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Abstract: We demonstrate high-sensitivity fiber strain sensors based on an elongated abrupt taper.
The fiber abrupt taper, with a tapered diameter ranging from 40–60 µm, was made by using a
hydrogen microflame to break the waveguide adiabaticity so as to convert the fundamental mode
into cladding modes. The abrupt taper was further uniformly tapered by using a normal moving
flame with a torch diameter of 7 mm to elongate the tapered region until the tapered diameter was
down to 2.5–5 µm. The excited high-order modes were confined to propagate along the cladding and
then recombined at the rear edge of the fiber taper to produce interferences with extinction ratios of
up to 16 dB. The tapered region was pulled outwardly to change the optical path difference (OPD)
between modes to measure the tensile strain with all the interfering wavelengths blue-shifted. The
measured best strain sensitivity was 116.21 pm/µε and the coefficient of determination R2 of linear
fitting exhibits high linearity. This strain sensor based on elongated abrupt taper is several times
higher than that of most of the fiber strain sensors ever reported.

Keywords: few-mode interferometers; strain sensors; abrupt-tapered interferometers; elongated
fibers; tensile strain

1. Introduction

In recent years, in-line fiber interferometer sensors are featured with high sensitivity,
high accuracy, high environmental stability, and high signal capacity, and have been widely
employed in many industrial and scientific applications [1–4]. Compared with the dual-
fiber interferometer sensor, the in-line fiber interferometer sensor based on core mode and
cladding mode interference is a more compact and efficient device, which is very suitable
for industrial strain measurement including the health monitoring of bridge, propeller
of the ships, and the blades of the wind turbines and aircraft engines [5–10]. The fiber
strain sensors are usually made by using fiber Bragg gratings or fiber interferometers
like Mach–Zehnder interferometers (MZI) [11–17]. The principle is that when the sensing
region of fiber interferometer or grating is subjected to tensile or compressive stress, its
resonant wavelength will accordingly change. Therefore, in order to improve the strain
sensitivity, it is crucial to enlarge the optical path difference (OPD) between modes involving
the interferences. On the other hand, a longer interaction length is also advantageous
to improve the strain sensitivity. To date, there have been various kinds of excitation
methods proposed to excite the high-order core or cladding modes based on blaze gratings,
long-period gratings (LPFG), core mismatched splicing, fiber Bragg grating (FBG), abrupt
tapering, up tapering [18,19], and so on. As a strain sensor, LPFG has high sensitivity
and low back reflection, but it may block the spectral response due to its high bending
sensitivity [20]. FBG must be limited by temperature-induced spectral shifts and isolators
to prevent back reflection. In 2009, Tian et. al. reported dual-cone type MZI strain sensor
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with sensitivity of 2000 nm/ε [21]. However, dual-cone type MZI requires precise control of
the distance between its two abrupt regions; otherwise good interference cannot be formed.

In this work, the fiber interferometer with high strain sensitivity based on a high
efficiency mode conversion together with an OPD improving method is proposed. To
excite the high-order cladding modes, the standard single-mode fiber SMF-28 was abruptly
tapered to reach to a tapered diameter D1 to break the waveguide adiabaticity using a
hydrogen micro torch. A fractional amount of the fundamental core mode was converted
into cladding modes to propagate along the tapered fiber. The abrupt taper point was
further elongated by another scanning flame torch to thin down the fiber to a wavelength
scale of around 3 µm, defined as D2. Over the elongated tapered region, the mode fields
distributed over the entire thinned cladding, which makes the tapered cladding turns out to
be a new core. Under such circumstances, the air serves as the new cladding. Therefore, the
excited high-order core modes propagate along the tapered fiber to produce interferences.
Compared with the MZI strain sensor prepared based on two abrupt tapers, the prepared
strain sensor has a simple structure, is easily manufactured, and has high stability and high
sensitivity (higher than several times).

2. Experimental Setup

Figure 1 shows the experimental set-up for making high-strain sensitivity interfer-
ometers. The inset picture in Figure 1 shows that the microphotograph of the elongated
abrupt taper under a (a) 50× and (b) 1000× CCD microscope, respectively. The SMF-28 was
heated and abruptly tapered by using a hydrogen microflame to make an abrupt taper with
D1 of around 40–60 µm, as shown in Figure 1a. The abrupt taper was further elongated
by using a standard torch with a flame diameter of 7 mm to thin down the D2 until a few
microns, shown in Figure 1b. A fiberoptic tensile strain sensor is fabricated, which consists
of tapered optical fibers several microns in diameter with two abrupt tapered fibers at
a bilateral junction between tapered and non-tapered regions. The abrupt tapered fiber
structure can stimulate the propagation of higher-order modes along the microfiber, causing
mode interference at the second tapered structure. Define the distance from the forming
point of the first taper to the formation point of the second taper as L1. A broadband light
source comprising superluminescent diodes (SLD) over a 1250–1650-nm wavelength range
was used to measure the interferences of the interferometers. The wavelength shifts due to
applying tensile strain were recorded by an optical spectrum analyzer (OSA) (YOKOGAWA
AQ6370D, Tokyo, Japan). The bilateral edges of the elongated abrupt taper were fixed by
using clampers to pull outward to measure the spectra transmitted by their tapered fibers
versus the elongation of the tapered fiber and calculation of the tensile strain sensitivity.
It is found that the tensile strain can be significantly improved when D2 is substantially
decreased to a few microns. The tensile strain is calculated by the following equation.

∆ε = ∆L/L2, (1)

where4L and L2 respectively represent the elongation and the distance between two clampers.

Micromachines 2022, 13, x FOR PEER REVIEW 3 of 7 
 

 

 
Figure 1. Experimental set-up of the strain sensor using an elongated abrupt taper;(a) microphoto-
graph of a 50× CCD microscope and (b) microphotograph of a 1000× CCD microscope. 

3. Experimental Results and Analysis 
In measurement of optical characteristics of the interferometers, four samples were 

prepared, with their corresponding working parameters shown in Table 1. We conducted 
stress-sensing experiments on four samples respectively. The D1 and D2 are ranging from 
40–60 μm and 2.5–5 μm, respectively. The interferences of the interferometers from two 
of the samples, D2 = 2.62 μm and 4.49 μm, are shown in Figure 2. The optical resolution 
(RES) of the OSA was 0.05 nm. From Figure 2, the FSR obviously decreases with decreas-
ing D2 because the OPD are increased. The achieved extinction ratios (ERs) are typically 
higher than 10 dB and can be up to 16 dB. The free spectral range (FSR) can be as narrow 
as 4.2 nm and decreases with decreasing tapered diameter D2. However, many unwanted 
modes can be removed; for D2 = 2.62 μm, oscillation curves of the interferences become 
clearer, compared with the ripples on the curve of D2 = 4.49 μm. The best strain sensitivity 
is 116.21 pm/με, several times higher than that of the most fiber strain sensors ever re-
ported, with a highly linear response. 

Table 1. Working parameters of the strain sensors. 

Parameters Sample1 Sample2 Sample3 Sample4 
Tapered diameter D1 4.97 μm 4.52 μm 4.49 μm 2.62 μm 
Clamper distance L2 6.7 cm 6.55 cm 6.5 cm 6.55 cm 

Strain sensitivity ( S ) 48.67 pm/με 82.84 pm/με 104.14 pm/με 116.217 m/με 
Strain (με) 0~330 με 0~213.5 με 0~246.4 με 0~213.5 με 

Coeff. Of determination 
R2 

0.994 0.987 0.998 0.999 

1400 1450 1500 1550 1600
-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

 D2 = 4.49 μm
 D2 = 2.62 μm

T
ra

ns
m

iss
io

n 
lo

ss
 (d

B
)

Wavelength (nm)   RES : 0.05 nm  
Figure 2. Spectral responses of the interferometers with D2 = 2.62 μm and 4.49 μm. 

Figure 1. Experimental set-up of the strain sensor using an elongated abrupt taper;(a) microphoto-
graph of a 50× CCD microscope and (b) microphotograph of a 1000× CCD microscope.



Micromachines 2022, 13, 1015 3 of 6

3. Experimental Results and Analysis

In measurement of optical characteristics of the interferometers, four samples were
prepared, with their corresponding working parameters shown in Table 1. We conducted
stress-sensing experiments on four samples respectively. The D1 and D2 are ranging from
40–60 µm and 2.5–5 µm, respectively. The interferences of the interferometers from two of
the samples, D2 = 2.62 µm and 4.49 µm, are shown in Figure 2. The optical resolution (RES)
of the OSA was 0.05 nm. From Figure 2, the FSR obviously decreases with decreasing D2
because the OPD are increased. The achieved extinction ratios (ERs) are typically higher
than 10 dB and can be up to 16 dB. The free spectral range (FSR) can be as narrow as 4.2 nm
and decreases with decreasing tapered diameter D2. However, many unwanted modes
can be removed; for D2 = 2.62 µm, oscillation curves of the interferences become clearer,
compared with the ripples on the curve of D2 = 4.49 µm. The best strain sensitivity is
116.21 pm/µε, several times higher than that of the most fiber strain sensors ever reported,
with a highly linear response.

Table 1. Working parameters of the strain sensors.

Parameters Sample1 Sample2 Sample3 Sample4

Tapered diameter D1 4.97 µm 4.52 µm 4.49 µm 2.62 µm
Clamper distance L2 6.7 cm 6.55 cm 6.5 cm 6.55 cm
Strain Sensitivity

(
S
)

48.67 pm/µε 82.84 pm/µε 104.14 pm/µε 116.217 m/µε
Strain (µε) 0~330 µε 0~213.5 µε 0~246.4 µε 0~213.5 µε

Coeff. Of determination R2 0.994 0.987 0.998 0.999
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In measurement of strain sensitivity, the interferometers were respectively fixed by the
two clampers with a distance L2 at the positions closing to the tapered region as possible as
they can be. The two clampers were subsequently moved outward, and it would change
by 2 µm per step to ensure the accuracy of the measurements. The data was recorded
for 10 min after each movement, and the spectral responses were recorded by the OSA,
as shown in Figures 3–6. The spectral responses under different tensile strain range are
provided only for the sample having the best strain sensitivity. From Figures 3–6, it is found
that the wavelength dips with a blue shift with an increasing tensile strain. In the spectral
responses, we arbitrarily chose four wavelength dips, labeled ai, bi, ci, di, i = 1–4 for fitting
calculation. The best strain sensitivity was calculated by linear fitting with a dip wavelength
offset, shown in Figures 3–6. The corresponding strain sensitivity can be calculated by using
Equation (1), and those working parameters are listed in Table 1. The D2 of the samples
are 4.97 µm, 4.52 µm, 4.49 µm, and 2.62 µm, where the corresponding strain sensitivity are
48.67 pm/µε, 84.82 pm/µε, 104.14 pm/µε, and 116.21 pm/µε, respectively. The coefficient
of determination R2 of linear fitting exhibits high linearity with the corresponding R2 of
0.994, 0.987, 0.998, and 0.999, respectively. The best strain sensitivity is 116.21 pm/µε and is
several times higher than that of the most fiber strain sensors ever reported, using hollow-
core fibers, photonic crystal fibers, multicore fibers, and multimode fibers [15,22]. We also
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carried out repeatability experiments and found that the sensor has high repeatability and
good stability, as shown in Figure 7.
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Figure 3. (a) Spectral responses of the interferometer with D2 = 4.97 µm in the strain range of
180–330 µε at 1410–1480 nm. (b) Linear fitting curves of the dip wavelength shifts and the coefficients
of determination R2 of linear fitting with D2 = 4.97 µm.
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Figure 4. (a) Spectral responses of the interferometer with D2 = 4.52 µm at the strain ranging over
61–213.5 µε at 1415–1483 nm. (b) Linear fitting curves of the dip wavelength shifts and the coefficients
of determination R2 of linear fitting with D2 = 4.52 µm.
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Figure 6. (a) Spectral responses of the interferometer with D2 = 2.62 μm at the strain ranging over 
122–213.5 με at 1513–1570 nm. (b) Linear fitting curves of the dip wavelength shifts and the coeffi-
cients of determination R2 of linear fitting with D2 = 2.62 μm. 
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92.4–246.4 µε at 1400–1485 nm. (b) Linear fitting curves of the dip wavelength shifts and the
coefficients of determination R2 of linear fitting with D2 = 4.49 µm.
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Figure 6. (a) Spectral responses of the interferometer with D2 = 2.62 μm at the strain ranging over 
122–213.5 με at 1513–1570 nm. (b) Linear fitting curves of the dip wavelength shifts and the coeffi-
cients of determination R2 of linear fitting with D2 = 2.62 μm. 
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4. Conclusions

In conclusion, the high-sensitivity fiber interferometric strain sensors using the elon-
gated abrupt taper were demonstrated. The abrupt taper was achieved by a microflame to
convert the core mode into high-order cladding modes. The abrupt taper point was then
heated and elongated until a tapered diameter of around 2.5–5 µm was achieved, so as to
increase the OPD for good interferences and high strain sensitivity. The best ER is 16 dB
and the best strain sensitivity is 116.21 pm/µε with a high linearity in curve fitting. The
interfering wavelengths blue-shifted with increasing tensile strain. The strain sensors based
on the elongated abrupt-tapered interferometers having the strain sensitivity several times
higher than that of the most fiber strain sensors ever reported. Compared with tapered
multi-core fiber and fiber F-P strain sensor, and it has lower cost and higher sensitivity
(higher than tens of times). Moreover, the tapered optical fiber interferometer still retains
good mechanical properties of optical fiber. They are simple and cost-effective and are
promising for developing micro-interferometric strain sensors with a small footprint. The
micro/nano-strain sensors based on abrupt tapers can used in ultra-precision strain mea-
surement applications, such as residual stress in thin films on microelectro mechanical
system (MEMS) devices in the future. Moreover, the interferometer can be packaged after
production to ensure that it can maintain good performance in harsh environments in
practical applications. In the future, we need to think about how to package and protect
the sensor while maintaining its sensitivity.
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