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Wason’s selection task (WST) as a representative of the field of conditional proposition

testing has been explored by multiple disciplines for more than 50 years, but the neural

basis of its key falsification thinking remains unclear. Considering that the accuracy of

individuals in WST has stability over time, we believe that falsification thinking has a

specific brain structural basis and intrinsic neural characteristics. To test this hypothesis,

we studied individuals who were able to complete the WST using T1-weighted MRI

(using voxel-based morphology (VBM) analysis) and resting electroencephalogram (EEG)

(usingmicrostate analysis, which can reflect stable cognitive characteristics of individuals)

techniques. First, VBM analysis found that, compared with the verification group, the gray

matter volume (GMV) of the left inferior temporal gyrus and the right superior temporal

region of the falsification group was larger, whereas the GMV in the cerebellum of the

verification groupwas significantly larger than that of the falsification group. Subsequently,

the results of the microstate analysis of the resting EEG data showed that the contribution

of class A of the falsification group, which is closely related to the language network, is

significantly higher than that of the verification group. Our structural MRI and resting EEG

results consistently show that the structure and intrinsic activity pattern of the temporal

lobe in individuals with falsification thinking are specific. Furthermore, the findings may

provide potential insights into the role of the temporal lobe (which is also a brain region

of language processing) in thought.

Keywords: Wason’s selection task, voxel-based morphology, microstate, temporal lobe, falsification thinking

INTRODUCTION

Throughout history, humans have never stopped making hypotheses and evaluating evidence.
Conditional propositions are common forms in which individuals make assumptions and are
expressed in the if... then... form. For example, if he comes to my home, I will be very happy.
Generally, the first clause of a statement (usually represented by the letter p) specifies a condition,
and the second clause (represented by the letter q) specifies a result. Conditional propositions
contain four forms: modus ponens (MP), denying the antecedent (DA), affirming the consequent
(AC), and modus tollens (MT). Each form of conditional propositions testing is illustrated in
Table 1.
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As an early and classical paradigm for the test of conditional
propositions, Wason’s (1966) selection task (WST) has attracted
a large number of interdisciplinary scholars to study it. Previous
studies have found that only about 10% or less of the participants
correctly selected the pair of MP and MT when completing the
WST (Wason, 1977). The low accuracy of theWSTwas replicated
across time and space (Evans et al., 1993; Oaksford, 1994;
Stenning, 2004). Recently, a meta-analysis of WST also showed
that the correct percentage of abstract WST was 19% (Ragni
et al., 2017). In terms of WST itself, the correct answers MP
and MT have the function of falsifying conditional propositions,
which is also the core of the WST solution (Popper, 1959;
Wason, 1968; Ragni et al., 2018). In the process of conditional
proposition testing, the individual needs to evaluate the evidence
under the condition statement framework of if... then..., which
is the process of reasoning and decision. In fact, it is impossible
to completely prove a conditional statement, but falsification
is possible. For example, we cannot prove that birds can fly
by saying that sparrows can fly, but we can deny that birds
can fly by saying that ostriches cannot fly. In a conditional
statement of absolute probability, a counterexample is sufficient
to falsify the conditional proposition. Therefore, it is very
important to understand the falsification thinking to complete
the WST.

Although the accuracy rate of WST is too low, and there
is a large stable systematic bias, some influential models have
tried to explain the reasons. An earlier insight model/mental
model (Johnson-Laird and Wason, 1970) believed that, in the
task of WST, the individuals who selected the pairs of MP and
AC were the most, and these individuals were those who did
not have insight. In the process of checking the cards, they
would only choose those that matched the rules, so the so-
called matching bias or verification bias would occur (Wason,
1968; Evans, 1972, 1998). Moreover, those individuals who can
correctly choose MP and MT have insight, and they will focus
on checking whether the evidence has a falsifiable function in
the process of the conditional proposition testing. In addition,
there may also be individuals who have partial insight, who
will examine all the evidence one by one, who will verify the
conditional proposition if all the evidence supports it, and who
will falsify the conditional proposition if they fail to do so.
Obviously, the insight model emphasizes the importance of
individual differences in solving the WST, that is, individuals
with insights are capable of solving the WST, although the
process of solving may have a difference in that whether falsified
thinking plays a primary driving role in WST solving. Another
influential model is the inference-guessing model (Klauer et al.,
2007), which holds that the solution of WST depends on the
probability that subjects understand if... then... statements as
conditional rather than as biconditional, and the probability
that subjects understand if... then... statements as forward
inference. Different from the insight model that only individuals
who are partially specific have the ability to solve the WST,
the inference-guessing model theory puts more emphasis on
the influence of logic and probability on the WST solution.
Furthermore, there are also some theories or hypotheses for the
interpretation of the WST, such as the thematic facilitation effect

(Wason and Johnson-Laird, 1972; Evans and Johnson-Laird,
2003), the context effect (Almor and Sloman, 1996, 2000; Staller
et al., 2000; Girotto et al., 2001), the necessity and sufficiency
content (Thompson, 1995; Fairley et al., 1999; Hilton et al., 2005),
the pragmatic reasoning schema theory (Cheng and Holyoak,
1985), the heuristic-analytic theory (Wason and Evans, 1975;
Evans and Wason, 1976; Evans, 1984, 1989, 2006), and the social
contract theory (Cosmides, 1985, 1989; Cosmides and Tooby,
1992, 2013; Fiddick et al., 2000); some of these theories or
hypotheses support the insight model, while others support the
inference-guessing model. To sum up, the insight model, which
emphasizes individual differences, believes that it is difficult for
individuals who are not logically trained to have falsification
thinking, and individuals who can correctly complete WST may
have specificity. While the inference-guessing model, which puts
more emphasis on the situation/state, believes that the coding
of conditional propositions and knowledge and experience of
individuals will affect their evaluation process of evidence. Still,
we need more multidisciplinary evidence to better understand
the WST.

In recent years, cognitive neuroscience studies have provided
evidence for the neural association of WST and conditional
reasoning and have tested the relevant models to a certain extent.
A task fMRI study on the conditional proposition testing directly
explored the neural basis of individual falsification thinking and
found that the activation level of the left middle frontal gyrus,
the left inferior parietal lobule, the left precuneus, and the right
cerebellum was closely related to the correct selection of cards
of subjects with falsified functions (Liu et al., 2012). Reis et al.
(2007) conducted fMRI studies using the social exchange content
WST as the experimental material and they found high activation
in the left frontal polar region and the left anterior temporal
region. Another fMRI study found significant activation in the
medial prefrontal cortex and the dorsolateral frontal–parietal
cortex when participants completed the WST with social content
(Canessa et al., 2005). Although the experimental materials in
these studies are different, we can still find that the left frontal
lobe may play an important role in solving WST. In addition,
we also reviewed fMRI studies of conditional reasoning and
found that the left frontal lobe, the left parietal lobe, and the
left temporal lobe play important roles in the logical coding of
conditional propositional, while activation of the right frontal
cortex is more dependent on the content or context (Goel and
Dolan, 2001, 2003, 2004; Knauff et al., 2003; Noveck et al.,
2004; Canessa et al., 2005; Fangmeier et al., 2006; Prado and
Noveck, 2007). Based on the results of the literature, we believe
that the left cerebral cortex (including the frontal, parietal, and
temporal lobes) plays a key role in the conditional proposition
testing or the conditional reasoning problem solving. However,
due to the limited literature, it is unclear what the response
pattern of these brain regions is when individuals encode if...
then... and whether these brain regions are closely related to
falsified thinking.

Additionally, considering the low accuracy of WST and the
stability of its behavioral results, combined with the fact that
its behavioral results may be influenced by repeated stimuli
(repeated resolution of WST), as well as the content and
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TABLE 1 | Four forms of conditional propositions testing.

Name Form Name Form

MP If p, then q AC If p, then q

p q

Therefore q Therefore, uncertainty

DA If p, then q MT If p, then q

Not p Not q

Therefore, uncertainty Therefore, not p

experience, based on previous studies, we boldly but reasonably
believe that the logical naive individuals who can successfully
resolve abstract WST may be specific at the brain level.
Voxel-based morphological (VBM) analysis of the brain is a
relatively mature method at present, which can characterize the
structural features of the brain related to the stability behavioral
characteristics (Christina et al., 2014). Furthermore, in the
present study, a resting electroencephalogram (EEG) microstate
technology emerging in recent years will also be used. Resting
state EEG microstates originated from the phenomenological
study of EEG. Researchers found that the resting EEG could be
grouped into four microstate classes in a very stable manner
(Lehmann and Skrandies, 1980; Lehmann, 1990; Koenig et al.,
2002; Koenig, T. et al., 2005; Britz et al., 2010; Milz et al.,
2016; Seitzman et al., 2016). Later, based on the behavioral and
brain imaging studies, they gradually reveal the implications
of the four EEG microstate classes: class A was related to
the activity in the bilateral superior temporal gyrus and the
middle temporal gyrus, which may reflect the verbal process;
class B was associated with the activity of the bilateral lateral
occipital lobe, which may reflect the cognitive process of visual
representation; class C was related to the activity of the anterior
cingulate cortex, insula, and inferior frontal gyrus, which may
be closely related to the internal representation of the external
information and the body state; and class D is associated with
the activity of the right dorsolateral prefrontal, which was the
key brain region of the dorsal attention network activity (Britz
et al., 2010; Seitzman et al., 2016; Zanesco et al., 2019). The
EEG microstate technology can reveal the spatial organizational
characteristics and temporal dynamic changes of large-scale
neural networks in the brain at the millisecond level, and it is
considered as an excellent candidate for the study of the neural
association of interindividual and intraindividual differences
because it conforms to the stream of the consciousness theory
of William James and the neuron working space model to
a certain extent (James, 1890; Dehaene et al., 1998, 2003).
Based on this, we believe that the use of the resting EEG
microstate analysis is an effective technology to explore the
brain functional networks with a higher temporal resolution,
which can effectively supplement the results of structural MRI,
and we can also expand the research field of resting EEG
microstates to a certain extent. Here, we tried to use the
aforementioned two methods to test the hypothesis that the
logical naive individuals of abstract WST successful solution
could be specific at the brain level, and tried to conduct a

preliminary exploration of the insight model and the inference-
guessing model.

METHODS

Participants
Subjects for the structural MRI experiment: first, we tested 276
undergraduates aged 18–22 using the classic WST. According to
the test results, we defined the subjects who chose MP and MT
in the WST as the falsification group (FG, 46 subjects) and the
subjects who chose MP and AC as the verification bias group
(VG, 162 subjects). We removed all subjects who did not meet
the requirements of MRI scans or who had systematically studied
psychology or logic or who had previously participated in WST
or conditional reasoning experiments, and called the remaining
subjects one by one to ask if they would like to participate in
subsequent MRI experiments. Finally, 25 subjects (16 women)
in the FG and 57 (34 women) subjects in the VG completed all
the experimental procedures, and their MRI data were included
in the analysis. All subjects gave their written informed consent
in accordance with the Declaration of Helsinki (1991). The ethics
committee of XinxiangMedical University approved the protocol
for this study.

Subjects for the resting state EEG experiment: another 387
subjects aged 18–21 completed the classic WST first and were
then divided into FG (47 subjects) and VG (178 subjects)
groups according to the same criteria of MRI experiments.
Any systematic psychology or logic or previous participation in
WST or conditional reasoning experiments were excluded, and
the remaining subjects were invited to participate in the EEG
experiment on a voluntary basis. Finally, 26 subjects (14 women)
in the FG and 90 subjects (67 women) in the VG completed all
the experimental procedures, and their EEG data were included
in the analysis. All subjects gave their written informed consent in
accordance with the Declaration of Helsinki of 1975. The ethics
committee of XinxiangMedical University approved the protocol
for this study.

Behavioral Assessments
A classic WST was used as the experimental material for
screening subjects. During the experiment, the subjects were
shown four cards with a letter on one side and a number on
the other, along with a conditional rule “if one side of the
card is vowel, then the other side is even.” The task of subjects
was to determine which cards they needed to look at in order
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FIGURE 1 | Illustration of the classical Wason’s selection task in this study.

to verify the conditional rule. The detailed information of the
experimental material is shown in Figure 1.

Based on previous studies (Wason, 1966; Reich and Ruth,
1982; Liberman and Klar, 1996; Liu et al., 2012), and taking
into account the diversity of the answers of participants in
completing the WST, MP and MT pairing selection is the
correct answer of the WST. In this task, the subjects had to
flip over cards with a vowel and odd number to prove the
logical falseness of the conditional rule. The subjects who can
correctly complete WST are considered to have falsification
thinking, which is defined as FG. In a conditional statement
of absolute probability, a counterexample is sufficient to falsify
the conditional proposition. Therefore, it is very important to
understand the falsification thinking to complete the WST.

In addition, the matching selection of MP and AC is the
answer with the highest proportion of subjects, and a common
explanation for such a choice is that the subjects have a
verification bias, so we define the subjects with answers of MP
and AC as VG.

Data Acquisition
T1 Data Acquisition
We used a 3.0T Siemens Trio scanner to collect the structural
MRI data. Scan parameters are as follows: repetition
time= 1,900ms; inversion time = 900ms; flip angle = 9;
echo time = 2.52ms; slices = 176; thickness = 1.0mm;
resolution matrix= 256× 256; voxel size= 1× 1× 1 mm.

Resting State EEG Data Acquisition
Continuous EEG data for 5min were obtained by 64-channel
EEG data recording equipment (Neuroscan). The 64 Ag–AgCl

scalp electrodes are arranged on the elastic cap according to the
international 10–20 system. During the data collection process,
the subjects were asked to open their eyes and look at the fixation
point on the screen in front of them. The impedance of all
electrodes was kept below 5 kΩ , and the sampling frequency was
500HZ, and the band-pass filter was 0.1–100 Hz.

Data Analysis
Structural MRI Data Analysis
The T1 images were processed by using SPM12 (Wellcome
Department of Cognitive Neurology, London, UK) and
implemented in MATLAB (MathWorks Inc., Natick, MA, USA).
First, we used spm12 to render each T1 image to exclude the
gross anatomical abnormalities. Then, the reorientation of
the images was manually fixed to the anterior commissure.
After that, we used the new segmentation feature in SPM12
to segment images of each subject into the following six tissue
types: gray matter (GM), white matter, cerebrospinal fluid, the
skull, the soft tissue outside the brain, and air and other things
outside the head. Whereafter, the diffeomorphic anatomical
registration through the exponentiated Lie (DARTEL) algebra
in SPM12 was performed for registration, normalization, and
modulation, and this procedure was conducted repeatedly until
a best study-specific template was generated. Subsequently, the
Jacobian determinants were used to modulate the image intensity
of each voxel in order to make sure the conservation of regional
differences in the absolute amounts of GM. Then, all registered
images were transformed to the Montreal Neurological Institute
(MNI) space. In the end, the normalized modulated GM images
were smoothed with a 10-mm full-width at half-maximum
Gaussian kernel to increase the signal-to-noise ratio.
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After T1 data preprocessing, the SPM12 was used to perform
the statistical analyses of the GMV data. In the whole-brain
analyses, the two-sample t-test was subject to reveal the
significant differences between the FG and VG in the brain
structure morphology. For all analyses, the significant threshold
was set at p < 0.05 [a combination threshold of voxel level
at p < 0.01, and a cluster size of more than 812 voxels was
obtained, which corresponded with a corrected p < 0.05 (using
AlphaSim correction)].

Resting State EEG Data Analysis
EEGLAB (Delorme and Makeig, 2004) was used to preprocess
the EEG data of all subjects. First, we checked the EEG
data of each subject by visual examination to ensure that
all electrode points were not in the neck or face, and we
manually removed the portions that drifted larger. Then, we
used the spherical alpine method to correct the bad channels.
After that, the continuous EEG data were filtered by the
band pass of 2 and 20Hz. Subsequently, the independent
component analysis (ICA) method was subjected to correct the
artifacts including eye movements, blinks, electromyography,
electrocardiography, and any non-physiological artifacts. The
current dataset was remontaged against the average reference
and segmented into 2,000-ms epochs, whose amplitude ranges
from −80 to +80 µV. Then, the topographic atomizer and
agglomerate hierarchical clustering algorithm [T-AAHC, (Brunet
et al., 2011; Santarnecchi et al., 2017)] was used to compute
the topographical representations of the EEG datasets of each
subject in order to identify clusters with similar topographical
configurations. In this step, the polarity of each map is
ignored. Further, we use the Cartool (https://sites.google.com/
site/cartoolcommunity/) to determine the optimal number of
clusters at the individual level and group level. In the end,
the microstate alternating sequence was re-expressed from each
epoch, during that the temporal window smoothing method
(half-size was 30ms, the besag factor was 10, and the window
frames <30ms were rejected) was applied (Murray et al.,
2008).

Before statistical analysis, we calculated and extracted the
following indexes for each microstate class of each subject:

• The duration: This index represents the mean time coverage
(inms) of the samemicrostate class on the consecutive original
maps, and in this study, we corrected the duration of each
microstate class by using the following formula according to
the previous study (Schlegel et al., 2012):

Duration corrected = Duration origin
∗ (occurrence + time

coverage) / occurrence

• The occurrence rate: This index was defined as the number of
occurrences of a given microstate class per second.

• The contribution: The contribution of each microstate
represents the percentage of the occupied total analysis time
for the given microstate class.

• Transition probability: This index reflects the frequency
intensity of a one-way or two-way switch between any two
microstate classes.

Finally, the two-sample t-test was used to examine the differences
between the FG and VG in the index of duration, occurrence
rate, contribution, and transition probability. For all analyses, all
p-values were corrected by the Bonferroni (p < 0.05∗1/n).

RESULTS

Behavioral Results
According to the test results, the subjects who chose MP and MT
in theWST answered correctly, and we defined the subjects as the
falsification group. In the structural MRI experiment, 46 subjects
correctly completed the task, and the accuracy was 16%. In the
resting state EEG experiment, 47 subjects correctly completed the
task, and the accuracy was 12%. The low accuracy is consistent
with the results of previous studies (Evans et al., 1993; Oaksford,
1994; Stenning, 2004; Ragni et al., 2017). Additionally, the
individuals who selected the pairs of MP and AC were the most,
and they would only choose those that matched the rules, hence
the so-called matching bias or verification bias, which contains
162 subjects in the structural MRI experiment and 178 subjects
in the resting state EEG experiment.

Structural MRI Results
The two-sample t-test analysis of the GMVof FG andVG showed
that the GMV of FG in the left inferior temporal gyrus (MNI
coordinates: −52.5, −27, −24) and the right superior temporal
gyrus (MNI coordinates: 42, −19.5, 16.5) was significantly larger
than that of VG. Furthermore, the GMV of VG in the right
cerebellum (MNI coordinates: 6, −91.5, −3.5) was significantly
larger than that of FG (see Figure 2 and Table 2).

Resting State EEG Results
The two-sample t-test was subjected to examine the differences
between the FG and VG in the index of duration, occurrence rate,
contribution, and transition probability. Moreover, the results
showed that only the contribution of class A of the VG was
significantly less than that of FG (t = −3.079, p = 0.003)
(see Figure 3 and Table 3).

DISCUSSION

In this study, a large number of screened subjects were
included to preliminarily explore the structural basis
and intrinsic functional characteristics of the brain of
falsification thinking. Analysis of VBM and resting
state EEG data found that the bilateral temporal lobes
of individuals with falsification thinking had larger
GMV and larger contribution of class A related to
speech network. We will then discuss the results and
their implications.

Previous studies on the resting state EEG have found that
microstate class A is associated with the activation of language
processing-related brain regions such as the bilateral superior
temporal gyrus and the bilateral middle temporal gyrus. In
this study, we found that the contribution of class A with FG
is significantly higher than that with VG, which is consistent
with our VBM research results. The temporal lobe, which is
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FIGURE 2 | The results of VG vs. FG in the VBM analysis and the gray matter volume (GMV) of the left inferior temporal gyrus and the right superior temporal gyrus of

VG were smaller than that of FG. Note: L, left; R, right.

TABLE 2 | Brain regions showing significant difference in GMV by comparison of VG vs. GF.

Brain region MNI coordinates Voxels size Peak T value

X Y Z

FG > VG

Left inferior temporal gyruss −52.5 −27 −24 835 3.71

Right superior temporal gyrus 42 −19.5 16.5 1176 3.08

VG > FG

Right cerebelum_crus2 6 −91.5 −3.5 2094 3.6

closely related to speech processing, is also frequently discussed
in reasoning (Coello et al., 2013; Gainotti, 2014). Parsons
and Osherson (2001) conducted brain imaging studies using
complex conditional propositions as experimental materials.
They found the activation of the inferior frontal gyrus and the
bilateral middle temporal speech areas in deductive reasoning
and they speculated that these brain areas may constitute
deductive modules. Goel et al. (1997, 1998, 2000), Goel and
Dolan (2003) explored the neural basis of individual deductive
reasoning by using event-related fMRI and found that large
neural networks, including bilateral prefrontal lobe, left temporal
lobe, and bilateral parietal lobe, may be the functional basis
of logical reasoning. Acuna (2002) also found the activation
of bilateral prefrontal lobes, auxiliary motor regions, insula,
precuneus, and lateral posterior parietal cortex in individuals
performing logical reasoning. Subsequently, Heckers et al. (2004)
used a similar paradigm and reported the activation of the

bilateral frontal-parietal temporal system. In addition, several
studies of reasoning based on patients with brain injury have
supplemented the evidence for reasoning related to the basis of
brain function. Some studies have reported that lesions in the
left temporal lobe and the whole brain have significant effects
on logical reasoning (Caramazza, 1976; Golding, 1981; Read,
1981; Whitaker, 1991; Langdon and Warrington, 2000). In the
above research context, the temporal lobe has been reported
in a large number of studies on logical reasoning, and some
literature has concluded that the temporal lobe is sensitive to
processing abstract materials in logical reasoning (McCarthy and
Warrington, 1990; Goel, 2005), which is also consistent with the
double-processing theory (Sloman, 1996; Evans, 2003). However,
it should be noted that the temporal lobe is the most frequently
concerned and discussed brain region in theory of mind (ToM)
reasoning (Fletcher et al., 1995; Goel et al., 1995). Therefore, we
inferred that the temporal lobe is sensitive to more abstract or
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FIGURE 3 | The results of the two-sample t-test for corrected duration, occurrence rate, and contribution index of each microstate class between the VG and FG.

Only the contribution of class A of FG significantly larger than that of VG was found. The first column on the left illustrates that the microstate map of two groups of

each class. Note: ns means no significant difference, ** means p < 0.005.

upper materials in logical reasoning processing, and it may play
a role in monitoring and strategy adjustment (meta-reasoning)
in logical reasoning. In addition, based on the conclusions of
this study, we found that individuals capable of addressing WST
are specific at both the level of brain structure and the level of
intrinsic activity patterns, which to some extent supports the
insight model.

In addition, our findings are consistent with the previous
studies that more subjects chose pairs of MP and AC, while
the right cerebellum GMV of this population (VG) was larger
than that of FG. The resting state EEG did not find significant
differences in the intrinsic brain activity characteristics between
VG and FG. The cerebellum plays an important role in
sensory and perception discrimination, workingmemory, mental
imagery, decision-making, reasoning, monitoring, and cognitive

flexibility (Kim et al., 1994; Mellet et al., 1995; Elliott and
Dolan, 1998; Blakemore et al., 2001; Blackwood and Ffyche,
2004; Timmann and Daum, 2007). In recent years, some
studies have found that the cerebellum plays an important
role in implicit sequence learning and prediction, including
verbal implicit sequence learning and prediction (Ackermann
et al., 2007; Ito, 2008; Timmann et al., 2010; Jutta et al.,
2018). According to the mental model theory (Johnson-Laird,
1983; Johnson-Laird et al., 2015), the reasoning process of
individuals is not a rule-based process but an operational
process of the mental representation of premises in spatial
memory. Moreover, some studies believe that individuals will
encode and integrate premises according to daily probabilities
in reasoning and then make conclusions (Oaksford and Chater,
2001, 2007). Therefore, we believe that, consistent with the
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TABLE 3 | The means and standard deviation (SD) of transition probability between any two microstate classes.

VG FG

Mean SD Mean SD

From A to B 0.07 0.01 0.07 0.01

From A to C 0.08 0.01 0.09 0.02

From A to D 0.07 0.01 0.08 0.02

From B to A 0.07 0.01 0.07 0.02

From B to C 0.08 0.02 0.08 0.02

From B to D 0.08 0.02 0.08 0.02

From C to A 0.08 0.01 0.09 0.02

From C to B 0.09 0.02 0.08 0.02

From C to D 0.10 0.02 0.09 0.02

From D to A 0.07 0.02 0.08 0.02

From D to B 0.08 0.02 0.08 0.02

From D to C 0.09 0.02 0.08 0.02

previous studies, the findings of the cerebellum in VG indicate
that most of the individuals are deviating from rules when testing
conditional propositions.

In conclusion, we used the classical abstract WST as the
experimental material, selected individuals who chose the pair
of MP and MT (FG) and individuals who chose the pair of MP
and AC (VG) as subjects, and used structural MRI and resting
state EEG to conduct data-driven exploration on the structural
basis and intrinsic functional characteristics of the brain related
to falsification thinking. The results showed that the structure
and intrinsic function of the bilateral temporal lobe might be
closely related to the falsified thinking. Individuals who can solve
WST tasks, who are also individuals with falsification thinking,
have a specific brain basis. This result partly explains why the
low accuracy rate of WST is characterized by cross-time and
partly supports the insight model (Johnson-Laird and Wason,
1970).

But going back to the WST itself, whether in work or
in scientific research, the preference and evaluation of an
individual for evidence under the conditional proposition
framework are very important for the decision. As suggested
by the results of this study, some individuals may be more
sensitive to falsified evidence due to the specificity of their
neural basis, but it is not ruled out that some individuals
may examine the falsified function of evidence under certain
circumstances. Therefore, on the basis of this preliminary study,
we believe that the solution of the following problems may
play an important role in a deeper understanding of WST
and falsification thinking: (1) for logically naive individuals,
whether they will look for counterexamples of propositions at
the level of consciousness in the process of solving WST; (2)
how individuals encode if... then..., and what are the cognitive
neural mechanisms of the preference of individuals for the
evaluation of evidence under the framework of conditional

propositions; (3) whether the process of the conditional
proposition test is affected by the confidence of subjects in the
conditional proposition (such as the rationality of inductive
reasoning, counterfactual probability, and other factors), thus
influencing the judgment criteria of subjects for signals (cards
or evidence).
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