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Purpose: This study describes the development of a deep learning algorithm based on
the U-Net architecture for automated segmentation of geographic atrophy (GA) lesions
in fundus autofluorescence (FAF) images.

Methods: Image preprocessing and normalization by modified adaptive histogram
equalization were used for image standardization to improve effectiveness of deep
learning. A U-Net–based deep learning algorithm was developed and trained and
tested by fivefold cross-validation using FAF images from clinical datasets. The following
metrics were used for evaluating the performance for lesion segmentation in GA: dice
similarity coefficient (DSC), DSC loss, sensitivity, specificity, mean absolute error (MAE),
accuracy, recall, and precision.

Results: In total, 702 FAF images from 51 patients were analyzed. After fivefold cross-
validation for lesion segmentation, the average training and validation scores were
found for the most important metric, DSC (0.9874 and 0.9779), for accuracy (0.9912 and
0.9815), for sensitivity (0.9955 and 0.9928), and for specificity (0.8686 and 0.7261). Scores
for testing were all similar to the validation scores. The algorithm segmented GA lesions
six times more quickly than human performance.

Conclusions: The deep learning algorithm can be implemented using clinical data with
a very high level of performance for lesion segmentation. Automation of diagnostics for
GAassessmenthas thepotential toprovide savingswith respect topatient visit duration,
operational cost and measurement reliability in routine GA assessments.

Translational Relevance: A deep learning algorithm based on the U-Net architecture
and image preprocessing appears to be suitable for automated segmentation of GA
lesions on clinical data, producing fast and accurate results.

Introduction

Geographic atrophy (GA) is one of two end stages
of age-related macular degeneration (AMD)—an age-
associated disease of themacula thatmanifests in those
aged 50 years and older. It is responsible for 8.7%
of legal blindness globally, affecting approximately 5
million people worldwide, and 9 to 10 million cases
are expected by the year 2040.1,2 The pathogenesis
and etiology of AMD and its progression to GA is

not completely understood, and drug therapies are
currently not available.3–6 GA is characterized by death
of the retinal pigment epithelium (RPE) and photore-
ceptor cells, as well as loss of the underlying chorio-
capillaris, which appear as sharply demarcated areas
on retinal imaging.4 Vision loss occurs when atrophic
lesions approach the central foveal area, and standard
tasks such as reading and recognizing faces become
increasingly difficult.7,8 In the absence of treatment,
the condition continues to deteriorate over time, poten-
tially leading to legal blindness (defined as 6/60 vision
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in Australia). The rate of irreversible vision loss is also
highly variable.8

Several imaging modalities are available for the
assessment of GA, including fundus autofluorescence
(FAF), color fundus photography (CFP), spectral
domain optical coherence tomography (SD-OCT), and
near-infrared FAF (IR). Currently, the growth of a
GA lesion as seen on FAF is accepted as an outcome
in clincial intervention trials by the United States
Food and Drug Administration9; hence, there is much
interest and need to accurately define borders and
thus lesion size in a timely and efficient manner.
Often, FAF is used with semiautomated software to
help define the boundaries of a GA lesion.10 Such
software relies heavily on a human user to correctly
annotate and identify lesion boundaries within the
image.

There are no clinically available complete automa-
tion software packages for the extraction of GA
information from retinal images. Several groups have,
however, developed artificial intelligence (AI)–based
automation methods for isolation of GA lesions.11–30
These studies applied a process known as semantic
segmentation—the labeling of each pixel within an
image and the precise extraction of regions of inter-
est. The range of algorithms tested included region-
growing, interactive segmentation using watershed
transform, level set approach, geometric active contour
model, Fuzzy c-means, k-nearest neighbor (kNN),
Chan-Vese model via local similarity factor, convo-
lutional neural networks (CNN), sparse autoencoder
deep networks, and an offline/self-learning model.
The retinal images used in these GA-AI publications
predominantly included FAF imaging. However, SD-
OCT, combinations of SD-OCT/FAF, FAF/CFP, and
FAF/IR were also used. Among these segmentation
algorithms, sensitivity ranged from 0.47 to 0.983, speci-
ficity ranged from 0.93 to 0.99, accuracy ranged from
0.42 to 0.995, mean overlap ratio ranged from 0.659 to
0.899, correlation coefficient ranged from 0.82 to 0.998,
and the Dice similarity coefficient (DSC) ranged from
0.66 to 0.89.

Although there are many metrics that can be
used for the assessment of semantic segmentation
algorithms, the DSC is the most suitable because
it measures the overlap between machine-generated
results and the ground truth (i.e., human annotated
images).31 In the literature, four studies used this metric
for evaluation of segmentation algorithms, with results
ranging from DSC of 0.66, as reported by Liefers et
al.,32 who described a U-Net–based encoder-decoder
structure, to a study byHu et al.,16 who reported aDSC
of 0.89 for the application of the level set method on
FAF images. In general, an overview of the literature

suggests that results from algorithms applied to CFP
images produce less promising results when compared
with other, more grayscale-based FAF images. For
example, sensitivities for CFP-based segmentation
algorithms were in the range 0.47 to 0.65; however, for
FAF-based algorithms, the range was 0.825 to 0.983.
This is due tomedia opacities and low contrast between
atrophic areas and the intact retina in CFPs, which
make the detection of GA lesions and their bound-
aries difficult, even for highly qualified and experienced
clinicians and graders.8,25,33 Furthermore, among the
segmentation algorithms already applied in the GA-AI
space, a majority of the publications reported relatively
small image sample sizes. This was not unusual, given
there are many constraints on accessing adequate
medical data samples, including challenges on sharing
data because of privacy or ethical concerns; the lack
of equipment within healthcare systems that makes the
sharing of available data challenging; and generally a
lack of available cases which could be used to train
an AI algorithm, especially in the case of deep learn-
ing.34–36

In this study, we applied the deep learning U-Net
approach to FAF images obtained from GA-affected
patients at various stages of progression. The U-Net
is a modification of the CNN. It was designed to
predict and classify each pixel within an image and thus
create a more precise segmentation with fewer train-
ing images required.37 In the past, the U-Net architec-
ture was used for GA segmentation byWu et al.,28 who
conducted segmentation on SD-OCT and synthesized
FAF images, and by Schmidt-Erfurth et al.,30 who used
a residual U-Net model to isolate hyperreflective foci
voxels. Liefers et al.32 described segmentation on CFP
using a deep learning model with an encoder-decoder
structure with residual blocks, shortcut connections,
and contracting-expanding pathways, citing the U-Net
developers Ronneberger et al.37

Time-series segmentation captures a range of lesion
sizes and shapes and provides added variability to
reflect real-world clinical settings. For example, it is
common for many patients to approach an optometrist
or ophthalmologist several months after disease onset,
when lesions may have already appeared in a variety of
spatial patterns.38 Therefore an automated segmenta-
tionmethodwith the capability of detectingGA lesions
at all stages of the disease would be invaluable in a clini-
cal setting.

In this article, the aim was to use the U-Net deep
learning approach to isolate lesions in FAF images
together with suitable image normalization and pre-
processing to address image quality issues. Image
segmentation is the first step in the automation of GA
assessment because extraction of GA area is required
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at patient presentations to chart progression of GA
growth over time.

Methods

Study Design and Participants

The study was approved by the Human Research
Ethics Committee of the Royal Victorian Eye and
Ear Hospital. The study was conducted in accordance
with the International Conference on Harmonization
Guidelines for Good Clinical Practice and tenets of the
Declaration of Helsinki. Ethics approval was provided
by the Human Research Ethics Committee (HREC:
Project No. 95/283H/15) by the Royal Victorian Eye
and Ear Hospital.

Subjects included in this retrospective analysis
were AMD participants involved in macular natural
history studies from the Centre for Eye Research
Australia or from a private ophthalmology practice
diagnosed with GA. Cases were referred from a senior
medical retinal specialist (R.H.G.) and graded in the
Macular Research Unit grading center. Inclusion crite-
ria included being over the age of 50 years, having
a diagnosis of AMD (on the basis of the presence
of drusen greater than 125 μm) with progression to
GA in either one of both eyes. An atrophic lesion
was required to be in the macular and not extend
beyond the limits of the FAF image at the first visit
(i.e., baseline). Participants were required to have foveal
centered FAF images and at least three visits recorded
over a minimum of two years, with FAF imaging
of sufficient quality. Good-quality images were classi-
fied as those with minimal or correctable artefacts
(e.g., by correction of illumination with pre-processing
techniques), and images should encompass the entire
macular area and part (i.e., around half) of the optic
disc. No minimum lesion sizes were set, because the
objective of the study was to be able to automate all
lesion sizes. Images contained both unifocal and multi-
focal lesions. Sampling in the training phase for the
algorithm was augmented by time-series segmentation
without limitation on lesion size.

Exclusion criteria included participants with
neovascular AMD and macular atrophy from causes
other than AMD, such as inherited retinal dystro-
phies, including Stargardt’s disease. These patients
were excluded based on the determination of a retinal
specialist (R.H.G.). Also excluded were patients who
had undergone any prior treatment or participated
in a treatment trial for AMD. Peripapillary atrophy
was not included in the analysis and all participants
required atrophy in the FAF image to be included.

Poor-quality images were excluded and were classified
as images that were not salvageable with preprocess-
ing techniques (e.g., excessive blurriness, shadowing,
and contrast issues); images where the optic disc was
completely absent; and images where the optic disc
was in the center of the image.

FAF images were captured using the Heidel-
berg Spectralis-OCT (Heidelberg Engineering, Heidel-
berg, Germany). FAF image files, along with basic
demographic data were retrospectively collected in
Tagged Image File Format (i.e., TIFF or TIF), and
original sizes of images were either 768 × 768 or 1536
× 1536 pixels with 30° × 30° field-of-view. As images
were collected retrospectively and from real-time clini-
cal settings, automatic real-time tracking ranged from
five to 100.

Outputs from the accompanying software—
RegionFinder—were used to compare the machine-
generated outputs with the gold standard (i.e., ground
truth based on human graders). This included
obtaining measurements, such as the total area of
growth (mm2). Additionally, manually drawn annota-
tions (using Wacom Cintiq Pro 13 drawing tablet),
separate from RegionFinder, were used to train the AI
algorithm. Two graders were involved in the annotation
process—a principal grader and a senior grader—for
a subset of images to check for consistency. The intra-
class correlation coefficient was used as a measure of
consistency between the graders.

Image Normalization and Preprocessing

Deep learning algorithms require very large datasets
for training on raw images to cover for image acquisi-
tion problems that can affect performance. This poten-
tial challenge can be addressed by image preprocess-
ing for image standardization, which can greatly reduce
the sample size necessary. Problems during FAF image
acquisition include illumination (poor uniformity of
intensity in the image plane), blurred vision (from
involuntary eyemovements), physical discomfort (from
viewing the blue-light beam), and dark contrasts or
“shadowing” (because of vitreous opacities, incor-
rect adjustments of the camera, or the position of
the patient relative to the camera). According to
the Heidelberg Engineering’s HRA+OCT Spectralis
Manual, the built-in real-time eye-tracking system
was designed to minimize eye movement artefacts.
The manual recommends obtaining and averaging
between six to 24 scans to obtain a good-quality FAF
image.39 Poor image quality may create a misinterpre-
tation or might even render the FAF image uninter-
pretable. Although standardized protocols like the one
stipulated by Heidelberg Engineering do exist, noises
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Figure 1. Image preprocessing using the CLAHE technique. (A) Original FAF image and (B) CLAHE-applied FAF image. The original image
was very dark in contrast and illumination. Using the original image would have resulted in contrast-related errors, making it more difficult
for the algorithm to distinguish the GA lesions. The CLAHE-applied image shows the dramatic improvement using this technique. CLAHE,
Contrast Limited Adaptive Histogram Equalization; FAF, Fundus autofluorescence.

and artefacts may still appear during image acquisi-
tion.40,41

It is possible to correct for camera characteris-
tics or other issues with image acquisition quality
using preprocessing techniques.42 For this dataset,
images with extreme artefacts that could not be
salvaged with image preprocessing techniques were
removed from the dataset. Extreme artefacts here were
defined as the presence of overwhelming artefacts
that skewed the extraction of information from
the image, such as extreme darkness, blurriness
or graininess. For the remaining set of images,
residual artefacts were removed using the Contrast
Limited Adaptive Histogram Equalization (CLAHE)
technique.43 The CLAHE corrects for different illumi-
nation and contrast conditions, as well as improv-
ing the edges of objects within the image.43 Figure 1
illustrates the conversion of an image using CLAHE.
Images in their original form (Fig. 1a) can, techni-
cally, be trained on a U-Net architecture. However, the
resultant model would be flawed, producing contrast-
related errors and outputs that do not accurately
isolate lesions. By using CLAHE, it is easier to
train the algorithm and for the algorithm to produce
high quality outputs in its prediction of lesion
areas.

Learning Algorithm

A deep learning model was developed using the
U-Net architecture together with appropriate image
contrast normalization, hyperparameters and train-
ing data. The basic U-Net architecture is illustrated
in Figure 2 and consists of contracting (left side) and
expansive (right side) pathways. The foundation of the

architecture is the Fully Convolutional Network. For
the contracting pathway, there is a repetitive pattern
of two 3 × 3 convolutions, a rectified linear unit
(ReLU) and a 2 × 2 max pooling operation. At every
downsampling step, the number of convolution filters
is doubled from the previous step (e.g., step 1 begins
with 64 filters, which increases to 128 by step 2). For
the expansive pathway, each repeated upsampling step
consists of 2 × 2 convolutions that halve the number
of filters, a concatenation with the correspondingly
cropped feature map from the contracting path, and
finally two 3 × 3 convolutions followed by a ReLU. A
1 × 1 convolution is used at the final layer to map each
64-component feature vector to the desired number
of classes. The contracting and expansive pathways
form a “U” shape, thus aptly giving this architec-
ture its name.37 In our implementation, the ReLU-
aware He Normal initialization was used. He Normal
derives from the research of Glorot and Bengio,44 who
used a scaled uniform distribution for initialization
and assumed activations are linear. Proposed by He
et al.,45 this initializer is considered to be more sound
for ReLU activation, and involves each layer’s weight
being initialized in accordance with the size of previ-
ous layers.

The adaptive learning rate optimization algorithm,
ADAM, was used for stochastic gradient descent and
was used with a learning rate of LR = 3 × 10−5.
The ADAM optimizer includes bias corrections on
both first- and second-order moments.46 The learning
rate is an optimization hyperparameter that adjusts the
weight of the algorithm during training. The learn-
ing rate was evaluated by assessment of the Dice loss
and quality of segmentation outputs. For the dataset,
we found larger learning rates, such as LR = 10−4,
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Figure 2. U-Net architecture. The U-Net architecture was created for biomedical image segmentation. The U-Net is aptly named because
of the arrangements of the filters in a “U”shape. The contracting pathway (left) consists of two 3× 3 convolutions, ReLU activation and 2 ×
2max pooling. The expansive pathway (right) consist of 2× 2 convolution, a concatenation with the correspondingly cropped feature map
from the contracting pathway, two 3 × 3 convolutions and ReLU activation (see Ronneberger et al.37).

produced suboptimal outputs that did not distinctly
characterize GA lesion areas.

The batch size was set to 32, the steps per epoch
was set to 175, and the number of epochs selected
was 80. Batch sizes typically range from 32 to 512.
Note that U-Net designers favor small batch sizes to
minimize overhead and maximize graphics process-
ing unit memory.37 The regularization effect of small
batch sizes contributes to the ability to generalize.47,48
We found 80 epochs to be sufficient in reaching
peak model performance and minimizing loss. Learn-
ing curves were created using Python’s ggplot (http:
//ggplot.yhathq.com/).

The hardware implementation of the U-Net was
carried out on an operating system with an Intel Core
i7-7820HQCPU@2.90GHz. All training, testing, and
statistics were performed using Keras (https://keras.io/)
and Tensorflow (https://www.tensorflow.org/) using
NVIDIA Quadro M1200 Graphics Processing Unit.

Training and Validation

The algorithm performance was evaluated by five-
fold cross-validation,49 which is widely used in classifi-
cation for model assessment and provides estimates of

Figure 3. Fivefold cross-validation. This cross-validation was
chosen because it has been empirically shown to yield test error
rates not excessively influenced by high bias and variances.

error rates by rotating through subsets of training data
and test data (Fig. 3).50–54

Performance Metrics

The following metrics were used for evaluat-
ing the performance of the U-Net algorithm: the
DSC, DSC loss, sensitivity, specificity, mean absolute
error (MAE), accuracy, recall, and precision.19,55,56

http://ggplot.yhathq.com/
https://keras.io/
https://www.tensorflow.org/


U-Net & GA Segmentation TVST | July 2021 | Vol. 10 | No. 8 | Article 2 | 6

Bland-Altman plots and coefficient of repeatability
(CR) were used to measure the difference between
ground truth and segmentation results both visually
and numerically, respectively.57,58 Bland-Altman plots
were created using Python’s pyCompare (https://pypi.
org/project/pyCompare/) and the unit of measure used
was pixels. We further compared ground truth with
automation segmentation using Spearman’s correla-
tion coefficient (ρ) and plotted an appropriate regres-
sion line using Python’s ggplot.

Although DSC was our primary focus as the
metric for segmentation performance, the additional
evaluation metrics included were used so that results
were comparable with other GA-AI findings. For
example, in semantic segmentation, a lower sensitivity
would suggest undersegmentation where lesion bound-
aries would not be captured in detail. Conversely,
a lower specificity could indicate oversegmentation
where lesions are resolved with too much detail possi-
bly caused by noise or artefacts.

The metrics were computed from pixel-level values
for true positives (TP), true negatives (TN), false
positives (FP) and false negatives (FN). In the context
of this study, TP was defined as correctly segmented
GA lesion pixels, TN was the correctly identified
background pixels, FP was the background pixels
mistakenly segmented as GA lesion pixels, and FN
was the GA lesion pixels mistakenly identified as
background pixels.

The DSC is a spatial overlap index and a valida-
tion metric for reproducibility. It measures the agree-
ment between results obtained using ground truth
(such as human annotation) and machine-predicted
results.19,55,56

DSC = 2TP
2TP + FP + FN

(1)

DSC loss is simply denoted as

DSCloss = 1 − DSC (2)

Sensitivity (also known as recall) is defined as the
proportion of TP pixels found within the lesions.56

Sensitivity = TP
TP + FN

(3)

Specificity is themeasure of diagnostic test accuracy
and is defined as the proportion of TN pixels found
within the background.56

Specificity = TN
TN + FP

(4)

The MAE measures closeness of predictions
(observed vs. predicted) and is expressed as

MAE = 1
n

n∑
i=1

|yi − xi| (5)

where yi is the prediction and xi is the true value.59
The accuracy of the algorithm is its ability to

distinguish different classes (i.e., GA lesion pixel or
background pixel).60

Accuracy = TP + TN
TP + TN + FP + FN

(6)

Precision represents the proportion of pixels
correctly classified as GA lesions.60

Precision = TP
TP + FP

(7)

Finally, the coefficient of repeatability (CR)
measured the difference between ground truth and
automated segmentation outcomes.57,58

CR = 1.96 ×
√∑

(d2 − d1)2

n
(8)

These metrics were evaluated for every cross-
validation fold and compared predicted outcomes to
that of human-annotated ground truths. The metrics
DSC, sensitivity, specificity, accuracy, and precision all
have an outcome range of 0 to 1; the closer to 1 the
result, the better the outcome. Conversely, the metrics
DSCloss along withMAE should ideally be as close to 0
as possible to indicate that loss and error is minimized.

Qualitative Assessment

While human subjectivity should be accounted
for, combining a qualitative assessment along with
a quantitative assessment strengthens the evaluation
of model prediction. For the purposes of this study,
qualitative assessment involves (a) the speed of the
algorithm as compared to its human counterpart, and
(b) the human visually evaluating machine-generated
outcomes and determining whether outputs graphi-
cally appear to be accurate.

Results

A total of 702 FAF images from 51 patients with
GA secondary to AMDwere included in the study, and
whose images were manually annotated. The cohort
of images and patients was quite large and diverse

https://pypi.org/project/pyCompare/
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Figure 4. Learning curveswith training/validation loss and accuracy across all fivefolds of cross-validation. (A) Cross-validation 1. (B) Cross-
validation 2. (C) Cross-validation 3. (D) Cross-validation 4. (E) Cross-validation 5. The learning curve illustrates a consistent outcome of high
accuracy and low loss throughout all fivefolds.



U-Net & GA Segmentation TVST | July 2021 | Vol. 10 | No. 8 | Article 2 | 8

Figure 5. Learning curves for DSC and DSCloss across all fivefolds of cross-validation. (A) Cross-validation 1. (B) Cross-validation 2. (C) Cross-
validation 3. (D) Cross-validation 4. (E) Cross-validation 5. The learning curve illustrates a consistent outcome of high DSC and low loss
throughout all 5-folds. DSC, Dice similarity coefficient.
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Table 1. Geographic Atrophy U-Net Training Results
DSC DSCloss Sensitivity Specificity MAE Accuracy Precision

Training Set 1 0.9752 0.0248 0.9949 0.8904 0.0443 0.9904 0.9943
Training Set 2 0.9918 0.0082 0.9948 0.8925 0.0141 0.9903 0.9939
Training Set 3 0.9916 0.0084 0.9951 0.884 0.0147 0.99 0.9934
Training Set 4 0.9931 0.0069 0.9958 0.8913 0.0122 0.9917 0.9949
Training Set 5 0.9855 0.0145 0.9967 0.785 0.0267 0.9935 0.9963
Mean ± SD 0.9874 ± 0.0067 0.0126 ± 0.0067 0.9955 ± 0.0007 0.8686 ± 0.0419 0.0224 ± 0.0121 0.9912 ± 0.0013 0.9946 ± 0.0010

SD, standard deviation.

Table 2. Geographic Atrophy U-Net Validation Results
DSC DSCloss Sensitivity Specificity MAE Accuracy Precision

Validation Set 1 0.9512 0.0488 0.9901 0.8529 0.0818 0.9702 0.974
Validation Set 2 0.9887 0.0113 0.9887 0.871 0.0207 0.9838 0.9935
Validation Set 3 0.9869 0.0131 0.9938 0.6055 0.0232 0.9824 0.9864
Validation Set 4 0.9947 0.0053 0.998 0.5557 0.0103 0.9921 0.9938
Validation Set 5 0.9678 0.0322 0.9932 0.7452 0.0569 0.979 0.9832
Mean ± SD 0.9779 ± 0.0161 0.0221 ± 0.0161 0.9928 ± 0.0032 0.7261 ± 0.1273 0.0386 ± 0.0267 0.9815 ± 0.0071 0.9862 ± 0.0073

SD, standard deviation.

Table 3. Geographic Atrophy U-Net Test Results
DSC DSCloss Sensitivity Specificity MAE Accuracy Precision

Test Set 1 0.9835 0.01645 0.9937 0.8504 0.03079 0.9883 0.9938
Test Set 2 0.9916 0.0084 0.9904 0.8613 0.0160 0.9878 0.9970
Test Set 3 0.9783 0.0217 0.9928 0.7207 0.0390 0.9666 0.9706
Test Set 4 0.9820 0.0180 0.9824 0.7104 0.0309 0.9738 0.9880
Test Set 5 0.9548 0.0452 0.9922 0.6060 0.0712 0.9703 0.9693
Average ± SD 0.9780 ± 0.0124 0.0220 ± 0.0124 0.9903 ± 0.0041 0.7498 ± 0.0955 0.0376 ± 0.0184 0.9774 ± 0.0090 0.9837 ± 0.0116

SD, standard deviation.

as compared to others in the GA-AI segmentation
space.11 The cohort consisted of 99 eyes, 49 left eyes
(49.5%) and 50 right eyes (50.5%). A total of 359
images were for the left eye and 343 images were for the
right eye. The cohort consisted of 38 females (74.5%)
and 13 males (25.5%) with an average age of 76.7 ± 8.9
years. Total follow-up time was 61.5 ± 25.3 months.
The intraclass correlation coefficient for consistency
between the two graders was 0.9855 (95% confidence
interval [CI]: 0.9298, 0.9971), showing close agreement
between the graders. To suit the requirements of the
cross-validation, the images were divided into four
parts of 140 images and one part of 142 images by
random allocation, with amix of fast and slow progres-
sors.

Learning curves across all fivefolds with train-
ing/validation loss and accuracy are presented
in Figure 4 and for DSC and DSCloss in Figure 5.
For quantified training outcomes (Table 1), DSC
ranged from 0.9752 to 0.9931, DSCloss ranged from
0.0069 to 0.0248, sensitivity ranged from 0.9948 to
0.9967, specificity ranged from 0.785 to 0.8925, MAE
ranged from 0.0122 to 0.0443, accuracy ranged from

0.99 to 0.9935, and precision ranged from 0.9934 to
0.9963.

For quantified validation outcomes (Table 2), DSC
ranged from 0.9512 to 0.9947, DSCloss ranged from
0.0053 to 0.0488, sensitivity ranged from 0.9887 to
0.998, specificity ranged from 0.5557 to 0.871, MAE
ranged from 0.0103-0.0818, accuracy ranged from
0.9702 to 0.9921, and precision ranged from 0.974 to
0.9938.

For quantified test outcomes (Table 3), DSC ranged
from 0.9548 to 0.9916, DSCloss ranged from 0.0084
to 0.0452, sensitivity ranged from 0.9824 to 0.9937,
specificity ranged from 0.6060 to 0.8613, MAE ranged
from 0.0160 to 0.0712, accuracy ranged from 0.9666 to
0.9883, and precision ranged from 0.9693 to 0.9970.

The Bland-Altman plots and CRs (Fig. 6) illustrate
graphically that there are minimal differences between
the ground truth and segmentation results. The Bland-
Altman plots the difference between the ground truth
and segmentation output measurements vs. the mean
of the two measurements. The Bland-Altman showed
a bias of (A) −1238.05 pixels (95% CI agreement:
−5052.40, 2576.31), (B) −615.99 pixels (95% CI
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Figure 6. Bland-Altman plots and coefficient of repeatability across all fivefolds of cross-validation (in units of pixels).

agreement: −10788.48, 9556.50), (C) 1451.87 pixels
(95% CI agreement: −10857.75, 13761.49), (D)
−1876.28 pixels (95% CI agreement: −6607.24,
2854.68), and (E) −1115.70 pixels (95% CI agreement:

−7306.82, 5075.42). The coefficients of repeatability
were (A) 4520.79 pixels (95% CI: 4030.03, 5148.73),
(B) 10243.88 pixels (95% CI: 8941.18, 11994.43), (C)
12634.26 pixels (95% CI: 10961.46, 14914.32), (D.)
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Figure 7. Spearman’s correlations and regression lines across all fivefolds of cross-validation (in units of pixels).

5992.17 pixels (95% CI: 5334.85, 6835.69), (E) 6565.97
pixels (95% CI: 5818.85, 7534.94).

The Spearman’s correlation coefficient and regres-
sion line (Fig. 7) reveals that there is a strong positive
correlation between ground truth and segmentation
measurements. The Spearman’s correlation coefficients
were (A) ρ = 0.9936 (P < 0.001), (B) ρ = 0.9808 (P <

0.001), (C) ρ = 0.9249 (P < 0.001), (D) ρ = 0.9977 (P
< 0.001), (E) ρ = 0.9984 (P < 0.001).

Further to the quantifiable results of the algorithm,
we evaluated visually the outputs generated by the
U-Net to confirm that lesions were being extracted
accurately. Figures 8 and 9 illustrate four sample cases
of the U-Net GA lesion output of preprocessed FAF

images. The presented cases showed extremely well-
outlined lesions. The time in which GA lesions were
extracted was compared between humans and the
automationmethod. The average time it took a human,
using RegionFinder, to annotate GA lesions was on
average 1.04 minutes across all 702 images. The U-
NetGA automation takes 6.06 seconds. The qualitative
and quantitative assessment coupled illustrate a good
performance of the algorithm.

In the current study, the 702 images from 51 persons
are comparable with other recent studies using deep
learning for GA image segmentation. See, for example,
Liefers et al.,32 who used 409 images for model devel-
opment and evaluation from two cohorts: 87 images
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Figure 8. Qualitative assessment of model prediction outcomes. Test cases A and B. In addition to assessing the performance of U-Net
quantitatively, we evaluated the performance by visually assessing the degree of accuracy of U-Net-based lesion segmentation. The test
cases presented demonstrate a good segmentation outcome.

Table 4. Geographic Atrophy U-Net Patient-Level Segmentation Results

DSC DSCloss Sensitivity Specificity MAE Accuracy Precision

Training 0.9931 0.0069 0.9953 0.9634 0.0116 0.9919 0.9951
Validation 0.9892 0.0108 0.9895 0.9318 0.0192 0.9831 0.9916
Test 0.9793 0.0207 0.9792 0.8041 0.0382 0.9633 0.9818

from the BMES study (26 participants, 43 eyes) and 322
images from the RS study (149 participants, 195 eyes).
The average time patients were observed in our cohort
was quite long (61.5 months), which increased sample
variability for model training.

The possibility of overfitting was addressed by (a)
appropriate selection of hyperparameters, (b) early
stopping in training, (c) batch size selection, and (d)
its absence confirmed by results from the fivefold
cross-validation—which would have revealed signifi-
cant disparities between training and test results if
the model was overfitted. For example, good results
for the training phase, but poor results for the testing
phase would be indicative of overfitting. Segmentation
and cross-validation were carried out at the patient-
level in addition to the image-level, using one image

per eye for 99 eyes (Table 4). This is an additional
check against overfitting, subject to certain statistical
assumptions.61,62 We found similar outputs and results
with patient-level and image-level segmentation. No
evidence of overfitting was found.

The current study and experimental results included
a number of features that, in combination, distinguish
it from other studies: (a) it is a retrospective case study,
under clinical conditions, (b) application of the U-Net
deep learning architecture to GA segmentation with
hyperparameters tuned to a new set of clinical data,
(c) use of FAF imagery from the Heidelberg Spectralis
instrumentation, and (d) data preprocessing using an
optimal normalization process based on CLAHE. This
combination of features does not appear to have been
reported elsewhere in the research literature.
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Figure 9. Qualitative assessment of model prediction outcomes. Test cases A and B. In addition to assessing the performance of U-Net
quantitatively, we evaluated the performance by visually assessing the degree of accuracy of U-Net-based lesion segmentation. The test
cases presented demonstrate a good segmentation outcome.

Discussion

The automation of GA lesion segmentation is
described using a deep learning algorithm based on the
U-Net architecture. The algorithm was assessed both
qualitatively and quantitatively. Quantitatively, perfor-
mance was evaluated against the metrics DSC, DSC
loss, sensitivity, specificity, MAE, accuracy, recall, and
precision. The U-Net performance on FAF images
coupledwith preprocessingwas successful inGA lesion
segmentation. Training, validation, and testing scores
were very high, particularly for the main metric of
interest—the DSC—where the average DSC for train-
ing, validation and testing was 0.9874, 0.9779, and
0.9780, respectively. The highest DSC reported in the
literature for GA-AI semantic segmentation was 0.89
for the study by Hu et al.,16 using a level set method on
FAF images. The test DSC score of 0.9780 ± 0.0124
produced here compares favorably with other U-Net-
based algorithms. Wu et al.28 reported a DSC score of
0.872± 0.66 on SD-OCT and synthesized FAF images,
whereas Liefers et al.32 reported an average DSC score

of 0.72 ± 0.26 on CFP. Differences in performance
can be ascribed to differences in data quality, different
settings for hyperparameters, and the design of image
normalization methods.

When comparison is made on the basis of accuracy
(the more commonly used outcome evaluation), the
algorithm compares favorably with scores reported by
Hu et al.20 (i.e., 0.97 accuracy using kNN with FAF
images) and Ji et al.28 (i.e., 0.986 and 0.995 accura-
cies using sparse autoencoders with SD-OCT scans).
Our accuracies were 0.9912, 0.9815, and 0.9774 for
training, validation, and testing, respectively. Similarly,
the sensitivity of the algorithm was very good, with
values of 0.9955, 0.9928, and 0.9903 for training,
validation and testing, respectively. The highest sensi-
tivity performance reported in the literature was 0.983,
by Lee et al.13 (i.e., watershed transform algorithm
with FAF images). In this study, qualitative evalua-
tion by visual assessment of machine-generated outputs
provided augmentation of scores based on objective
metrics. Visually, the U-Net GA automation appears
to capture all lesions visually accessible to the human
grader. The speed of the automation was far greater
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than the speed of human judgement. For the 702
images in the dataset, the speed of automation was
∼6.06 seconds to complete each task, whereas the
human grader averaged 1.04 minutes.

Metric values (whether DSC, sensitivity, speci-
ficity or accuracy) of 0.7–0.8 are typically considered
acceptable, whereas 0.8 to 0.9 are considered excel-
lent. Specificities for GA-AI segmentation algorithms
ranged from 0.93 to 0.99 in the literature. For this
algorithm, the specificities were 0.8686, 0.7261, and
0.7498 for training, validation and testing, respectively.
With the results for specificity indicating good perfor-
mance rather than excellent, there may be a possi-
bility of oversegmentation occurring. Oversegmenta-
tion may be due to correctly detecting boundaries
of interest within an image (lesion boundaries), but
also insignificant boundaries as well. Visually, this may
appear as the segmented areas being split up more
than necessary. This is in contrast to undersegmenta-
tion, where individual segments are merged into singu-
lar segments. Future work to address this issue could
involve combining the U-Net segmentation algorithm
with other AI tools, such as texture discrimination, for
improved resolution in spatial analysis.

Some limitations in the study included constraints
on the use of the FAF imaging modality, such as
image artefacts (e.g., blurriness, shadowing, and poor
contrast), discomfort for the patient associatedwith the
blue-light beam, low signal strength, and its potential
for toxicity for the retina.41 Preprocessing techniques
were used to standardize FAF images to address some
of these issues. Augmentation of machine learning
performance in future may be possible by including
other imaging modalities, such as gray-scale SD-OCT
images during training, which have been used in the
past to quantify atrophy of photoreceptors.63–65 In
the current study, the cross-validation approach was
used to evaluate performance under controlled exper-
imental conditions. In future, more extensive training
and application to external datasets are possible using
a model-to-data approach, also known as federated
learning, as demonstrated by Mehta et al.36,66 This
process involves exporting the partially trained deep
learning model to different institutions for incremental
training, while preserving local data privacy.

Conclusion

Estimation of GA area in FAF images is required
to evaluate the severity and rate of progression of
GA in clinical presentations. To automate this process,
a deep learning approach was developed for seman-

tic segmentation and applied to FAF images, with
image preprocessing and normalization by CLAHE.
The algorithm produced very high accuracy with very
highDSC scores, matching or exceeding human perfor-
mance in all metrics.

The automation results presented in this article
are based on application to clinical data and there-
fore provide support that the algorithm is suitable for
application in clinical settings. Automation of diagnos-
tics for GA has the potential to provide savings with
respect to patient visit duration, operational cost, and
measurement reliability in routine GA assessments.
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