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Abstract

Oncolytic virus (OV) is a replication competent virus that selectively invades cancer cells; as

these cells die under the viral burden, the released virus particles proceed to infect other

cancer cells. Oncolytic viruses are designed to also be able to stimulate the anticancer

immune response. Thus, one may represent an OV by two parameters: its replication poten-

tial and its immunogenicity. In this paper we consider a combination therapy with OV and a

checkpoint inhibitor, anti-PD-1. We evaluate the efficacy of the combination therapy in

terms of the tumor volume at some later time, for example, 6 months from initial treatment.

Since T cells kill not only virus-free cancer cells but also virus-infected cancer cells, the fol-

lowing question arises: Does increasing the amount of the checkpoint inhibitor always

improve the efficacy? We address this question, by a mathematical model consisting of a

system of partial differential equations. We use the model to construct, by simulations, an

efficacy map in terms of the doses of the checkpoint inhibitor and the OV injection. We show

that there are regions in the map where an increase in the checkpoint inhibitor actually

decreases the efficacy of the treatment. We also construct efficacy maps with checkpoint

inhibitor vs. the replication potential of the virus that show the same antagonism, namely, an

increase in the checkpoint inhibitor may actually decrease the efficacy. These results have

implications for clinical trials.

Introduction

PD-1 is an immunoinhibitory receptor predominantly expressed on activated T cells [1, 2]. Its

ligand PD-L1 is upregulated on the same activated T cells, and in some human cancer cells [2,

3]. The complex PD-1-PD-L1 is known to inhibit T cell function [1]. Immune checkpoints are

regulatory pathways in the immune system that inhibit its active response against specific tar-

gets. In the case of cancer, the complex PD-1-PD-L1 functions as an immune checkpoint for

anti-tumor T cells. CTLA-4 is another immunoinhibitory receptor expressed on activated T

cells; when it combines with its ligand B7 on dendritic cells, the complex CTLA-4-B7 acts as a
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checkpoint inhibitor for anti-tumor T cells [4, 5]. There has been much progress in recent

years in developing checkpoint inhibitors, primarily anti-PD-1 and anti-PD-L1 [6], and anti-

CTLA-4 [7, 8].

Oncolytic virus (OV) is a genetically engineered virus that can selectively invade into and

replicate within cancer cells while not harming normal healthy cells. OV therapy has been

explored as an approach to combat cancer, and clinical trials were carried out on different

types of cancer [9–12]. However, therapeutic efficacy remains a challenge [13, 14]. One of the

factors that limits OV therapy is the antigenicity of the infected cells; the macrophages of the

innate immune system recognize these cells and destroy them together with the virus particles

inside them. For this reason, experimental studies considered combination of OV therapy

with immune suppressive drugs [15–18].

In another direction, some studies consider OV with viruses designed to both replicate

within cancer cells and stimulate cytotoxic T cells; such viruses include vesicular stomatitis

virus [19, 20], Newcastle Disease Virus [21], vaccinia [22, 23], measle virus [24], and others

[25, 26]. Advances in the design of various oncolytic viruses are reported in [27, 28]. The

underlying assumption in these studies is that the virus will survive long enough, under the

pressure of the innate immune attack, to activate a sufficiently large number of cytotoxic T

cells that will eradicate or significantly reduce the cancer. To make this approach more effec-

tive, it was suggested to combine the OV drug with checkpoint inhibitors. Several mouse

experiments, with different types of cancer cells, reported that both CTLA-4 and PD-L1 check-

points blockade enhanced the OV therapy [29–33]. There are also several clinical trials with

OV and checkpoint inhibitors [34–37].

In previous work the authors considered combination therapies with checkpoint inhibitor

and, as a second agent, tumor vaccine [38] or BRAF inhibitor [39]. In the present paper the

second agent is oncolytic virus. This poses a dilemma, since T cells kill not only virus-free can-

cer cells but also virus-infected cancer cells (thus reducing the anti-cancer effect of the virus),

while checkpoint inhibitors enhance the T cells activities. Thus, it is natural to ask whether

increasing the amount of the checkpoint inhibitor does always result in a decrease in tumor

volume. We develop a mathematical model to address this question. We denote by γV the dose

amount of the injected OV and by γA the dose amount of the checkpoint inhibitor, and define

the efficacy of the treatment by (γV, γA) in terms of the tumor volume at some arbitrary time,

for example, 24 weeks from the beginning of the treatment. We use the mathematical model to

develop an efficacy map, and we find that there are regions in (γV, γA) plane where an increase

in γA results in actual decrease in the efficacy. We denote by lVi
the replication rate of viruses

within infected cancer cells. We then construct efficacy maps for (lVi
, γA) and find regions

where an increase in γA again results in decreased efficacy. In such regions, the indiscriminent

killing of infected and uninfected cancer cells has pro-cancer effect. These have implications

for clinical trials.

The mathematical model includes CD4+ Th1 cells and CD8+ T cells, macrophages, and

dendritic cells. Dendritic cells are activated indirectly by the virus and by necrotic cancer cells,

while macrophages are activated by virus-infected cancer cells. Macrophages engulf and

destroy infected cancer cells, but they also kill, at a lesser rate, uninfected cancer cells. When a

cancer cell is infected by an extracellular virus, the extracellular virus becomes an intracellular

virus within the infected cell. Intracellular viruses multiply within the cancer cells and cause

them to lyse, thereby releasing all their viruses to the extracellular environment. T cells are acti-

vated by IL-12 produced by dendritic cells, and they also proliferate by IL-2 produced by Th1

cells. Fig 1 shows the network of interactions among the cells, with PD-1 and PD-L1 on T cells

and PD-L1 also on tumor cells.

Combination therapy with oncolytic virus and checkpoint inhibitor
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We assume that the treatment with combination therapy extends over a period of 16 weeks,

and we evaluate the results of the treatment at the end of 24 weeks. We can use the model to

compute the tumor volume at the end of 24 weeks for each pair of parameters of (lVi
, λDV) and

doses (γA, γV).

The mathematical model is represented by a system of partial differential equations based

on Fig 1.

Mathematical model

The mathematical model is based on the diagram in Fig 1. The list of variables is given in

Table 1, where the density of cells and concentration of cytokines are all in unit of g/cm3. The

time unit is 1 day.

We assume that the total density of cells within the tumor remains constant in space and

time, so that

C þ Ci þM þ Dþ T1 þ T8 ¼ constant ¼ y: ð1Þ

Since cancer cells proliferate while T cells and macrophages enter the tumor, the assump-

tion (1) implies that there is an internal pressure among cells, and this gives rise to a velocity u

of cells.

Fig 1. Interaction of tumor cells with virus and immune cells. Sharp arrows indicate proliferation/activation, blocked arrows indicate killing/

blocking, and dashed lines indicate proteins on T cells. C: uninfected cancer cells, Ci: infected cancer cells, Ve: extracellular virus, Vi: intracellular virus,

D: dendritic cells, T1: CD4+ Th1 cells, T8: CD8+ T cells, I2: IL-2, I12: IL-12, P: PD-1, L: PD-L1, Q: PD-1-PD-L1 complex.

https://doi.org/10.1371/journal.pone.0192449.g001

Table 1. List of variables (in units of g/cm3).

Notation Description Notation Description

C density of cancer cells T8 density of activated CD8+ T cells

Ci density of infected cancer cells I12 IL-12 concentration

V density of extracellular virus I2 IL-2 concentration

Vi density of intracellular virus P PD-1 concentration

M density of macrophages L PD-L1 concentration

D density of dentritic cells Q PD-1-PD-L1 concentration

T1 density of activated CD4+ T cells A anti-PD-L1 concentration

https://doi.org/10.1371/journal.pone.0192449.t001
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Equation for uninfected cancer cells (C). We assume a logistic growth for cancer cells, and

that cancer cells are killed primarily by CD8+ T cells at a rate η8 T8 C where η8 is a constant.

Cancer cells become infected by Ve at a rate proportional to CVe. Therefore C satisfies the fol-

lowing equation:

@C
@t
þr � ðuCÞ � dCr

2C ¼ lCC 1 �
C
CM

� �

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
growth

� bCCVe|fflffl{zfflffl}
infection by Ve

� Z8T8C|fflffl{zfflffl}
killed by CD8þ T cells

� dCC|{z}
death

;

ð2Þ

where δC is the dispersion coefficient and dC is the death rate by apoptosis.

Equation for infected cancer cells (Ci). We assume that CD8+ T cells kill infected cancer

cells at a rate Z8Ci
T8Ci, where Z8Ci

is a constant larger than η8. We also assume that macro-

phages kill infected cancer cells by phagocytosis [40] at a rate proportional to Ci M. The death

rate of infected cancer cells is larger than the death rate of uninfected cancer cells by a factor

mVi
Vi which represents the effect of viral burden. We take the rate by which cancer cells

become infected to be βC CVe. We finally assume that the density of the Vi cells is proportional

to the density of the Ci cells within which the Vi reside, so that they have the same dispersion

coefficient. Hence the equation for infected cancer cells is given by

@Ci

@t
þr � ðuCiÞ � dCi

r2Ci ¼ bCCVe � dCð1þ mVi
ViÞCi

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
death

� mCiM
CiM

|fflfflfflfflffl{zfflfflfflfflffl}
killed by M

� Z8Ci
T8Ci

|fflfflfflffl{zfflfflfflffl}
killed by CD8þ T cells

:

ð3Þ

Equation for extracellular virus (Ve). We assume that virus at amount γV is injected into

the tumor at successive days t1, t2,…, tn. Thus at each day tj we have to increase Ve by an

amount γV, that is, Ve(tj + 0) − Ve(tj − 0) = γV. This increase can be written in the form

dVe

dt

�
�
�
�t¼tj
¼ gVdðt � tjÞ

where δ(s) is the Dirac measure. We assume that when an infected cell dies the intracellular

viral particles are released into the tumor microenvironment; however, when an infected cell is

killed by macrophages or T8 cells, the virus particles inside it are cleared out. Extracellular

virus are endocytosed by macrophages, and the rate of their depletion is proportional to MVe.

Hence, the equation for Ve takes the following form:

@Ve

@t
� dVe

r2Ve ¼
Xm

j¼1

gVdðt � tjÞ þ NdCð1þ mVi
ViÞVi

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
released by Ci death

� bVCVe|fflfflffl{zfflfflffl}
Ve!Vi

� mVeM
MVe

|fflfflfflfflffl{zfflfflfflfflffl}
endocytosed by M

;

ð4Þ

where N is the average number of viral particles released at death of an infected cancer cell.

Note that the coefficient βV is related to the coefficient βC in Eq (2) by the equation βV = βC mVC,

where mVC is the ratio of the mass of one virus to one cancer cell.
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Equation for intercellular virus (Vi). Viruses multiply in a cancer cell by exploiting the

DNA of the cell as a ‘resource’. We represent the proliferation of the viruses in the cell by lVi

Ci. The equation for Vi is the following:

@Vi

@t
þr � ðuViÞ � dCi

r2Vi ¼ bVCVe|fflfflffl{zfflfflffl}
Ve!Vi

þ lVi
Ci

|ffl{zffl}
growth of Vi in Ci

� NdCð1þ mVi
ViÞVi

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
released through death of Ci

� mCiM
ViM

|fflfflfflfflffl{zfflfflfflfflffl}
killed by M

� Z8Ci
T8Vi

|fflfflfflffl{zfflfflfflffl}
killed by CD8þcells

:

ð5Þ

The last two terms represent a loss of Vi due to death of their host Ci by the macrophages

and CD8+ T cells. Note that Vi moves with the same velocity~u as Ci.
Equation for macrophages (M). The growth rate of the proinflammatory macrophages is

promoted by infected cancer cells and is represented by a term lMCi
MCi. Hence M satisfies the

following equation:

@M
@t
þr � ðuMÞ � dMr

2M ¼ lM|{z}
Source

þ lMCi
MCi

|fflfflfflffl{zfflfflfflffl}
growth

� dMM|ffl{zffl}
death

; ð6Þ

where λM is a source of macrophages prior to the treatment with OV.

Equation for dentritic cells (D). Oncolytic virus is often armed to elicit adaptive immune

response [19, 24]. In particular, we assume that inactive dendritic cells with density D0 are acti-

vated by intracellular armed viruses at a rate proportional to D0Vi. Dendritic cells are also acti-

vated by HMGB-1 [41, 42], which is produced by necrotic cancer cells (NCs) [43]. We assume

that the concentration of HMGB-1 is proportional to the density of NCs and that the density

of NCs is proportional to the density of cancer cells. Hence, the activation rate of inactive den-

dritic cells is proportional to D0
C

KCþC
, where the Michaelis-Menten law is used to account for

the limited receptor recycling time which occurs in the process of DC activation. The dynam-

ics of DCs is given by

@D
@t
þr � ðuDÞ
|fflfflfflfflffl{zfflfflfflfflffl}

velocity

� dDr
2D

|fflfflffl{zfflfflffl}
difusion

¼ lDVD0Vi|fflfflfflffl{zfflfflfflffl}
activation by intracellular virus

þ lDCD0

C
KC þ C

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
activation by HMGB� 1

� dDD|{z}
death

;

ð7Þ

Equation for CD4+ T cells (T1). Naive CD4+ T cells are activated by IL-12 while in direct

contact with dendritic cells. IL-2 induces proliferation of activated T1 cells [44, 45]. Both pro-

cesses are inhibited by the complex PD-1-PD-L1 (Q) [46], by a factor 1

1þQ=KTQ
. Hence T1 satisfies

Combination therapy with oncolytic virus and checkpoint inhibitor
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the following equation:

@T1

@t
þr � ðuT1Þ � dTr

2T1 ¼

�

l̂T1I12
T10

I12

KI12
þ I12

D
KD þ D

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
activation by IL� 12

þ lT1I2
T1

I2
KI2
þ I2

�

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
promotion by IL� 2

�
1

1þ Q=KTQ
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

inhibition by PD� 1� PD� L1

� dT1
T1

|ffl{zffl}
death

:

ð8Þ

Equation for CD8+ T cells (T8). IL-12 activates CD8+ T cells and IL-2 induces proliferation

of CD8+ T cells [44, 45]. Hence, similarly to the equation for T1, T8 satisfies the following equa-

tion:

@T8

@t
þr � ðuT8Þ � dTr

2T8 ¼

�

l̂T8I12
T80

I12

KI12
þ I12

D
KD þ D

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
activation by IL� 12

þ lT8I2
T1

I2
KI2
þ I2

�

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
promotion by IL� 2

�
1

1þ Q=KTQ
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

inhibition by PD� 1� PD� L1

� dT8
T8

|ffl{zffl}
death

:

ð9Þ

Equation for IL-12 (I12). IL-12 is produced by activated DCs, so that

@I12

@t
� dI12

r2I12 ¼ lI12D
D

|fflffl{zfflffl}
production by DCs

� dI12
I12

|fflffl{zfflffl}
degradation

:
ð10Þ

The diffusion coefficient of I12 is several orders of magnitude larger than the diffusion coef-

ficient of cells. Hence the transport termr � (uI12) is negligible compared to the diffusion

term dI12
r2I12, and it was therefore omitted.

Equation for IL-2 (I2). IL-2 is produced by activated CD4+ T cells. Hence,

@I2
@t
� dI2

r2I2 ¼ lI2T1
T1

|fflfflffl{zfflfflffl}
production by T1

� dI2 I2|{z}
degradation

:
ð11Þ

Here again the transport term was omitted.

Equation for PD-1 (P), PD-L1 (L) and PD-1-PD-L1 (Q). PD-1 is expressed on the surface

of activated CD4+ T cells and activated CD8+ T cells. Hence, P is given by P = ρP(T1 + T8),

where ρP is the ratio of the mass of all the PD-1 proteins in one T cell to the mass of one T cell.

Thus, P satisfies the equation

@P
@t
þr � ðuPÞ � dTr

2P ¼ rP
@ðT1 þ T8Þ

@t
þr � ðuðT1 þ T8ÞÞ � dTr

2ðT1 þ T8Þ

� �

;

or, by Eqs (8) and (9),

@P
@t
þr � ðuPÞ � dTr

2P ¼ rP

�

ðlT1I12
T10 þ lT8I12

T80Þ
I12

KI12
þ I12

þðlT1I2
T1 þ lT8I2

T8Þ
I2

KI2
þ I2

�

�
1

1þ Q=KTQ
� rPðdT1

T1 þ dT8
T8Þ;

Combination therapy with oncolytic virus and checkpoint inhibitor

PLOS ONE | https://doi.org/10.1371/journal.pone.0192449 February 8, 2018 6 / 21

https://doi.org/10.1371/journal.pone.0192449


where rP ¼
P

T1þT8
. Note that P undergoes the same advection velocity~u as the T cells. We

assume that PD-1 is depleted (or blocked) by A at rate μPAPA, so that

@P
@t
þr � ðuP1Þ � dTr

2P ¼
P

T1 þ T8

ðlT1I12
T10 þ lT8I12

T80Þ
I12

KI12
þ I12

þ ðlT1I2
T1 þ lT8I2

T8Þ
I2

KI2
þ I2

" #

�
1

1þ Q=KTQ

�
P

T1 þ T8

ðdT1
T1 þ dT8

T8Þ � mPAPA:|fflfflffl{zfflfflffl}
depletion by anti� PD� 1

ð12Þ

In the sequal we take the dimension of μPA to be cm3/g � day so that A is given in unit of

g/cm3.

PD-L1 is expressed on the surface of activated CD4+ T cells, activated CD8+ T cells, and on

tumor cells. Hence, the concentration of PD-L1 (L) is proportional to (T1 + T8) and C:

L ¼ rLðT1 þ T8 þ εCÞ; ð13Þ

where ρL is the ratio of the mass of all the PD-L1 proteins in one T cell to the mass of one T

cell, and ε depends on the specific type of tumor.

PD-1 and PD-L1 form a complex PD-1-PD-L1 (Q), with association and disassociation

rates αPL and dQ, respectively:

P þ LÐ
aPL

dQ
Q: ð14Þ

The half-life of Q is less then 1 second (i.e. 1.16 × 10−5 day) [47]. Hence, we may assume

that the dynamics in (14) is in quasi-steady state, so that αPL PL = dQ Q, or

Q ¼ sPL; ð15Þ

where σ = αPL/dQ.

Equation for anti-PD-1 (A). We assume that anti-PD-1 is injected intraperitoneally in the

amount γA at the same days t1, t2,…, tn as in the injection of virus. The PK/PD effect of the

drug is assumed to be
Pn

j¼1
gAHðt � tjÞe� aðt� tjÞ, where H(s) = 0 if s� 0, H(t) = 1 if s> 1. The

drug A is depleted in the process of blocking PD-1. Hence,

@A
@t
� dAr

2A ¼
Xn

j¼1

gAHðt � tjÞe
� aðt� tjÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
injection

� mAPPA|fflffl{zfflffl}
depletion through blocking PD� 1

� dAA|{z}
degradation

:

ð16Þ

Equation for cells velocity (u): Cells disperse within the tissue, and its random motility

may vary from one cell type to another. If the differences in the dispersion coefficients are

ignored, then by adding the equations for all the cells and using Eq (1), we get

y�r � u ¼ Right � hand side of Eqs ð2Þ; ð3Þ and ð6Þ-ð9Þ:

To simplify the model we assume that the differences between the dispersion coefficients of

the different cell types are small (but see comments in “Parameter estimation” (in “Diffusion

coefficients”) and “Sensitivity analysis”), and proceed to use the above equation forr � u.

Combination therapy with oncolytic virus and checkpoint inhibitor
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We assume that the average density of each cell type eventually stabilizes with the following

values: For cancer cells, 0.4 g/cm3; for dendritic cells 0.4 × 10−4 g/cm3; for macrophage, 0.2 g/

cm3; for T1 cells, 2 × 10−3 g/cm3; and for T8 cells, 1 × 10−3 g/cm3. Recalling Eq (1) we find that

θ = 0.6034, so that

0:6034�r � u ¼ RHS of Eq ð2Þ þ RHS of Eq ð3Þ þ
X9

j¼6

½RHS of Eq ðjÞ�: ð17Þ

To simplify the computations, we assume that the tumor is spherical with moving boundary

r = R(t), and that all the densities and concentrations are radially symmetric, that is, functions

of (r, t), where 0� r� R(t). In particular, u = u(r, t)er, where er is the unit radial vector.

Equation for free boundary (R): We assume that the free boundary r = R(t) moves with the

velocity of cells, so that

dRðtÞ
dt
¼ uðRðtÞ; tÞ: ð18Þ

Boundary conditions We assume that naive CD4+ T cells and CD8+ T cells which migrated

from the lymph nodes into the tumor microenvironment have constant densities T̂ 8 at the

tumor boundary, and that they are activated by dentritic cells and IL-12 upon entering the

tumor. We represent this process by the flux conditions at the boundary:

@T8

@n
þ sTðI12ÞðT8 � T̂ 8Þ ¼ 0;

@T1

@n
þ sTðI12ÞðT1 � T̂ 1Þ ¼ 0 at r ¼ RðtÞ; ð19Þ

where sT I12ð Þ ¼ aT
I12

KI12þI12

D
KDþD

.

We impose zero-flux boundary condition on all the remaining variables:

zero-flux for C; Ci; Ve; Vi; M; D; I12; I2; P; Aðr; tÞ at r ¼ RðtÞ: ð20Þ

It is implicity assumed that receptors P become expressed only after T1 and T8 cells were

already inside the tumor.

Initial conditions We prescribe the following values (in unit g/cm3) at day t = 0:

Rð0Þ ¼ 0:01 cm; and C ¼ 0:3583;

Ci ¼ 0; Ve ¼ 0; Vi ¼ 0; T1 ¼ 3� 10� 3; T8 ¼ 1:5� 10� 3; M ¼ 0:24;

D ¼ 6� 10� 4; I2 ¼ 3:5� 10� 11; I12 ¼ 12� 10� 10; P ¼ 1:2� 10� 9 g=cm3;

ð21Þ

Note that the initial values satisfy Eq (1). We took the initial values for cells to be different

from their above assumed asymptotic values. The choice of the initial conditions have little

effect on the simulation results after a few days.

Results

The simulations of the model were performed by Matlab based on the moving mesh method

for solving partial differential equations with free boundary [48] (see the section on computa-

tional method).

Fig 2 shows the profiles of the average densities/concentrations of all the variables of the

model in the first 30 days in the control case, that is, without treatment. The simulation results

show that the steady states of all the cytokines and cells are approximately equal to the half-sat-

uration values that we assumed in estimating the parameters of the model.
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We proceed to simulate the treatment of cancer by OV and anti-PD-1 as single agents, and

by a combination of the two drugs. Following mice experiments reported in [49], we apply the

OV injections in days 0,2,4, and anti-PD-1 injection in days 4,7,11. From Figs 1(b) and 2(b) in

[49] we see that although all the mice were identical and were treated with the same amounts

of dose, their responses were varied: For some mice the tumor volume grew faster with OV

than with anti-PD-1 as single agents, while for others this was the reverse, which means that

the “effective” dose amounts varied with each subject. We account for this, in our model, by

taking for each mouse somewhat different values of γV and γA which represent the effective

doses for this subject. We also note that γV and γA should be approximately proportional to the

amount of dose injected in the experiments. We determined the proportionality coefficients,

or rather the orders of the magnitude of γV and γA, so that the doubling time of the tumor vol-

ume (under treatment with a single agent) is approximately 20 days, which is the case for a

large number of the mice in Figs 1(b), 2(b) of [49].

Fig 3(a)–3(c) show some simulations of the model with different values of γV and γA. The

profiles are similar to many of those given in [49]. In Fig 3(a) treatment with anti-PD-1 as sin-

gle agent reduces tumor growth more than treatment with OV as single agent, and in Fig 3(b)

and 3(c), it is the reverse, in agreement with profiles in [49]. In all cases, the combination

reduces the tumor growth more than a single agent.

We can characterize the anticancer effectiveness of a virus by (i) its ability to replicate

within cancer cells, as represented by the parameters lVi
in Eq (5), and (ii) by its ability to stim-

ulate the anticancer immune response, as represented by the activation rate λDV in Eq (7). For

any pair (lVi
, λDV) we may associate a “virtual virus” having these two parameters.

We proceed to use the mathematical model to conduct in silico clinical trials. As an exam-

ple, a treatment will be given for a period of 16 weeks, and the patient’s tumor volume will be

measured at the end of 24 weeks from the initial treatment. The virus is injected into the

tumor at the beginning of weeks 1,3,5,7,9,11,13 and 15, at an amount γV, and the anti-PD-1 is

given at the beginning of weeks 1,4,7,10, 13, 16 at an amount γA. We denote by V24(γV, γA) the

Fig 2. Average densities/concentrations, in g/cm3, of all the variables in the model in the control case. All parameter values are the same as in Tables

2 and 3. Initial values are as in (21).

https://doi.org/10.1371/journal.pone.0192449.g002
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volume of the tumor at the end of 24 weeks, and define the efficacy of the treatment by the for-

mula:

EðgV ; gAÞ ¼
V24ð0; 0Þ � V24ðgV ; gAÞ

V24ð0; 0Þ
;

thus the efficacy is increased if the tumor volume V24(γV, γA) is decreased.

Fig 4 shows an efficacy map for the parameters lVi
¼ 5� 10� 4=day, λDV = 5.2 × 1010 cm3/

g � day. For clarity we marked tumor volumes V24(γV, γA) on the equi-efficacy curves. We see

that as γV increases so does the efficacy. However, the same is not true of γA: there are regions

where the efficacy decreases as γA increases. To understand what happens in such regions we

take two points with the same γV: (3.7 × 10−7, 5.4 × 10−8) and (3.7 × 10−7, 6.6 × 10−8). Fig 5

shows that the tumor volume for the larger γA is somewhat larger than the tumor volume for

the smaller γA. Fig 6 explains what has actually occurred. With the higher dose, more infected

cancer cells were killed, and the virus population decreased. Hence the number of activated

dendritic cells decreased and then also the number of T cells decreased, which resulted in an

increase in the number of uninfected cancer cells.

We find the same phenomenon in Fig 7, which is an efficacy map for (γA, lVi
), for specific

values of γV = 2.5 × 10−7 g/cm3/day and λDV = 5.2 × 1010 cm3/g � day. The tumor volume

decreases as lVi
increases, but there are values of lVi

for which the tumor volume increases

when γA is increased.

We note that λDV and γA are positively correlated, since both are increasing the activity of

effector T cells. We therefore expect that, unlike situation in Fig 4, the tumor volume will

decrease as γA increases.

One is tempted to replace PDE system by a simpler system of ODEs where the diffusion

and advection terms are dropped. However, since the diffusion of cells is several orders of

magnitude smaller than diffusion of cytokines and extracellular virus, the ODE system cannot

Fig 3. The growth of tumor volume. OV is given at days t = 0, 2, 4 with the amount γV and anti-PDE-1 is given at days t = 4, 7, 11 with the amount γA.

(a) γV = 0.1 × 10−10 g/cm3, γA = 8 × 10−7 g/cm3. (b) γV = 0.2 × 10−10 g/cm3, γA = 3 × 10−7 g/cm3. (c) γV = 0.5 × 10−10 g/cm3, γA = 7 × 10−7 g/cm3.

Parameter values are the same as in Fig 2.

https://doi.org/10.1371/journal.pone.0192449.g003
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Fig 5. Growth of tumor volume. Here, γV = 3.7 × 10−7 g/cm3. Other parameter values are the same as in Fig 4.

https://doi.org/10.1371/journal.pone.0192449.g005

Fig 4. The tumor volume at week 24 for different pair of (γV, γA). Here lVi
¼ 5� 10� 4=day, λDV = 5.2 × 1010 cm3/g �

day, γV = 1 × 10−7 − 4 × 10−7 g/cm3 and γA = 0.6 × 10−8 − 9 × 10−8 g/cm3. All other parameter values are the same as in

Tables 2 and 3.

https://doi.org/10.1371/journal.pone.0192449.g004
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Fig 7. The tumor volume at week 24. Here, γV = 2.5 × 10−7 g/cm3 and λDV = 5.2 × 1010 cm3/g�day. All other parameter

values are the same as in Tables 2 and 3.

https://doi.org/10.1371/journal.pone.0192449.g007

Fig 6. The average densities and tumor volume. Blue: γV = 3.7 × 10−7 g/cm3, γA = 5.4 × 10−8 g/cm3. Red: γV = 3.7 × 10−7 g/cm3, γA = 6.6 × 10−8 g/cm3.

Other parameter values are the same as in Fig 4.

https://doi.org/10.1371/journal.pone.0192449.g006
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adequately represent the PDE model. For example, Fig 6 show antagonism between the OV

and anti-PD-1, whereas this antagonism disappears in the ODE model.

Conclusion

Oncolytic virus (OV) is a genetically modified virus that can selectively invade cancer cells

and replicate inside them. When an infected cell dies, its virus particles are released and pro-

ceed to infect other cancer cells. OV therapy, as a single agent, had not been successful

because macrophages recognize infected cells and kill them together with their viruses.

Recent studies use new designs of OV that can stimulate cytotoxic T cells to kill cancer cells

before the viral population is significantly depleted by the macrophages. Some of these stud-

ies introduce enhancement of the T cells by blocking their checkpoints. Mice experiments

demonstrated that both CTLA-4 and PD-L1 checkpoints blockade enhance the OV treatment

[29–33]. There are recent clinical trials with OV and checkpoint inhibitors [34–37]. In partic-

ular, in clinical trials for melanoma, reported in [36], patients were treated with OV (T-VEC)

and anti-CTLA-4 (ipilimumab) for a period of 13 weeks and were observed for an average

period of 20 months.

Since T cells kill not only virus-free cancer cells but also virus-infected cancer cells, they

may disrupt the anti-cancer effect of the OV. Hence an increase in the dose of the checkpoint

inhibitor may actually have a pro-cancer effect. In order to clarify this situation we developed a

mathematical model that includes the immune cells (macrophages, dendritic cells, and effec-

tive T cells), and characterized the OV by two parameters: the replication potential (lVi
) and

its immunogenicity potential (λDV). We first simulated a treatment corresponding to mice

experiments, where the dose γA of anti-PD-1 and the dose γV of OV were administered for 11

days, and the tumor volume was observed for 30 days. We found quantitative agreement with

experimental results [49].

We then proceeded to use the model to run in silico clinical trials, where the treatment

with a combination (γV, γA) was given for 14 weeks, and we observed the results of the

treatment for 24 weeks. We simulated the tumor volume V24(γV, γA) at the end of 24 weeks

for a range of (γV, γA). We found that there are regions in the (γV, γA)-plane where an

increase in γA results in an increase in the tumor volume. Thus, there are regions of antago-

nism between the two drugs, where an increase in the anti-PD-1 decreases the efficacy of the

treatment. We also simulated V24 (lVi
, γA) for a fixed parameter γV and variable (lVi

, γA).

We again found regions of antagonism where an increase in γA results in an increase in the

tumor volume.

These results have implications for clinical trials. Indeed for a clinical trial to be successful,

the regions of antagonism between the doses of the checkpoint inhibitor and the OV doses

should be determined early on, and avoided; these regions may depend on the specific oncoly-

tic virus which is used in the clinical trial.

Materials and methods

Parameter estimation

Many of parameters in Tables 2 and 3 were taken directly from [38, 39, 50, 51]. When a value

taken from these references was not obtained directly from experimental papers or was not

carefully estimated from experimental results, we added an asterisk “�” next to the reference.

These parameters were used in sensitivity analysis (see Figs 8 and 9) in order to see how the

tumor value is affected by a random increase or decrease of these parameters by a factor of 2;
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Table 2. Summary of parameter values.

Notation Description Value used References

δD diffusion coefficient of DCs 8.64 × 10−7 cm2 day−1 [38]�

dT1
diffusion coefficient of CD4+ T cells 8.64 × 10−7 cm2 day−1 [38]�

dT8
diffusion coefficient of CD8+ T cells 8.64 × 10−7 cm2 day−1 [38]�

δC diffusion coefficient of tumor cells 8.64 × 10−7 cm2 day−1 [38]�

δM diffusion coefficient of macrophages 8.64 × 10−7 cm2 day−1 [38]�

dI12
diffusion coefficient of IL-12 6.0472 × 10−2 cm2 day−1 [39]

dI2
diffusion coefficient of IL-2 9.9956 × 10−2 cm2 day−1 [39]

δA diffusion coefficient of IL-2 4.73 × 10−2 cm2 day−1 [39]

αT flux rate of T cells on the boundary 1 cm−1 estimated

λC growth rate of cancer cells 0.65 day−1 estimated

lVi
growth rate of intracellular virus 6 × 10−4 day−1 estimated

λM growth rate of macrophages 0.009 day−1 [51]�

lMCi
activation rate of macrophages by Ci 0.04 cm3/g estimated

λDV activation rate of DCs by virus infection 5.2 × 1010 cm3/g � day estimated

λDC activation rate of DCs by tumor cells 5.2 day−1 estimated

lT1 I12
activation rate of CD4+ T cells by IL-12 9.32 day−1 [39]

lT1 I2
activation rate of CD4+ T cells by IL-2 0.25 day−1 [39]

lT8 I12
activation rate of CD8+ T cells by IL-12 8.30 day−1 [39]

lT8 I2
activation rate of CD8+ T cells by IL-2 0.25 day−1 [39]

λI12 D production rate of IL-12 by DCs 2.76 × 10−6 day−1 [39]

lI2T1
production rate of IL-2 by CD4+ T cells 2.82 × 10−8 day−1 [39]

βC infection rate of cancer cells by virus 9 × 104 cm3/g � day estimated

βV rate of transition from Ve to Vi by infection 0.09 cm3/g � day estimated

μCi M killing rate of Ci by M 4.8 × 10−2 cm3/g � day estimated

μVe M clearance rate of Ve by M 2 cm3/g � day estimated

mVi
death rate of infected cell due to viral burden 5 × 107 day−1 estimated

N burst size of Vi from natural death of Ci 100 estimated

η8 killing rate of tumor cells by CD8+ T cells 1.38 × 102 day−1 � cm3/g estimated

Z8Ci
killing rate of infected cancer cells by CD8+ T cells 7.59 × 103 day−1 � cm3/g estimated

μPA blocking rate of PD-1 by anti-PD-1 6.87 × 104 cm3/g � day [39]

ρP expression of PD-1 in T cells 2.49 × 10−7 [39]

ρL expression of PD-L1 in T cells 5.22 × 10−7 [39]

ε relative expression of PD-L1 in tumor cells 0.01 [39]

dC death rate of uninfected tumor cells 0.17 day−1 [50]
�

dM death rate of macrophages 0.015 day−1 [51]

dD death rate of DCs 0.1 day−1 [50]

dT1
death rate of CD4+ T cells 0.197 day−1 [50]

dT8
death rate of CD8+ T cells 0.18 day−1 [50]

dI12
degradation rate of IL-12 1.38 day−1 [50]

dI2 degradation rate of IL-2 2.376 day−1 [50]

� In this reference the value was estimated but not obtained directly from experimental results.

https://doi.org/10.1371/journal.pone.0192449.t002
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Table 3. Summary of parameter values.

KC half-saturation of tumor cells 0.4 g/cm3 [50]

KD half-saturation of DCs 0.4 × 10−4 g/cm3 [39]

KI12
half-saturation of IL-12 1.5 × 10−10 g/cm3 [50]

KI2
half-saturation of IL-2 2.37 × 10−11 g/cm3 [50]

KT1
half-saturation of CD4+ T cells 2 × 10−3 g/cm3 [39]

KT8
half-saturation of CD8+ T cells 1 × 10−3 g/cm3 [39]

K 0TQ inhibition of function of T cells by PD-1-PD-L1 1.365 × 10−18 g/cm3 [39]�

θ total cell density 0.6034 g/cm3 ��

D0 density of immature DCs 2 × 10−5 g/cm3 [50]

T10 density of naive CD4+ T cells 4 × 10−4 g/cm3 [39]�

T80 density of naive CD8+ T cells 2 × 10−4 g/cm3 [39]�

CM carrying capacity of cancer cells 0.8 g/cm3 [50]

T̂ 1
density of CD4+ T cells from lymph node 4 × 10−3 g/cm3 [39]�

T̂ 8
density of CD8+ T cells from lymph node 2 × 10−3 g/cm3 [39]�

� In this reference the value was estimated but not obtained directly from experimental results.

�� The value is determined by Eq (1) with steady state densities of the cells.

https://doi.org/10.1371/journal.pone.0192449.t003

Fig 8. Statistically significant PRCC values (p-value< 0.01) for R(t) at day 60.

https://doi.org/10.1371/journal.pone.0192449.g008
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but the dispersion coefficient of macrophages was increased by up to a factor of 4 because they

are highly mobile.

Diffusion coefficients. The diffusion coefficients of cytokines were computed in [39]

based on the formula

dp ¼
A

M1=3
p
;

where A is a constant and p is any protein with diffusion coefficient δp and molecular weight

Mp. The diffusion coefficients of cells may vary depending on the cell type. For simplicity we

take them equal, and choose the common value as in [39], but we show in the section on sensi-

tivity analysis that the tumor growth is affected very little by taking different diffusion coeffi-

cients for different cell types.

Half-saturation. In an expression of the form Y X
KXþX

where Y is activated by X, the

parameter KX is called the half-saturation of X. If X reaches a steady state X0, we expect that

X0/(KX + X0) will not be “too close” to 0 and not “too close” to 1. For definiteness we take

X0/(KX + X0) to be 1/2, so that

KX ¼ X0;

the steady state X0 is derived from experimental or clinical data.

Fig 9. Statistically significant PRCC values (p-value< 0.01) for R(t) at day 60.

https://doi.org/10.1371/journal.pone.0192449.g009

Combination therapy with oncolytic virus and checkpoint inhibitor

PLOS ONE | https://doi.org/10.1371/journal.pone.0192449 February 8, 2018 16 / 21

https://doi.org/10.1371/journal.pone.0192449.g009
https://doi.org/10.1371/journal.pone.0192449


Eq (2). We take λC = 0.65/day, which is slightly smaller than in [38], and βC = 9 × 104 cm3/

g � day, which is slightly larger than in [52], and we take η8 = 1.38 × 102 cm3/g � day, which is

slightly larger than in [39].

Eq (3). We assume that T8 cells kill Ci much more efficiently than they kill C, and take

Z8Ci
¼ 55Z8 ¼ 7:59� 103 cm3=g � day. We assume that OV is designed to stimulate the

immune system while it is in infected cells. Therefore the viral burden does not increase the

death rate of infected cells very much. We therefore take mVi
¼ 2� 107 cm3=g so that mVi

Vi is

very small compared to 1, e.g. it increases the death of the infected cancer cell by 2% when the

viral load is 10−9 g/cm3. Macrophages engulf infected cancer cells [40], but we assume that the

rate is extremely small compared to the rate by which T8 kill infected cancer cells. We accord-

ingly take μCi M = 4.8 × 10−2/day.

Eqs (4) and (5). We take N = 100, which is in the range considered in [51]. We assume

that the ratio of mass of one virus to one cell is mVC = 10−6. Hence βV = βCmVC = 0.09 cm3/g �

day. We assume that the clearance rate of Ve by macrophages is much larger than the rate by

which Ve invades uninfected cancer cells, and take μVeM = 2 cm3/g � day. We assume that the

ratio of Ci/Vi in the first 12 days averages 3 × 106, and that the replication of an intracellular

virus occurs approximately every 22-23 hours, so that the growth rate per day is 1.5 × 29Vi.

Hence lVi
Ci ¼ lVi

Ci
Vi

� �
Vi ¼ lVi

� 3� 106
� �

Vi and the growth rate of Vi is then determined

by the equation ðlVi
� 3� 106ÞVi ¼ 1:5� 29Vi, so that lVi

¼ 6� 10� 4=day.

Eq (6). Without OV, we assume λM = dMM in steady state, where dM = 0.015/day and

M = KM = 0.2 g/cm3. Hence λM = 0.003/day. We note however that in estimating λM, we

ignored the contribution ofr � (uM), whose integral over the tumor {r< R(t)} is
R

r¼RðtÞ
dRðtÞ
dt �M, which is a positive quantity. Hence, @M

@t is actually decreased when we equate to

zero the right-hand side (RHS) of Eq (6); we therefore need to increase λM; we take λM = 0.09/

day. Since initially tumor is with radius R(0) = 0.01 cm, macrophages had already arrived into

the tumor tissue so that the additional increase in macrophages, lMCi
MCi, is assumed to be ‘rel-

atively’ small; we take lMCi
¼ 0:04 cm3=g.

Eq (7). We take λDC = 5.2/day which is slightly larger than in [39]. We assume that the

virus, although having decreased over time, is still effective in activating dendritic cells, so that

λDV Vi is comparable to λDC when Vi� 10−10 g/cm3. Accordingly, we take λDV = 5.2 × 1010

cm3/g � day.

Sensitivity analysis

We performed sensitivity analysis with respect to the tumor volume at day 30 for two sets of

parameters. The first set consists of parameters marked by “�” in Tables 2 and 3. These param-

eters were not derived, or not carefully estimated, from experimental or clinical data. These

parameters are: δC, δM, δD, dT1
, dT8

, λM, μPA, ε, dC, K 0TQ, T10, T80, T̂ 1, T̂ 8. Following the method

of [53], we performed Latin hypercube sampling and generated 5000 samples to calculate the

partial rank correlation coefficients (PRCC) and the p-values with respect to the tumor volume

at day 30. In sampling all the parameters, we took the range of each parameter (except the dif-

fusion coefficients) from 1/2 to twice its value in Tables 2 or 3. In the simulations of the model

we assumed that the diffusion coefficients of all the cell types are equal. What may cause a sig-

nificant difference in the simulations is actually the differences between the diffusion coeffi-

cients of cell types, rather than their actual values. Since macrophages are highly mobile, we

chose to include only δM in the sensitivity analysis, keeping all other diffusion coefficient

equal, and randomly increasing δM by up to a factor of 4. The results are shown in Fig 8. We
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see that increasing the source of T cells (T10;T80; T̂ 10; T̂ 80) decreases the tumor volume, as does

the depletion rate (μPA) of PD-1 by the PD-1 inhibitor. On the other hand the production rate

of PD-L1 by the cancer (ε) increases the tumor volume. An increase of the random mobility of

macrophages, by a factor up to 4, only slightly increases the tumor volume.

The second set of parameters in the sensitivity analysis are some production parameters,

namely lVi
, lMCi

, λDV, lT1I12
and lT8I12

, and the parameters βC, mVi
, μCi M, η8, Z8Ci

and dVeM
which play important roles in the dynamics of C. Here again we sampled all the parameters by

taking the range of each parameter for 1/2 to twice its value in Tables 2 and 3. The results are

shown in Fig 9.

It is interesting to see from Fig 9 that the parameters that promote killing of infected cancer

cells, such as μCiM, μVeM, Z8Ci
and lMCi

are positively correlated with the tumor volume, while

the parameters that promote viral infection, such as βC, mVi
and lVi

, are negatively correlated

with the tumor volume. We also see that the production/activation rates that promote effector

T cells, namely, λDV, lT1I12
and lT8I12

, are negatively correlated to the tumor volume, while the

killing rate of uninfected cancer cells cells by CD8+ T cells, η8, is negatively correlated with

tumor volume.

Computational method

We employ moving mesh method [48] to numerically solve the free boundary problem for the

tumor proliferation model. To illustrate this method, we take Eq (2) as example and rewrite it

as the following form:

@Cðr; tÞ
@t

¼ dCDCðr; tÞ � divðuCÞ þ F; ð22Þ

where F represents the term in the right hand side of Eq (2). Let rki and Ck
i denote numerical

approximations of i-th grid point and Cðrki ; ntÞ, respectively, where τ is the size of time-step.

The discretization of Eq (22) is derived by the fully implicit finite difference scheme:

Ckþ1
i � Ck

i

t
¼ dC Crr þ

2

rki
Cr

� �

�
2

rkþ1
i

ukþ1

i þ ur

� �

Ckþ1

i � ukþ1

i Cr þ Fkþ1

i ; ð23Þ

where Cr ¼
h2
� 1

Ckþ1
iþ1
� h2

1
Ckþ1
i� 1
� ðh2

1
� h2
� 1
ÞCkþ1

i
h1ðh2

� 1
� h1h� 1Þ

, Crr ¼ 2
h� 1C

kþ1
iþ1
� h1C

kþ1
i� 1
þðh1 � h� 1ÞC

kþ1
i

h1ðh1h� 1 � h2
� 1
Þ

,

ur ¼
h2
� 1

ukþ1
iþ1
� h2

1
ukþ1
i� 1
� ðh2

1
� h2
� 1
Þukþ1
i

h1ðh2
� 1
� h1h� 1Þ

, h� 1 ¼ rkþ1
i� 1
� rkþ1

i and h1 ¼ rkþ1
iþ1
� rkþ1

i . The mesh moves by

rkþ1
i ¼ rki þ ukþ1

i t, where ukþ1
i is solved by the velocity equation.
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