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Purpose of review

Non-alcoholic fatty liver disease (NAFLD) appears to be independently associated with the development of
atherosclerosis. The biological mechanisms underlying this association are complex, and likely involve liver-
resident cell types other than hepatocytes. Thus, we review recent evidence that non-parenchymal hepatic
cell responses to lipid excess contribute to the pathogenesis of both NAFLD and atherosclerosis.

Recent findings

Significant independent associations between NAFLD and atherosclerosis have been identified through
cross-sectional studies and meta-analyses. Mechanistic studies in cell cultures and in rodent models suggest
that liver-resident macrophages, activated hepatic stellate cells (HSC) and liver sinusoidal endothelial cells
(LSEC) mount lipotoxic responses under NAFLD conditions which can contribute to the progression of both
NAFLD and atherosclerosis.

Summary

Non-parenchymal hepatic cell types exhibit some similarity in their responses to lipid excess, and in their
pathogenic mechanisms, which likely contribute to the coordinated progression of NAFLD and
atherosclerosis. In response to lipotoxic conditions, macrophages, Kupffer cells and HSC initiate robust
inflammatory responses, whereas LSEC generate excess reactive oxygen species (ROS). The extent to
which inflammatory cytokines and ROS produced by non-parenchymal cells contribute to the progression of
both NAFLD and atherosclerosis warrants further investigation.
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Non-alcoholic fatty liver disease (NAFLD) and ath-
erosclerosis are well recognized as comorbid condi-
tions, particularly in individuals with metabolic
syndrome. Accumulating clinical evidence suggests
that NAFLD, in fact, contributes to the development
of atherosclerosis. A recent meta-analysis of 26 stud-
ies (total of 85 395 participants) determined a sig-
nificant independent association between NAFLD
and subclinical atherosclerosis, identified by carotid
artery intima-media thickness, arterial stiffness, cor-
onary artery calcification and endothelial dysfunc-
tion [1

&&

]. Further independent association between
NAFLD and noncalcified coronary artery plaques
was provided through a cross-sectional study of
5121 individuals with no prior history of coronary
artery disease [2

&&

]. The biological mechanisms
responsible for this association are complex, involv-
ing hepatic insulin resistance, altered hepatocyte
lipoprotein metabolism and dyslipidemia, and
uthor(s). Published by Wolters Kluwe
to hepatic exposure to high concentrations of fatty
acids. Adding to this complexity is the likelihood that
liver-resident cell types other than hepatocytes,
including stellate cells, macrophages and sinusoidal
endothelial cells, which are similarly exposed to
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KEY POINTS

� Clinical studies have identified significant independent
associations between NAFLD and early atherosclerosis.

� Liver steatosis exposes non-parenchymal cell types,
including macrophages, HSC and LSEC to chronic
lipid excess.

� The lipotoxic response in macrophages and HSC
involves generation of proinflammatory factors,
whereas in LSEC it involves generation of ROS.

� Further investigation is required to determine the extent
to which non-parenchymal cell-derived inflammatory
cytokines and ROS contribute to concomitant NAFLD
and atherosclerosis progression.
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excess lipid during NAFLD, also contribute to plaque
development. Here, we discuss recent evidence
implicating non-parenchymal hepatic cell responses
to lipid excess in the progression of NAFLD and
in the concomitant creation of a proatherogenic
environment.
HEPATIC MACROPHAGES AND KUPFFER
CELLS

NAFLD progression is partly a consequence of lip-
otoxicity, which we define as fatty acid-induced cell
stress. This process occurs when fatty acid uptake
(particularly saturated species) and de novo synthesis
exceed the ability of cells to oxidize, export or store
them safely as triglycerides. The conditions and pro-
cesses involved in hepatocyte lipotoxicity are quite
well understood, and have been reviewed extensively
in recent years [3–5]. Hepatocyte fatty acid excess
causes endoplasmic reticulum and oxidative stress,
triggering response pathways that lead to impaired
insulin signaling, inflammation and apoptosis,
which promote disease progression from benign stea-
tosis to nonalcoholic steatohepatitis (NASH).

Upon injury, hepatocytes release the chemokine
CCL2 into the circulation, which elicits the recruit-
ment of monocytes to the liver through activation
of CC chemokine receptor 2 (CCR2). The contribu-
tion of this axis to NAFLD pathogenesis is supported
by the finding that NAFLD patients exhibited
increased hepatic and serum CCL2 concentrations,
the latter of which was associated with increased
severity of hepatic inflammation [6

&

]. Furthermore,
in mouse models of diet-induced steatohepatitis,
pharmacological inhibition of CCR2 decreased
hepatic accumulation of monocytes [6

&

] and mono-
cyte-derived macrophages [7]. Lipotoxic hepato-
cytes have also been shown to release extracellular
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vesicles containing the macrophage chemokine
CXCL10, in a JNK-dependent and mixed lineage
kinase 3 (MLK3)-dependent manner, thereby induc-
ing macrophage chemotaxis [8]. Moreover, pharma-
cological inhibition of MLK3 reduced macrophage
chemotaxis in vitro, and decreased serum CXCL10
and hepatic macrophage infiltration in mice with
diet-induced steatohepatitis [9]. Another mecha-
nism implicated in the development of steatohepa-
titis is hepatocyte pyroptosis, a form of programmed
necrosis. Specifically, the pyroptosis protein Gasder-
min D (GSDMD) was observed to be elevated in
livers of NAFLD and NASH patients. In mice with
diet-induced steatohepatitis, genetic ablation of
GSDMD decreased hepatic interleukin-1b (IL-1b),
tumor necrosis factor a (TNFa) and CCL2, as well
as hepatic infiltration of macrophages [10].
Together, these findings denote hepatocellular
injury as a key stimulus for the recruitment of
inflammatory cells in the progression of NAFLD
to steatohepatitis.

Upon recruitment to the liver, myeloid cells
infiltrate hepatic tissue through cell–cell adhesion
to liver sinusoidal endothelial cells (LSEC). In obese
mice, LSEC showed increased expression of cell
adhesion molecules, such as VCAM1 and ICAM1,
and monocytes extracted from these mice exhibited
increased adhesion to LSEC in vitro [11]. This sug-
gests that lipid excess increases cell–cell adhesion,
which promotes hepatic infiltration of myeloid
cells. Within the fat-laden liver, monocyte-derived
macrophages and Kupffer cells are exposed to vari-
ous lipid species, which can have distinct effects on
macrophage phenotype. Kupffer cells exposed to
palmitate in vitro were polarized to a proinflamma-
tory M1 phenotype, characterized by increased
TNFa and IL-6 expression, whereas exposure to
polyunsaturated fatty acids elicited an anti-inflam-
matory M2 profile, shown by elevated expression of
MRC2 and IL-10 [12]. Together with the knowledge
that NASH patients exhibit increased hepatic palmi-
tate content [13], these findings suggest that accu-
mulation of palmitate is critical to hepatic
inflammation. Consistent with this, exposure of
macrophages to excess palmitate in vitro caused
intracellular accumulation of palmitate crystals,
resulting in lysosomal dysfunction, and subsequent
NLRP3 inflammasome activation and IL-1b release
[14]. Moreover, hepatic macrophages exposed to
cholesterol crystals alone [15

&

] or derived from
lipid-laden hepatocytes [16] exhibited NLRP3 acti-
vation and IL-1b secretion. The involvement of the
NLRP3 inflammasome in liver inflammation has
been further corroborated by evidence that inhibi-
tion of NLRP3 in genetically and diet-induced obese
mice with steatohepatitis reduced plasma IL-1b,
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CCL2 and IL-6, and reversed hepatic inflammation
and fibrosis [15

&

].
In lipotoxic conditions characteristic of

NAFLD, hepatic macrophages secrete various proin-
flammatory cytokines, such as IL-1b, IL-6 and TNFa,
all of which may enter the circulation and have been
directly implicated in the progression of atheroscle-
rosis [17]. However, there may be additional mech-
anisms through which hepatic inflammatory cells
contribute to atherogenesis. Exposure of hepato-
cytes to TNFa was reported to induce the expression
of PCSK9 [18]. Given that PCSK9 is a regulator of
hepatic LDL clearance and plasma LDL-C levels, this
suggests that hepatic TNFa may disrupt LDL metab-
olism and contribute to the elevated LDL-C
observed in atherosclerosis. A recent study also
showed that TNFa increased apoB secretion in
mouse hepatocytes in vitro and promoted hepatic
VLDL secretion in mice [19], indicating a link
between hepatic TNFa and elevated plasma triglyc-
erides. Moreover, Kupffer cells were identified as the
predominant source of plasma CETP, a protein
which mediates the exchange of cholesteryl esters
for triglycerides between lipoproteins and is associ-
ated with dyslipidemia [20]. In obesity-associated
NAFLD, hepatic Kupffer cell content and plasma
CETP are increased, concomitant with atherogenic
dyslipidemia characterized by small dense LDL, ele-
vated triglycerides and reduced HDL [20]. These
findings suggest that activation of liver macro-
phages in NAFLD may alter lipoprotein metabolism
and secretion to promote increased plasma LDL-C
and triglycerides, and reduced HDL-C, contributing
to an atherogenic lipid profile during NAFLD
progression.
HEPATIC STELLATE CELLS

Unlike hepatocyte lipotoxicity, our knowledge of
hepatic stellate cell (HSC) responses to fatty acid
excess is limited, despite the activation and prolif-
eration of these cells in advanced NAFLD, their
chronic exposure to lipid excess and their known
contribution to fibrosis. We recently determined the
sensitivity of human primary activated HSC to high
concentrations of saturated and unsaturated fatty
acids. Exposure to either high palmitate or high
oleate alone induced cell stress, but through differ-
ent mechanisms. Palmitate stimulated transient
expression of the endoplasmic reticulum stress-
induced apoptotic factor, CHOP, whereas oleate
decreased CHOP expression and increased expres-
sion of TXNIP [21]. TXNIP (thioredoxin-interacting
protein) can be induced by activation of either
PERK or IRE1 during endoplasmic reticulum stress,
and can activate the inflammasome under these
0957-9672 Copyright � 2018 The Author(s). Published by Wolters Kluwe
conditions [3]. Additional evidence from human
and rat HSC lines suggests that palmitate, possibly
through the generation of the metabolite dihydro-
ceramide [22], promotes HSC activation and fibrotic
activity through XBP-1-mediated induction of
autophagy [23], and inflammasome-mediated
hedgehog signaling [24].

Accumulating evidence of a robust inflamma-
tory response in HSC upon exposure to high fatty
acids supports the possibility that these cells could
generate inflammatory cytokines that enter the
circulation. In direct support of this, Shoji et al.
[25] demonstrated that plasma IL-34, derived from
liver fibroblasts, is dramatically increased in
patients with NAFLD which has progressed to fibro-
sis. IL-34 has recently been identified as a significant
predictor of cardiovascular mortality, and is pro-
posed to contribute to atherosclerosis progression
by promoting the release of other proinflammatory
cytokines including IL-1b, IL-6 and TNF-a [26].
Similarly, CCL5 and CCL20, both potent chemo-
kines, are increased in serum from individuals with
NAFLD/NASH, and originate from both hepato-
cytes and activated HSC [27,28]. Most recently,
circulating IL-6 was independently associated with
subclinical atherosclerosis in an NAFLD subgroup
of the Multi-Ethnic Study of Atherosclerosis (MESA)
cohort [29

&&

]. In fact, IL-6 concentrations stratified
NAFLD patients according to their coronary
plaque burden. Although this study did not further
subdivide NAFLD patients according to severity of
liver disease, IL-6 production occurs in a variety of
cell types within the liver, including fibroblasts
[30], raising the possibility that increased hepatic
IL-6 production directly impacts plaque develop-
ment. Further work is warranted to determine
whether activated HSC-derived proinflammatory
cytokines are key mediators of NAFLD-related
atherosclerosis.
LIVER SINUSOIDAL ENDOTHELIAL CELLS

LSEC are the most abundant non-parenchymal cells
in the liver. Similar to HSC, little is known of the
contributions of LSEC lipotoxicity to disease pro-
gression, despite the chronic exposure of these cells
to excess lipid in NAFLD. LSEC are highly specialized
and unique from vascular endothelial cells as they
lack a basement membrane and have a multitude of
fenestrae that regulate transport of macromolecules,
including lipids and lipoproteins, across the sinu-
soid. Under normal conditions, LSEC maintain
homeostatic regulation over hepatic vascular tone,
primarily through the production of nitric oxide. An
important cross-talk also occurs between LSEC and
HSC, which serves to maintain HSC quiescence
r Health, Inc. www.co-lipidology.com 419
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under homeostatic conditions [31]. However, in the
presence of hepatocyte lipotoxicity and injury, LSEC
lose their regulatory functions, rapidly become dys-
functional and undergo LSEC capillarization, a pro-
cess characterized by the development of a
basement membrane and loss of fenestrations. This
is then followed by angiogenesis [31–33]. In light of
recent findings that LSEC dysfunction precedes
hepatic inflammation and fibrosis, it is important
to recognize that communication between LSEC
FIGURE 1. Non-parenchymal cell responses to lipid excess du
cascades which can include the release of chemokines, such as C
monocytes (purple) infiltrate hepatic tissue through adhesion to LS
macrophages and Kupffer cells adopt a proinflammatory M1 phe
such as TNFa, IL-6 and IL-1b. These cytokines can enter systemic
activated and begin to migrate, proliferate, produce ECM compo
CCL5 and CCL20, which can also enter systemic circulation via t
high fatty acids, LSEC (blue) undergo capillarization and excessiv
circulation as a result of immediate proximity to the sinusoid. Yello
white arrows, process of LSEC capillarization; green structures, b
cell; LSEC, liver sinusoidal endothelial cell; M1, M1 macrophage
ROS, reactive oxygen species.
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and other hepatic cell types likely plays a significant
role in NAFLD progression.

Accumulation of fatty acids and cholesterol
within hepatocytes causes hepatocyte ballooning,
which leads to sinusoidal compression, increased
intrahepatic vascular resistance (IHVR) and
increased shear stress, thereby acting as a mechani-
cal stressor on LSEC to promote dysfunction and
capillarization [34]. LSEC dysfunction, elicited by
continuous vascular stress, is mainly characterized
ring NAFLD. (a) Lipotoxic hepatocytes initiate inflammatory
CL2 and CXCL10. (b) In response to chemokines, circulating
EC. Upon exposure to high fatty acids, monocyte-derived
notype, characterized by increased production of cytokines,
circulation via the sinusoids. (c) HSC (orange) become
nents and secrete proinflammatory cytokines, such as IL-34,
he sinusoids. (d) In the presence of lipotoxic hepatocytes and
e generation of ROS. Some LSEC-derived ROS may enter the
w spheres, cytosolic lipid droplets; black arrows, secretion;

ile canaliculi; ECM, extracellular matrix; HSC, hepatic stellate
; Mono, monocyte; NAFLD, non-alcoholic fatty liver disease;
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by decreased nitric oxide bioavailability either
through impaired eNOS production, or through
its reaction with superoxides [32]. It has also been
postulated that impaired LSEC nitric oxide produc-
tion may be due to eNOS phosphorylation induced
by insulin resistance, resulting from hepatocyte lip-
otoxicity [35]; however, the specific mechanism
underlying this effect remains controversial [32].

LSEC oxidative stress, as a consequence of LSEC
lipotoxicity, may be an important driver of NAFLD
progression. Saturated fatty acids, such as palmitate,
have been shown to activate toll-like receptor-4
(TLR4) in LSEC [36]. In this setting, TLR4 activation
induces NOX1 and subsequent generation of super-
oxide, which reacts with nitric oxide to form perox-
ynitrate, thereby reducing nitric oxide bioavailability
[37

&

]. Oxidative stress can also modulate LSEC cyclo-
oxygenase (COX) activity and downstream prosta-
noid production to elicit vasoconstriction, which
further increases IHVR and thus exacerbates LSEC
stress in a vicious cycle [38]. Moreover, COX activa-
tion within LSEC can directly contribute to the gen-
eration of superoxides, which further depletes nitric
oxide bioavailability [39]. As discussed in the next
paragraph, LSEC-derived reactive oxygen species
(ROS) can enter the circulation, possibly contributing
to a proatherogenic environment, in addition to
promoting NAFLD progression.

Activated HSC are pivotal drivers of hepatic
fibrosis, but are increasingly recognized for their
role in promoting LSEC capillarization and angio-
genesis leading to ROS generation. An interesting
series of feed-forward loops involving HSC activa-
tion and LSEC appear to drive NAFLD progression.
HSC activation induces LSEC capillarization via
hedgehog signaling [40], and has also been shown
to induce LSEC vascular endothelial growth factor
expression in a hedgehog-dependent manner to
further promote hepatic angiogenesis [41].
Increased LSEC angiogenesis downstream of HSC
activation can exacerbate hepatic fibrosis, which
further increases IHVR and vascular stress, leading
to further stimulation of LSEC ROS production
[42,43]. The putative link between LSEC ROS gener-
ation and NAFLD progression is supported by the
finding that serum reactive oxygen metabolites are
significantly higher in patients with advanced
NAFLD/NASH [44]. This observation is in line with
the concept that superoxides generated by LSEC can
enter systemic circulation. Remarkably, serum
markers of oxidative stress and increased carotid
artery intima-media thickness have been indepen-
dently associated with NASH [45]. This raises the
intriguing possibility that LSEC oxidative stress and
superoxide generation are also mediators of athero-
sclerosis development during NAFLD.
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CONCLUSION

Our targeted review suggests that non-parenchymal
hepatic cell types mount some similar responses to
lipid excess, and share some common pathogenic
mechanisms that likely contribute to the coordi-
nated progression of both NAFLD and athero-
sclerosis (Fig. 1). In particular, monocyte-derived
macrophages, Kupffer cells and HSC initiate robust
inflammatory responses upon exposure to high sat-
urated fatty acids, whereas the LSEC lipotoxic
response involves ROS generation. Consistent with
this, inflammatory cytokines produced by macro-
phages, Kupffer cells and HSC have been implicated
in the progression of NAFLD and atherosclerosis,
whereas LSEC-derived ROS may independently con-
tribute to the progression of both diseases. Further
investigation will be required to determine the
extent to which non-parenchymal cell-derived
inflammatory cytokines and ROS play a role in both
diseases, and whether liver-targeted therapies for
NAFLD can modulate the disease promoting behav-
ior of these cell types.
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