become the first method in the
investigation process.

With specific therapies already available for most MPS patients, and with clinical trials in progress
for many conditions, the specific diagnosis of MPS as early as possible is becoming increasingly
necessary.
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