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Patients with stage III lung adenocarcinoma (LUAD) have significant survival

heterogeneity, meanwhile, CD8+ T cell has a remarkable function in

immunotherapy. Therefore, developing novel biomarkers based on CD8+ T

cell can help evaluate the prognosis and guide the strategy of immunotherapy

for patients with stage III LUAD. Thus, we abstracted twelve datasets from

multiple online databases and grouped the stage III LUAD patients into training

and validation sets. We then used WGCNA and CIBERSORT, while univariate

Cox analysis, LASSO analysis, and multivariate Cox analysis were performed.

Subsequently, a novel CD8+ T cell-related classifier including HDFRP3, ARIH1,

SMAD2, and UPB1 was developed, which could divide stage III LUAD patients

into high- and low-risk groups with distinct survival probability in multiple

cohorts (all P < 0.05). Moreover, a robust nomogram including the traditional

clinical parameters and risk signature was constructed, and t-ROC, C-index,

and calibration curves confirmed its powerful predictive capacity. Besides, we

detected the difference in immune cell subpopulations and evaluated the

potential benefits of immunotherapy between the two risk subsets. Finally,

we verified the correlation between the gene expression and CD8+ T cells

included in the model by immunohistochemistry and validated the validity of

themodel in a real-world cohort. Overall, we constructed a robust CD8+ T cell-

related risk model originally which could predict the survival rates in stage III

LUAD. What’s more, this model suggested that patients in the high-risk group

could benefit from immunotherapy, which has significant implications for

accurately predicting the effect of immunotherapy and evaluating the

prognosis for patients with stage III LUAD.
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Introduction

Lung cancer has become the first reason of all cancer-

associated deaths worldwide, also in China, which accounts

for near ly one mi l l ion deaths each year (1) , and

approximately 85% cases are Non-small cell lung cancer

(NSCLC) (2). What’s more, lung adenocarcinoma (LUAD)

represents the most common pathological subtype in NSCLC,

for which not been found specific risk factors (3). Besides,

statistics show that almost 30% of NSCLC patients are

diagnosed with locoregionally or locally advanced disease,

which is stage III (4). Although there has shaped a

comprehensive therapy pattern including surgery ,

chemotherapy, radiotherapy, targeted therapy, and

immunotherapy in recent years, the survival rate is not

satisfactory especially for locally advanced LUAD (5),

despite the absence of metastases. According to the tumor,

node, metastasis (TNM) staging (8th edition), stage III is

subclassified into stage IIIA, IIIB, and IIIC (6). For this

heterogeneous group which presents a wide spectrum of

clinical features including multiple statuses of lymph nodes

metastasis, their 5-year overall survival (OS) rates are totally

different (7). Hence, precisely distinguishing and predicting

the prognosis of each subtype of stage III LUAD patients

would help to formulate accurate treatment and improve the

survival rate.

Immunotherapy has recently shown great efficacy for

patients with stage III unresectable NSCLC, especially for

those trapped in the lack of targetable mutations, who could

not benefit from targeted therapy such as tyrosine kinase

inhibitors (TKIs) (8, 9). As the most iconic treatment of

immunotherapy, immune checkpoint blockades (ICBs) have

established a solid position and could be chosen as the first-

line treatment (10). Among them, monoclonal antibodies

against programmed death 1(PD-1) and its ligand (PD-L1)

are the most widely used ICBs in locally advanced LUAD at

present, which has shown obvious survival benefits

compared to traditional chemotherapy (11). Nonetheless,

only canonica l b iomarkers l ike PD-L1 and tumor

mutational burden (TMB) are used in clinical practice,
Abbreviations: NSCLC, non–small-cell lung cancer; LUAD, lung

adenocarcinoma; OS, overall survival; PD-1, programmed death 1; PD-L1,

programmed death-ligand 1; ICBs, immune checkpoint blockades; TME,

tumor microenvironment; WGCNA, weighted correlation network analysis;

GEO, Gene Expression Omnibus; TCGA, The Cancer Genome Atlas; KM,

Kaplan-Meier; ROC, receiver operating characteristic; C-index, concordance

index; t-ROC, time-dependent ROC; TIDE, tumor immune dysfunction and

exclusion; TIICs, tumor-infiltrating immune cells; DCs, dendritic cells; Tregs,

regulatory T cells; BOR, best overall response; ICGs, immune checkpoint

genes; ORR, overall response rate; CR, complete response; PR, partial

response; SD, stable disease; PD, progressive disease.
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which also has their own limitations (12). Therefore, the

significance of identifying novel immune-related biomarkers

is highlighted, which may help to select those patients who

are most likely to benefit from ICBs.

As the indispensable part of cancer, the tumor

microenvironment (TME) is essential nature in cancer

progression. Alternatively, a variety of immune cell types

within TME drive a fundamental environment that could

respond to immunotherapy (13). Particularly, among all

immune cell types, the CD8+ T cell is the most important

conductor in the cancer-immunity cycle and its activation

and infiltration play a crucial role in immunotherapy (14).

However, some co-inhibitory molecules or receptors in the

TME causing T cell exhaustion might impair their potential

to fight cancer cells (15). Therefore, how to find out and

confirming the biomarkers correlated to CD8+ T cell become

necessary. In recent years, some works have revealed how a

single intrinsic gene of LUAD cells influences CD8+ T cells

in TME. For instance, knockdown of GBE1 could increase

recruitment of CD8+ T lymphocytes (16), TP53-deficient

LUAD cells promoted CD8+ T cells exhaustion (17), and

high expression of MSH2 correlated with increased CD8+ T

cel ls infi l tration (18), whereas, these genes cannot

demonstrate the whole signature and predict the various

prognosis of LUAD patients. Besides, based on immune-

related genes, researchers have established a few prognostic

models to make predictions for the survival risk (19, 20).

Nevertheless, we need to exploit a novel model containing

multiple biomarkers about the heterogenous locally

advanced LUAD based on as many databases as possible,

which is comprehensive enough to reach a satisfying

prognostic value and predict the immunotherapy response.

Based on the rapid development of bioinformatics, in this

study, we aim to establish a reliable CD8+ T cell-related

signature to estimate the prognostic stratification and the

effect of immunotherapy in locally advanced LUAD. First, we

integrated datasets about stage III LUAD, which were from

multiple online databases. To identify the hub CD8+ T cell-

related biomarkers, we then used weighted gene co-

expression network analysis (WGCNA). Subsequently, we

developed a novel CD8+ T cell-related classifier and

constructed a robust nomogram to predict survival

probability. Besides, the predictive performance was further

validated in the multiple test sets. Moreover, we detected the

difference in immune cell subpopulations and evaluated the

potential benefits of immunotherapy between the two risk

subsets. Finally, the valuation of this model was verified in a

real-world cohort in evaluating immunotherapy efficacy.

Taken together, it was expected that this CD8+ T cell-

related model could contribute to predicting survival rates

and accurately working out therapeutic strategies for locally

advanced LUAD patients.
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Materials and methods

Study population, gene expression data,
and processing

The gene expression profiles and clinical parameters of

primary LUAD patients from 12 public cohorts were

retrospectively analyzed, including 11 microarray datasets

from the Gene Expression Omnibus (GEO) and Array-

Express, and 1 RNA-Seq expression profile from The

Cancer Genome Atlas (TCGA). Only patients who meet the

following two criteria were included: i) detailed TNM staging

information includes stage IIIA and IIIB according to the 7th

edition of TNM classification of malignant tumors; ii) OS

information includes follow-up time and survival status. The

Combat algorithm was used to eliminate the batch effects.

Then, the whole set was divided into training and internal

validation cohorts in a ratio of 1:1 using stratified random

sampling by caret R package. Another series from TCGA was

used as the external validation cohort. The studies obtained

from each of the databases are summarized together with

series ID in Supplementary Table S1.
Evaluation of tumor-infiltrating
immune cells

We performed CIBERSORTx (https://cibersortx.stanford.

edu/) to investigate the levels of 22 TIICs using the mRNA

expression data of the training cohort. This online tool

utilizes a deconvolution method to impute gene expression

profiles and estimate the type and fractions of immune cells.
Establishing the co-expression network

We used the R package “WGCNA” (21) to construct a

weight co-expression network with the 7922 gene expression

values in the training cohort. The levels of 22 immune-

infiltrating cells were used as sample traits. When the index

of scale-free topologies was set as 0.90, a scaleless network

was successfully built with an optimal soft threshold power (b
= 5). Next, we divided genes with similar expression patterns

into the same module (minimum size = 50) using the

“dynamic tree cutting” algorithm. In addition, to select the

remarkable modules, Pearson’s test was used to evaluate the

relationship between the module eigengenes and the level of

the 22 types of immune cells. At last, the “CD8+ T cells”

subtype was chosen and further study on the CD8+ T cell-

related module was conducted.
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Pathway and process enrichment
analysis

To determine the function of genes in the identified hub

module, we employed the web tool “Metascape” (http://

metascape.org) for pathway and process enrichment analysis

(22). The tool displays the first 20 enriched terms as a bar graph.

To further explore the relationship between these terms, terms

with similarities greater than 0.3 are connected by edges and

presented as a network graph.
Construction and validation of the risk
model based on CD8+ T cell-related
genes

Univariate Cox regression analysis was performed to

estimate the hazard proportions for genes of the highest

correlation with CD8+ T cells (yellow module). Then, to

further screen the prognosis of CD8+ T cell-related genes with

the best predictive performance, the “glmnet” R package (23)

was used to perform the LASSO regression analysis with ten-fold

cross-validation. Next, based on the AIC (Akaike information

criterion) value on the prognosis CD8+ T cell-related genes, the

bi-directional stepwise multivariate Cox regression was used for

choosing the ones that minimize the AIC to obtain the best

model fit. A prognostic CD8+ T cell-related risk score model of

stage III LUAD patients was then established based on

combining the multiplication of the multivariate Cox

regression coefficient by its corresponding normalized mRNA

expression value. The risk score= ∑(the multivariate Cox

coefficient of CD8+ T cell-related genes × matching

normalized expression level of these genes). We computed risk

scores of each stage III LUAD patient and then divided them

into high- and low-risk subsets according to the cutoff value of

28.401 determined via receiver operating characteristic (ROC)

curve analysis using the R package “survminer”. Next, the

Kaplan-Meier (KM) curve was performed to estimate the

disparity in OS between low- and high-risk subsets by log-

rank test. The prognostic ability of the CD8+ T cell-related

classifier was explored with an analysis of the concordance index

(C-index) and ROC curve. Then, we also used similar methods

to verify the prognostic performance of the classifier constructed

by the training cohort in the internal validation, external

validation, and pooled validation cohorts.

Furthermore, based on univariate Cox regression and

multivariate Cox regression analyses, we further confirmed

whether the predictive performance of the CD8+ T cell-related

classifier could be an independent prognostic factor compared

with other clinic factors for stage III LUAD patients in multiple
frontiersin.org
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cohorts. At last, risk score and three traditional clinical factors

were used to generate the nomogram by using “rms,” “foreign,”

and “survival” R packages. C-index, time-dependent ROC (t-

ROC) curve and calibration plots of the nomogram for 1-, 3-,

and 5-year OS plots were applied to elucidate the accuracy of

actual observed rates with the predicted survival probability. The

“timeROC” R package was utilized to perform the t-

ROC analyses.
Prediction for response to
immunotherapy or chemo-agents

Tumor immune dysfunction and exclusion (TIDE)

algorithms (24) and subclass mapping (25) were used to

predict clinical response to immune checkpoints between the

two risk subsets in the TCGA dataset, also named the external

validation set. The chemotherapy response was predicted by

employing the R package “pRRophetic version 0.5” to compute

the half-maximal inhibitory concentration (IC50) of four

common chemo-agents (cisplatin, gemcitabine, paclitaxel, and

docetaxel) in the training set (26, 27). The comparison of IC50 of

these agents between groups was performed using Wilcoxon

rank-sum test.
Efficacy evaluation of immunotherapy
and immunohistochemical verification
for a real-world cohort

Clinicopathological features and samples of stage III NSCLC

patients were collected from January 2019 to December 2021

who received immunotherapy. After the screening by exclusion

criteria, twenty-eight patients were enrolled as a validation

cohort from real-world for analysis (Supplementary Figure S1;

Supplementary Table S2). For the evaluation of the

immunotherapy efficacy, we used the Best overall response

(BOR), which was defined as the best response during

immunotherapy and was accessed according to RECIST1.1

(28). What’s more, all patients were followed up until May

2022, and this study was approved by the Research Ethics

Committees of the First Affiliated Hospital of Xi ’an

Jiaotong University.

The Immunohistochemistry (IHC) was performed with a

three-step method. After the dewaxing and hydrating, the tissue

sections were boiled in autoclaved citric acid buffer (pH 6.0) for

20 min for antigen retrieval, and the peroxidase activity

was quenched with 3% hydrogen peroxide for 15 min to avoid

non-specific staining. Then, the sections were blocked for 15min

followed by incubation overnight with CD8 antibody (Invitrogen,

PA5-88265 at 1/100 dilution), anti-UPB1 antibody (Abcam,

ab157195 at 1/100 dilution), HDGFRP3 antibody (proteintech,

12380-1-AP at 1/50 dilution), SMAD2 antibody (proteintech,
Frontiers in Immunology 04
12570-1-AP at 1/500 dilution), or ARIH1 antibody (Santa, sc-

390763 at 1/50 dilution) at 4°C. After that step, the sections were

incubated with the secondary antibody at 37°C for 20 min.

Subsequently, This step was followed by incubating with

Horseradish Peroxidase for 20 min, and staining with 3,3-

diaminobenzidine. At last, the sections were dehydrated and

sealed after re-dyeing with hematoxylin. The IHC assays were

performed by integral optical density (IOD) using Image J (29).
Statistical analysis

Software R (version 4.1.0) and GraphPad Prism (version

8.0.0) were applied to all data analyses. The Wilcoxon test and

chi-square test were performed to assess the relationship

between the risk score and clinical features. Survival analysis

was utilized by the KM log-rank test. In the results of the

CIBERSORT method, samples with P < 0.05 were retained for

the next analysis. Two-tailed P < 0.05 was considered

statistical significance.
Results

Gene expression profile database
selection according to
enrollment criteria

The study workflow design was depicted in Figure 1. As

mentioned above, 12 series (288 LUAD patients in total) were

selected. To combine these datasets, a combat method was first

performed to eliminate batch effects, and the results before and

after the batch correction were displayed by PCA plots,

respectively (Supplementary Figure S2). Consequently, a

merged cohort was integrated. To improve the precision and

accuracy of the prognostic model, the 288 samples from the

merged cohort were divided into training (n = 144) and internal

validation (n = 144) sets in a ratio of 1:1 using stratified random

sampling. Besides, the 74 patients from TCGA were employed as

the external validation set, and a pooled set integrating the

training, internal validation, and external validation sets

was constructed.
Identification of hub modules by
WGCNA and enrichment analysis

To identify key modules correlated with CD8+ T cells, the

mRNA gene expression profiles for 144 LUAD samples from the

training cohort were extracted. Subsequently, for these LUAD

samples, the different cell subtypes’ abundance was calculated by

the CIBERSORT algorithm, in which seven subtypes of T cell

fractions were defined as trait data for WGCNA analysis. Next,
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to construct the gene co-expression network of LUAD, the

expression profiles of the 7921 genes were utilized. To ensure

the network was scale-free, b = 5 (scale-free R2 = 0.9) was

selected (Supplementary Figures S3A, B). Besides, the samples of

the training cohort were clustered by the average linkage and

Pearson’s correlation values. Finally, a total of 18 modules were

constructed by building a hierarchical clustering tree, where the

gene set was independent as the tree branch. (Supplementary

Figure S3C).

According to the criteria of the hybrid dynamic tree cut,

we got that the yellow module was significantly associated

with T cells, such as CD8+ T cells (R2 = 0.25, P = 0.002)

(Supplementary Figure S4A). To elucidate the potential

function and mechanism of CD8+ T cells, we picked the

yellow module as a hub module. Additionally, we got that

these genes from the hub yellow module were mainly

enriched in ubiquitin protein ligase binding, SMAD

binding, and lymphocyte activation after GO and KEGG

enrichment analysis (Supplementary Figures S4B, C).
Establishment of the prognostic CD8+ T
cell risk score in the training set

There were 805 hub genes within the yellow module

selected for further analysis. After univariate Cox regression

analysis on these hub genes, 88 significantly prognosis-

associated CD8+ T cell-related genes were identified in the
Frontiers in Immunology 05
training cohort. Then these significant genes entered LASSO

COX regression analyses (Figures 2A, B) and multivariate

Cox proportional risk regression analysis (Figure 2C). Based

on these analyses, the prognostic CD8+ risk model was

constructed including the four most potential prognosis-

related genes (HDFRP3, ARIH1, SMAD2, and UPB1). The

risk score = (1.078 × expression level of HDGFRP3+2.041 ×

expression level of ARIH1+3.079 × expression level of

SMAD2-1.704 × expression level of UPB1) (Figure 2D).

Subsequently, all LUAD patients in the training cohort were

then separated into low- and high-risk groups according to

the cutoff value (28.401) (Figure 3C). KM survival analysis

showed that patients in the high-risk group were associated

with a relatively poor OS than those in the low-risk group

(log-rank P = 3.984e-09, Figure 3A), while the heatmap and

survival plot showed four prognostic expression profiles and

survival status between two risk groups (Figures 3D, E).

Besides, univariate Cox regression analysis and multivariate

Cox regression analysis demonstrated that the risk score

could independently predict OS after adjusting for various

clinicopathologic parameters in the training cohort (Table 1).

Moreover, ROC analysis of 5-year OS was applied to examine

the predictive capacity of the CD8+ risk model, thus we got

the 5-year AUC of risk model was 0.709, which was markedly

higher than that of age (AUC = 0.548), gender (AUC = 0.506),

and stage (AUC = 0.407), indicating that it had a more robust

prediction of clinical outcome than the other clinical

parameters (Figure 3B).
FIGURE 1

The workflow of the study design.
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Testing the signature in the internal
validation set, external validation set, and
the pooled set

The internal validation dataset, the external validation

dataset, and the pooled dataset were used to predict OS and

demonstrate the predictive capacity of the risk model. The risk

score in each LUAD stage III patient from the internal validation

cohort was calculated based on the formula. Then, we divided

the internal validation cohort into a high-risk group (n = 50) and

a low-risk group (n = 94) depending on the optimal risk cutoff

value in the training cohort (Figure 4C). KM analysis indicated

that patients in the high-risk group had a poorer prognosis

compared to those in the low-risk group (log-rank P = 2.251e-

04, Figure 4A). The expression profile of these four genes within

our signature and survival status between two risk groups was

visualized in Figures 4D, E. Moreover, The ROC curves for 5-

year overall survival indicated that the risk score has the best

predictive capacity of OS (AUC = 0.649) among the clinical

parameters (Figure 4B).
Frontiers in Immunology 06
We next demonstrated the prognostic predictive capacity of

the CD8+ T cell-related classifier in the external validation

dataset. The optimal risk cutoff value in the training cohort

was adopted to separate the external dataset into a high-risk

group (n = 21) and a low-risk group (n = 53) (Figure 5C). KM

analysis also revealed that high-risk patients had a poorer

prognosis than those in the low-risk group (log-rank P value =

4.027e-04, Figure 5A). Besides, Figures 5D, E showed the

expression profiles of these four genes and the survival status

between the two risk groups. The ROC curves for 5-year OS also

revealed that the risk score has the best predictive power of OS

(AUC = 0.654) than the other tradit ional cl inical

parameters (Figure 5B).

Last, we further demonstrated the prognostic predictive

capacity of the CD8+ T cell-related classifier in the pooled

validation dataset using the same methods. The external

dataset was separated into a high-risk group (n = 116) and a

low-risk group (n = 246) (Figure 6C). KM analysis still revealed

that high-risk patients had a poorer prognosis than those in the

low-risk group (log-rank P value = 4.965e-13, Figure 6A), while
B

C D

A

FIGURE 2

Construction of CD8+ T cell-related genes signature. (A) Ten-fold cross-validation with minimum criteria for tuning parameter selection (l) in
the LASSO model. (B) LASSO coefficients profiled the CD8+ T cell-related genes. (C) Multivariable Cox regression analysis of these CD8+ T cell-
related genes adopted in the signature. (D) The coefficient of these CD8+ T cell-related genes using multivariable Cox regression analysis.
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B

C

D

A

E

FIGURE 3

KM, t-ROC and distribution analysis of the CD8+ T cell-related risk score model in the training validation set. (A) KM curve of the CD8+ T cell-
related signature for OS. (B) ROC analysis of the CD8+ T cell-related signature for 5-year OS. (C) The risk plot showed the risk score in the low-
risk and high-risk groups. (D) The survival plot showed different survival statuses between the two risk groups. The dotted line indicates the
cutoff value. (E) The heatmap exhibited gene expression levels between two risk groups.
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the expression profile of these four genes within our classifier

and survival status between two risk groups were visualized in

Figures 6D, E. What’s more, the ROC curves for 5-year OS also

revealed the same result that the risk score has the best predictive

power of OS (AUC = 0.665) (Figure 6B). Besides, univariate and

multivariate analysis still indicated that the classifier was

significantly associated with OS after adjustment for clinical

parameters in these validation sets (Table 1). Together, these

findings suggested the CD8+ T cell-related classifier performed

well in predicting the prognosis of stage III LUAD patients.
The relationship between the classifier
built with CD8+ T cell-related genes and
clinicopathological parameters

To better understand the clinical impact of the CD8+ T cell-

related classifier in stage III LUAD patients, we analyzed the

association of the signature with clinical variables in the training

set. There was no significant association between the CD8+ T

cell-related signature and TNM stage, gender, and age, apart

from survival status (Figure 7A). What’s more, we further

analyzed the comparison of risk scores in different subsets

grouped by age, gender, TNM stage, and survival status. The

risk scores were significantly different only in survival status

subgroups, but not in age, stage, and gender subgroups

(Figures 7B–E).
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We next validate the prognostic ability of our CD8+ T cell-

re lated class ifier in different subsets c lustered by

clinicopathological variables. In the training set, patients with

high-risk scores were inclined to have decreased survival rates, in

the age, gender, and TNM stage subsets (Supplementary Figures

S5A-F, P < 0.005). Similar significant findings were revealed in

the internal test set and the pooled test set, except in subsets of

age less than 65-year and female in the internal test set

(Supplementary Figures S5G–L, S6, P < 0.05). As for the

external test set, we also observed that the risk scores were

significantly associated with unfavorable clinical outcomes in the

age, gender, patients with positive node metastasis, T3+4, and

TNM stage subsets (Supplementary Figure S7, P < 0.05). These

findings suggested that our CD8+ T cell-related classifier has a

promising clinical application for selecting high-risk patients.
Constructing a prognostic nomogram

By integrating the CD8+ T cell-related classifier and three

clinicopathological features shared in the training dataset and

the other validation datasets, we developed a prognostic

nomogram to predict the 1-, 3-, and 5- year OS probability

of LUAD patients in the training dataset (Figure 8A). The

AUC points of the nomogram for 1-, 3-, and 5-year survival

predictions were 0.719, 0.629, and 0.737, respectively

(Figure 8B). The C-index indicated that the nomogram had
TABLE 1 Cox regression analysis in each set.

Variables Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value

Training set (n = 144)

Age (<65/≥65) 1.160 (0.745-1.804) 0.511 1.190 (0.758-1.888) 0.449

Gender (female/male) 1.332 (0.853-2.080) 0.208 1.108 (0.701-1.749) 0.661

Stage (IIIA/IIIB) 0.780(0.461-1.319) 0.354 1.224 (0.697-2.150) 0.482

Risk score (low/high) 3.828 (2.390- 6.132) 2.359E-08 4.017 (2.422- 6.663) 7.154E-08

Internal Validation set (n = 144)

Age (<65/≥65) 1.010 (0.761-1.341) 0.945 1.193 (0.852-1.671) 0.304

Gender (female/male) 1.226 (0.814-1.845) 0.329 1.322 (0.868-2.012) 0.193

Stage (IIIA/IIIB) 0.829 (0.513-1.339) 0.443 0.781 (0.451-1.353) 0.379

Risk score (low/high) 1.184 (1.083-1.295) 0.000209 1.197 (1.090-1.313) 0.000156

external Validation set (n = 74)

Age (<65/≥65) 1.412 (0.738-2.701) 0.297 1.014 (0.503-2.044) 0.969

Gender (female/male) 1.270 (0.679-2.372) 0.454 1.157 (0.599-2.233) 0.663

Stage (IIIA/IIIB) 0.972 (0.805-2.786) 0.946 0.728 (0.274-1.928) 0.522

Risk score (low/high) 3.210 (1.670-6.171) 0.000471 3.406 (1.719-6.747) 0.000442

pooled set (n = 362)

Age (<65/≥65) 1.290 (0.975-1.707) 0.075 1.358 (1.023-1.804) 0.034

Gender (female/male) 1.288 (0.976- 1.701) 0.074 1.225 (0.925-1.623) 0.157

Stage (IIIA/IIIB) 0.832 (0.584- 1.186) 0.310 1.016 (0.707-1.461) 0.930

Risk score (low/high) 2.783 (2.085- 3.714) 3.648E-12 2.858 (2.125-3.843) 3.668E-12
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FIGURE 4

KM, t-ROC and distribution analysis of the CD8+ T cell-related risk score model in the internal validation set. (A) KM curve of the CD8+ T cell-
related signature for OS. (B) ROC analysis of the CD8+ T cell-related signature for 5-year OS. (C) The risk plot showed the risk score in the low-
risk and high-risk groups. (D) The survival plot showed different survival statuses between the two risk groups. The dotted line indicates the
cutoff value. (E) The heatmap exhibited gene expression levels between two risk groups.
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FIGURE 5

KM, t-ROC and distribution analysis of the CD8+ T cell-related risk score model in the external validation set. (A) KM curve of the CD8+ T cell-
related signature for OS. (B) ROC analysis of the CD8+ T cell-related signature for 5-year OS. (C) The risk plot showed the risk score in the low-
risk and high-risk groups. (D) The survival plot showed different survival statuses between the two risk groups. The dotted line indicates the
cutoff value. (E) The heatmap exhibited gene expression levels between two risk groups.
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FIGURE 6

KM, t-ROC and distribution analysis of the CD8+ T cell-related risk score model in the pooled validation set. (A) KM curve of the CD8+ T cell-
related signature for OS. (B) ROC analysis of the CD8+ T cell-related signature for 5-year OS. (C) The risk plot showed the risk score in the low-
risk and high-risk groups. (D) The survival plot showed different survival statuses between the two risk groups. The dotted line indicates the
cutoff value. (E) The heatmap exhibited gene expression levels between two risk groups.
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the highest predictive accuracy of survival than the other

clinicopathological parameters (Figure 8C). In addition, the

calibration curves also confirmed a good consistency between

predicted and observed scores in terms of probabilities of 1-,

3-, and 5-year OS (Figure 8D). Similar results of calibration

curves of nomogram were also found in the internal, external,

and pooled validation datasets (Figures 8E–G). Together,

those findings indicated that our nomogram was suitable

for clinical practice.
Frontiers in Immunology 12
Estimation of TIICs

Since CD8+ T cell-related classifier had closely and

intrinsically connected with immune cells, which have a

profound impact on predicting clinical outcomes and

treatment efficacy, we further examined the difference and

relationship of these immune cells with risk groups. The

comparison of 22 immune cells between risk groups was

displayed in a radar plot (Figure 9A). The results revealed
B C

D E

A

FIGURE 7

The correlation between the CD8+ T cell-related signature and clinical variables. (A) The heatmap revealed the association of the CD8+ T cell-
related signature and the clinical variables (age, gender, stage and survival status) in the training set. (B–E) The box plots displayed the
relationship between risk score and clinical features.
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that the abundance of CD8+ T cells was remarkably higher in

the low-risk group compared with those in the high-risk

group (P = 0.049). We also found the fractions of other

immune cells, including Dendritic cells (DCs) resting, and

Tregs were significantly increased in low-risk patients (P =

0.038, P = 0.028), whereas the expression levels of Eosinophils

and T cells CD4 memory activated were obviously higher in

the high-risk group (P = 0.004, P = 0.050) (Supplementary

Figures S8A–E).
Prediction for efficacy of immunotherapy
and chemo-agents

We also found the gene expressions of multiple immune

checkpoint genes (ICGs), including CTLA-4, LAG3, PDCD1,

CD96, CD244, and CSF1R, etc. were significantly increased in

the h i gh - r i s k g roup , wh i ch cou ld be p romi s ing

immunotherapy targets (Figure 9B). To predict the response
Frontiers in Immunology 13
to immunotherapy, the TIDE algorithm was performed

within different risk subsets. The result indicated that the

TIDE score in the high-risk group was significantly lower

than the low-risk group (Figure 9C), suggesting the patients

w i th in h igh- r i sk subse t s cou ld benefi t f rom the

immunotherapy. A similar result was observed in the

submap algorithm. The high-risk subset showed a higher

probability of response to PD-1 blockades (Nominal P =

0.028) (Figure 9D).

Chemotherapy is another common therapy for stage III

LUAD, while a higher IC50 value indicates resistance to the

drug, otherwise, it is sensitive to the drug. The results showed

that the IC50 values of cisplatin and gemcitabine decreased

significantly in the high-risk subset; The IC50 values of

docetaxel and paclitaxel had a decreased trend in the high-risk

subset, although there was no significant difference

(Supplementary Figures S9A–D); Overall, these findings

suggested that the stage III LUAD patients from the high-risk

subset would benefit from immunotherapy and chemotherapy.
B
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D E F G
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FIGURE 8

A nomogram was constructed to predict the OS. (A) A nomogram for predicting 1-, 3- and 5-year OS with risk levels and three clinical variables.
(B) 1-, 3- and 5-year ROC curves of the nomogram for OS predictions. (C) The C index of the nomogram, risk signature and other clinical
variables. Calibration plots of the nomogram for predicting probabilities of 1-year, 3-year, and 5-year OS of stage III LUAD patients in the
training dataset (D), the internal validation dataset (E), the external validation dataset (F), and the pooled validation dataset (G).
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FIGURE 9

Comparison of the fractions of immune cells, expression of immune checkpoint genes, and immunotherapy benefits between risk subsets.
(A) The radar plot revealed the 22 immune cell subpopulations between different risk groups; (B) The gene expression levels of immune
checkpoint genes between risk groups; (C) Different benefits from the immunotherapy between risk subsets were predicted by the TIDE
algorithm; (D) The submap algorithm indicated the probability of response to ICBs. **P < 0.01; ***P < 0.001.
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FIGURE 10

Verification of gene expression including in the model and its validity in real-world cohorts. (A) Representative microphotographs of gene
staining included in the model and the correlation between these genes and CD8 in stage III LUAD. (B) The recent therapeutic effect of
immunotherapy between risk groups; (C) KM curves for OS between risk groups.
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Validation of the gene expression
including in the classifier and evaluating
the efficacy of immunotherapy in a real-
world cohort

To verify the consistency of the model across cohorts and its

validity for clinical application, a real-world cohort was constructed.

28 patients were enrolled in the cohorts, immunohistochemical

detection showed that the expression of ARIH, and SMAD2 had a

negative correlation with CD8 in LUAD tissues (r = -0.6282, P =

0.0003; r = -0.7263, P < 0.0001), while the expression of UPB1 had a

positive correlation with CD8 (r = 0.6961, P < 0.0001), which were

consistent with the results obtained based on open databases

(Figure 10A, Supplementary Figure S10). For the expression of

HDFRP3, unfortunately, we only got a negative trend with CD8 (r =

-0.2559), but without significant statistical significance, probably

due to the small sample size. To further validate whether the model

could well predict the efficacy of immunotherapy for stage III

LUAD patients in the real world, we calculated the risk score based

on the gene-positive staining IOD/Area obtained in

immunohistochemistry analysis and subsequently divided these

patients into high- and low-risk groups. After the Chi-square test,

all the clinicopathological factors were well balanced between the

two groups (P > 0.05) (Supplementary Table S2). Furthermore, we

evaluated the effectiveness of immunotherapy for each patient

objectively. In the high-risk group, 2 of 19 patients reached CR

during treatment, 10 patients achieved PR, 6 patients reached SD,

and 1 patient reached PD, while 1 of 9 patients reached CR, 1

patient achieved PR, 6 patients achieved SD, and 1 patient achieved

PD in the low-risk groups (Figure 10B). The overall response rate

(ORR) was significantly higher in the high-risk group (63.16% vs

22.22%, P = 0.043) (Supplementary Table S3). However, probably

due to the short follow-up time and the small number of cases, we

did not observe a survival difference between the two groups

(Figure 10C). Overall, we confirmed the validity of the model in a

real-world cohort and its clinical applicability.
Discussion

The heterogeneity of stage III LUAD is not only reflected in the

wide range of tumor size (T1-T4), the degree of local tumor

invasion, and the involvement of ipsilateral or contralateral

mediastinal lymph nodes (N0-N3) (3), but also in the diverse

tumor molecular mutations in the histopathological type of

LUAD. Thus, the 5-year survival rates are generally poor and

have a varying range from 12% to 36% in the pathological stage

(30), however, some clinical trials still cannot explain the exact

reasons (31). Consequently, just the commonly used prognostic

indicators, such as tumor stage and patient’s general condition, are

not well appropriate for this group of patients. Besides, the ICBs

such as durvalumab have shown good survival benefits in stage III
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NSCLC (8), but due to the obvious heterogeneity in immune

features (32), the PD-L1 expression, as well as TMB, are not good

predictors of immunotherapy efficacy, which is different from their

application in stage IV of NSCLC (7). Because of significant role of

CD8+ T cell in anti-cancer immunotherapy, hence, finding new

biomarkers and constructing a CD8+ T cell-related classifier to

predict the prognosis and effect of immunotherapy have a

significant meaning for patients with stage III LUAD.

Therefore, in this study, we extracted all RNA level profiles of

these locally advanced LUAD patients from the GEO, Array

Express, and TCGA database and divided these patients into the

training, internal validation, external validation, and pooled

validation cohorts firstly. Then we constructed the gene co-

expression network through identified a significant yellow module

as a hub module that exhibited great relevance to CD8+ T cells by

CIBERSORT and WGCNA analysis. Next, through univariate Cox

analysis, lasso analysis, and multivariate Cox analysis, a CD8+ T

cell-related signature including HDFRP3, ARIH1, SMAD2, and

UPB1 was constructed. It was gratifying that this model could

divide locally advanced LUAD patients into low- and high-risk

groups with distinct overall survival in multiple cohorts (all P <

0.05). What’s more, in comparisons of the age, gender, and stage,

the area under the ROC curve of the model was always the largest.

Moreover, to make this model better applicable in the clinic, a

nomogram including the traditional clinical parameters and risk

signature was constructed. The ROC, C-index, and calibration

curves validated its robust predictive capacity very well.

Meanwhile, KM analysis revealed a significant difference in the

subgroup analyses’ survival between the two risk subsets, especially

in different TNM stages, suggesting the robust clinical application of

our CD8+ T cell-related classifier. Finally, we confirmed that the

high-risk group might benefit from immunotherapy or

chemotherapy, and verified the valuation of this model in a real-

world cohort, which further clarified the value of the model in

predicting efficacy.

Specifically, as the protective factor included in this model, the

most important function of UPBEAT1 (UPB1) is that it could

directly regulate the expression of a set of peroxidases which

modulates the balance of reactive oxygen species (ROS) (33).

Besides, for cancer patients, UPB1 was screened as a prognostic

circulating biomarker or signature for patients with hepatocellular

carcinoma (34, 35), similar to clear renal cell carcinoma (36). In

addition, for the treatment of specific tumors, especially the 5-

fluorouracil treatment of colorectal cancer, some researchers

explored the role of UPB1 in the 5-fluorouracil pathway or

fluoropyrimidine-related high toxicity (37, 38). What’s more, we

not only introduced UPB1 in the clinical prognostic analysis of

LUAD for the first time but also found the expression of UPB1 was

correlated with CD8+ T cells. In the follow-up mechanism

exploration, whether UPB1 affects CD8+ T cells in LUAD by

regulating the expression of ROS is a direction worth studying.

In contrast to the protective factor UPB1, we included three

risk genes in the model, namely SMAD2, ARIH1, and
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HDGFRP3. Among them, the most important and valuable

biomarker was SMAD2. As a transcription factor member of

the SMADs family, SMAD2 is activated by receptors such as

TGF-b mediated phosphorylation, which plays a critical role in

transmitting the TGF-b superfamily from the cell surface to the

nucleus in turn (39). TGF-b/SMAD signaling is considered to

culminate in the suppression of tumor-specific cellular

immunity, which performs functions in a variety of cells. For

CD8+ T cell, Gunderson et al. found that TGF-b increased the

binding of Smad2 and reduced CXCR3 expression in CD8+ T

cells, thereby limiting their trafficking into tumors (40). Li et al.

reported that Icaritin reduced CD8+ T cell chemotaxis by

inhibiting the CXCL10/CXCR3 axis and suppressing the TGF-

b/Smad2 signaling pathway in COPD (41). Furthermore, Park

et al. found that TGF-b1 mediated SMAD3 to enhance PD-1

expression on antigen-specific T cells resulting in T cell

suppression (42). However, the specific mechanism by which

SMAD2 affects CD8+ T cells in LUAD remains unclear. Besides,

SMAD2 phosphorylation was observed after activation in the

Treg, which could produce the bioactive form of TGF-b (43). For
cancer cells, Vimentin consequently led to metastasis and

immune escape through the expression of PD-L1 in LUAD by

triggering the TGF-b/SMAD2 signaling (44). In addition,

ARIH1 (or HHARI) known as a ubiquitin-protein ligase,

contributed to EMT induction and breast cancer progression

(45, 46). However, Wu et al. found that the overexpression of

ARIH1 could suppress tumor growth and promote cytotoxic T

cell activation by inducing PD-L1 degradation (47). Also, a few

reports indicated that high expression of HDGFRP3 (or HRP-3)

promoted hepatocellular carcinomas and identified it was

associated with metastasis in breast cancer (48, 49). In

summary, the four genes included in the model have not yet

been reported to be associated with CD8+ T cells in LUAD,

which means that these biomarkers are important innovations

for antitumor immunotherapy research.

Moreover, the results of GO and KEGG enrichment analysis

demonstrated a meaningful finding that these genes picked from

the hub yellow module were critically enriched in ubiquitin

protein ligase binding, SMAD binding, and lymphocyte

activation. It was gratifying that an E3 ubiquitin ligase such as

ARIH1 could promote anti-tumor immunity via PD-L1

degradation, thereby affecting T cell activation, which has been

mentioned above (47). This finding also strongly supports the

value of such a CD8+ T cell-based predictive model proposed in

this study in predicting the efficacy of immunotherapy. As for

the SMAD2 normally coupled with SMAD3 mentioned above,

its functions were mainly embodied through the key signaling

axis containing transcription factor Forkhead box protein P1

(Foxp1) and TGF-b in the tumor immune microenvironment.

For instance, Foxp1 interacted with Smad2/3 and suppressed the

tumor-reactive T cells’ response to TGF-b in advanced tumors

(50). Hence, the regulation of TGF-b/SMAD signaling function

is important for developing new immunotherapeutic strategies
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by restoring the immunosuppressive TME to active status (51).

For example, using the genetic method to modify antigen-

specific T cells by interfering with TGF-b signaling would

significantly enhance tumor treatment efficacy (52).

Mesenchymal stem cells secreted TGF-b induced the

differentiation of Treg cells via SMAD2 as so to inhibit

colorectal cancer (53). A similar function was also reflected in

the inhibition of IL-2 which was regarded as a key cytokine for T

cell proliferation and activation (54). These findings also support

the potential application of the model in assessing the prognosis

of immunotherapy. Furthermore, it is worth further exploring

whether the other genes involved in the model are associated

with the phenotype of lymphocytes, especially CD8+ T cells.

The critical role of TME is beyond doubt in tumor initiation

and development. Although studies have facilitated the

identification of the important functions of different immune

cell subtypes within TME, the CD8+ T cell is the central focus in

engaging adaptive immunity for cancer control according to the

cancer-immunity cycle (14, 55). Moreover, the number and

functionality of CD8+ T cells after activation are prerequisites

for the efficacy of immunotherapy in patients with lung cancer

(56). Given our classifier constructed from CD8+ T cell-related

genes, the risk score of the CD8+ T cell-related classifier was

consistent with the expectation and negatively related to the

abundance of CD8+ T cells, while patients within the high-risk

group were associated with poor survival status. Besides, we also

found other subclasses, such as resting DCs, and regulatory T

cells (Tregs), were obviously decreased in the high-risk group.

Owing to the unique capacity in initiation and regulation of T

cell responses, DCs have been extensively explored as tools for

immunotherapy, therefore it was convinced that a decrease in

DCs is associated with poor prognosis (57, 58). Nevertheless,

high-risk patients possessed a higher fraction of activated

memory CD4+ T cells and eosinophils. Particularly, the count

and percentage of eosinophils significantly increased in NSCLC

patients treated with ICBs, and metastasis-entrained eosinophils

could enhance lymphocyte-mediated antitumor immunity,

which might somehow explain the reason why high-risk group

patients could benefit from immunotherapy (59, 60). Besides,

the higher expression of immune checkpoint genes in the high-

risk group also could indicate the benefits of immunotherapy

(61). Overall, such a risk score of CD8+ T cell-related classifier

was significantly correlated with multiple immune cell subtypes,

which provided important hints for revealing the interaction

between immune cells and tumor cells in the TME, as well as

between different immune cell subtypes.

In recent years, based on the fact that immunotherapy has

benefited some patients with locally advanced or advanced

NSCLC and with the rapid development of bioinformatics,

more researchers turned their attention to discovering some

models that integrated multi-factors to better predict the survival

rates and evaluate the benefits of immunotherapy. Several

studies have proposed immune prognostic models involving
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multiple genes that could evaluate the prognosis of patients with

LUAD, however, they did not specify which types of immune

cells these genes were associated with, nor did they separately

analyze the patients with locally advanced LUAD (62–64).

Besides, Xie et al. developed a nomogram for LUAD patients

based on immune scores and concluded high score was related to

better OS, but immunotherapy was not involved and external

data verification was needed (65). Zhang et al. established a

CD8+ T cell-associated gene signature, which could help assess

prognostic risk and immunotherapy response in LUAD patients.

However, they did not validate the signature with real-world

samples (66). Moreover, some researchers demonstrated the

tumor immune microenvironment by analyzing the targeted

RNA-Seq of immune-related genes, which had prognostic value

for locally advanced LUAD (67). Unfortunately, the effective

value was limited by the small sample size from a single

institution. Thus, these models have a few limitations and

insufficient predictive power for locally advanced LUAD.

Although we have constructed a risk model and a

nomogram based on this, which has good predictive efficacy

in survival rates and potential application in the prediction of

immunotherapy or chemotherapy efficacy in locally advanced

LUAD. Nevertheless, there are also some limitations of this

study. First, to incorporate more data into our research, we

have selected as many data sets as possible in the GEO

database, although they contained several different platforms.

Thus, such a fusion of multiple data might increase the

possibility of over-correction in the data processing. In

addition, we have only repeatedly verified the effectiveness of

the model through different open cohorts. Although we

validated the model in a real-world cohort, we did not obtain

particularly significant differences due to, for example, the

small number of cases. Overall, further experimental

validations are needed to determine whether these genes

included in the model are involved in the progression of

locally advanced LUAD and how they affect the phenotypes

of CD8+ T cells.

In summary, based on the multiple cohorts, we have

constructed a prediction model correlated to CD8+ T cell and

the nomogram in patients with locally advanced LUAD.

Furthermore, the overwhelming impression of our study was

the better effectiveness and accuracy of the model in predicting

survival rates and immunotherapy efficacy by designing multiple

validation cohorts from open or real-world databases. Hence,

based on CD8+ T cell-related genes in the model, if the

mechanism of the relationship between the level of risk factors

and the CD8+ T cell phenotypes could be explored, then such a

model will be better applied to predict the prognosis of locally

advanced LUAD patients on immunotherapy and enable

patients to benefit from treatments.
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SUPPLEMENTARY FIGURE 1

The selection process for inclusion of patients as the real-world cohort.

SUPPLEMENTARY FIGURE 2

The before and after batch corrections were displayed by PCA plots.

SUPPLEMENTARY FIGURE 3

WGCNA for construction and validation of the hub module. (A) Scale-free
fit with the soft threshold power from 1-20 (x-axis) and the corresponding
signed R2 (y-axis); (B) Mean connectivity analysis for 1-20 soft threshold

power; (C) CD8+ T cell-related genes were grouped into different
modules marked with various colors via hierarchical clustering tree.

SUPPLEMENTARY FIGURE 4

The feature notes of hub modules. (A) The heatmap exhibited the

correlations of modules with T cells infiltration; (B) The top 20 enriched
Frontiers in Immunology 19
terms were shown as a bar chart; (C) The network was constructed for
these enriched terms.
SUPPLEMENTARY FIGURE 5

KM curves for OS indicated prognostic power of the CD8+ T cell-related
signature in various subsets of the training cohort and the internal test set.

(A) age < 65; (B) age ≥ 65; (C) Female; (D)Male; (E) stage IIIA; (F) stage IIIB;
(G–L) for the internal test set was similar to (A-F) for the training cohort.

SUPPLEMENTARY FIGURE 6

KM curves for OS indicated prognostic power of the CD8+ T cell-related

signature in the pooled test set. (A) age < 65; (B) age ≥ 65; (C) Female; (D)
Male; (E) stage IIIA; (F) stage IIIB.

SUPPLEMENTARY FIGURE 7

KM curves for OS indicated prognostic power of the CD8+ T cell-related

signature in the external test set. (A) age < 65; (B) age ≥ 65; (C) Female; (D)
Male; (E) Negative nodes; (F) Positive nodes; (G) stage T1+T2; (H) stage T3
+T4; (I) stage IIIA; (J) stage IIIB.

SUPPLEMENTARY FIGURE 8

Quantitative differences of immune cell subtypes between risk groups. (A)
Resting dendritic cells; (B) CD8+ T cells; (C) Tregs; (D) Eosinophils; (E)
Activated memory CD4+ T cells.

SUPPLEMENTARY FIGURE 9

Chemotherapy benefits stratified by different risk subsets. (A–D) IC50

plots of chemo-agents between the two subsets. (A) Cisplatin; (B)
Docetaxel; (C) Gemcitabine; (D) Paclitaxel.

SUPPLEMENTARY FIGURE 10

Correlation of genes included in the model with the Tumor-Infiltrating

Immune Cells.
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