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ABSTRACT

Interlaboratory comparison of microarray data, even
when using the same platform, imposes several
challenges to scientists. RNA quality, RNA labeling
efficiency, hybridization procedures and data-
mining tools can all contribute variations in each
laboratory. In Affymetrix GeneChips, about 11–20
different 25-mer oligonucleotides are used to mea-
sure the level of each transcript. Here, we report
that ‘labeling extension values (LEVs)’, which are
correlation coefficients between probe intensities
and probe positions, are highly correlated with
the gene expression levels (GEVs) on eukayotic
Affymetrix microarray data. By analyzing LEVs and
GEVs in the publicly available 2414 cel files of 20
Affymetrix microarray types covering 13 species,
we found that correlations between LEVs and
GEVs only exist in eukaryotic RNAs, but not in pro-
karyotic ones. Surprisingly, Affymetrix results of the
same specimens that were analyzed in different
laboratories could be clearly differentiated only
by LEVs, leading to the identification of ‘laboratory
signatures’. In the examined dataset, GSE10797,
filtering out high-LEV genes did not compromise
the discovery of biological processes that are con-
structed by differentially expressed genes. In con-
clusion, LEVs provide a new filtering parameter for
microarray analysis of gene expression and it may
improve the inter- and intralaboratory comparability
of Affymetrix GeneChips data.

INTRODUCTION

Microarrays, particularly Affymetrix GeneChips, have
become one of the most widely used high-throughput

methods for functional genomic studies (1–4). The most
common application of Affymetrix GeneChips has been to
study mRNA as a method of measuring transcriptome
activity. Microarrays have been used in numerous studies
as a powerful tool for characterizing gene expression pro-
files; for classification of tumors versus normal tissues,
primary versus metastasized tumors, prognosis of cancer
patients and drug responses of patients, although tradi-
tional methods, such as observation of clinical features
(such as tumor size, staging and lymph node metastases),
are still mainstream parameters for clinicians to follow
(1–3,5). There is no doubt that DNA microarrays repre-
sent a potential technology that can be used as a predictive
tool or cancer biomarkers (6). However, critical concerns
have been raised regarding the reliability and consistency
of microarray results for both clinical and academic appli-
cations, since reports used to show little consistency
among lists of differentially expressed genes by different
commercial gene expression chips (7–9).
Affymetrix Genechips are designed so that gene expres-

sion is probed using a set of 11–20 different 25-mer oligo-
nucleotide probe-pairs, including perfect-match (PM) and
mismatch (MM) probes within each probe-pair. The inte-
gration of expression levels for each of the 11–20 PM and
MM probe-pairs quantifies the expression of a particular
gene to one value. Currently, cross-laboratory comparison
of microarray data is still a challenge for scientists,
although reports have shown highly consistent similarities
of 85–90% in interlaboratory comparison of differential
expression gene profiles using the Affymetrix Genechip
(10). To resolve the remaining inconsistencies, several
reports have developed robust and reproducible protocols
for quality control of microarray techniques (11,12).
Factors contributing to the variations of Affymetrix

microarray data from different laboratories include
RNA quality, RNA labeling, hybridization process and
data analysis tools (13). For eukaryotic specimens,
the RNA labeling processes include cDNA synthesis
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and cRNA synthesis in gene chips. The cDNA synthesis
begins with the binding of reverse transcriptase and a
poly(T) primer oligonucleotide annealing to the poly(A)
tail at the 30 end of a mRNA, generating cDNA according
to mRNA templates in the presence of dNTPs. The cRNA
is then synthesized with a T7 primer, and biotin-labeled
nucleotides are incorporated into in vitro transcripts.
For prokaryotic cells, random primers are used to replace
the poly(T) primer during cDNA synthesis, and then
the cRNA is labeled with biotin-labeled substrates
(http://www.affymetrix.com). RNA quality is usually
determined by Bioanalyzer (Agilent) which measures the
28S/18S rRNA signal ratio (14). However, calculations
based on area measurements are compromised by the
hazy definitions of start and end points of peaks (14).
Therefore, to estimate whether RNA-labeling efficiency
or RNA quality affect the microarray results, the signal
intensity ratio of the 30 probe set over the 50 probe set (30/50

ratio) is often used to evaluate labeling efficiency of genes
(Microarray Suite, Affymetrix, Santa Clara, CA, USA)
(14–17). Nevertheless, the exact mechanism and proof of
RNA degradation sites are still lacking (18).
In this study, we tested the use of labeling exten-

sion values (LEVs) to re-evaluate the performance
of Affymetrix GeneChips in more than 2000 publicly
available microarray data deposited in Gene Expression
Omnibus (GEO) at the National Center for Biotechnology
Information (NCBI) (19). To focus on interlaboratory
comparison, Affymetrix GeneChips data sets from
Microarray Quality Control (MAQC) (20,21) Project
and NIH Neuroscience Microarray Consortium were
analyzed. To our surprise, LEVs could be used to iden-
tify a ‘laboratory signature’ that may reflect the
systemic variations that are unique to each laboratory.

MATERIALS AND METHODS

Data sets

A total of 2414 .cel files were downloaded from GEO
(http://www.ncbi.nlm.nih.gov/geo/) for this study. In
addition, four data sets were analyzed. (i) MAQC
Brain Dataset (http://www.fda.gov/nctr/science/centers/
toxicoinformatics/maqc/docs/MAQC_Main_Study_Guid
ance.doc) included four RNA reference samples analyzed
by three laboratory sites with five replicates per site using
HG-U133 Plus 2.0 GeneChips. The four RNA samples
were Stratagene’s Universal Human Reference RNA
(SUHRR), Ambion’s Human Brain Reference RNA
(HBRR), 25% HBRR/75% SUHRR and 75% HBRR/
25% SUHRR. (ii) MAQC Rat Toxicogenomics Dataset
(20) included six RNA samples analyzed by two labora-
tory sites with six replicates per site using Rat Genome 230
2.0 GeneChips. Samples were isolated from rat liver and
kidney after each was exposed to aristolochic acid, riddel-
liine and comfrey. Unexposed tissues were used as con-
trols. (iii) MAQC Tumor Dataset (21) included five
biological replicates of two RNA samples analyzed by
two laboratory sites using HG-U133 plus 2.0 Chips. The
samples consisted of five colorectal adenocarcinomas and
five normal colonic tissues. (iv) GSE2004 Dataset (NIH

Neuroscience Microarray Consortium) included three
replicates of four RNA samples analyzed by two labora-
tory sites using U133A Chips. Samples consisted of
normal kidney, spleen, liver and a Universal RNA.

Gene expression levels (GEVs) and LEVs

The GEVs of each probe set for individual datasets were
normalized using its robust multiarray average (RMA)
(22,23), and the RMA measures were computed using
the Methods for Affymetrix Oligonucleotide Arrays R
package (3) that is freely available on the World Wide
Web (http://www.bioconductor.org). The LEVs were
defined as the Pearson’s linear correlation coefficient
between the probe position and base 2 logarithm of
probe intensity for each gene. The probe intensities were
extracted from the .cel files, and the probe interrogation
position information for each type of chips was extracted
from the .probe_tab files that can be downloaded from
Affymetrix World Wide Web site. For example, the
probe information of U133A was extracted from http://
www.affymetrix.com/Auth/analysis/downloads/data/HT_
HG-U133A.probe_tab.zip. The LEV was calculated using
MATLAB Version 7.4 and Bioinformatics Toolbox
Version 2.5. Since the scientists of Affymetrix Genechips
designed the probe sets to be used mostly at the 30 region
(www.affymetrix.com/support/technical/manual/comparis
on_spreadsheets_manual.pdf), we first filtered out the
probe sets, in which the distances between the probes
with maximum position and minimum position were
<300 nt, to avoid the inclusion of probe sets with very
short length. By doing that, we have removed the probe
sets that could not represent whole transcripts, including
3% in HG-U95, 17% in HG-U133 and 19% in HG-U133
Plus 2 chips, respectively. The source code and retrieved
datasets for LEV are available in Supplementary Data 1
and Supplementary Data 2, respectively. In addition, a
standalone LEV program that can be used to generate
LEVs can be free downloaded from: http://www.mcu.
edu.tw/department/biotec/en%5Fpage/LEV/, and thus
researchers can examine the effect of removing the genes
with LEVs higher than a set threshold on subsequent
analyses.

Gene filtering, randomization analysis and pathway analysis

Dataset GSE10797 was downloaded from the GEO (24).
The Jaccard similarity coefficient measures the similarity
and diversity of sample sets, and it is defined as the size
of the intersection divided by the size of the union of
the sample sets. The randomization procedure for filter-
ing-out genes and the Jaccard coefficient were calculated
using MATLAB Version 7.4 and Bioinformatics Toolbox
Version 2.5. Pathway analyses of differentially expressed
genes were carried out using MetaCore Analytical Suite
(GeneGo Inc., St Joseph, MI, http://www.genego.com)
(4,25). MetaCore is a web-based computational platform
designed for systems biology and drug discovery. It
includes a curated database of human protein interactions
and metabolism; thus, it is useful for analyzing a cluster of
genes in the context of regulatory networks and signaling
pathways.
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Multidimensional scaling (MDS) analysis

For each data-set, 50% of the total genes studied were
filtered out because of their low GEVs or LEVs variance.
Then, a two-dimensional MDS (26) was applied to explore
the interspecimen and interlaboratory variation structure.
With Matlab Statistics Toolbox Version 6.0, the ALSCAL
algorithm developed by Takane et al. (27) was used
to perform nonmetric MDS analyses with interarray
Pearson correlation as input proximity matrices.
Nonmetric MDS was chosen since the correlation mea-
surement does not possess metric properties. The
ALSCAL algorithm first converted the input correlation
proximities into distances using the following
transformation,

�rs < �uv ) f ð�rsÞ < fð�uvÞ for all 1 � r, s, u, v � n,

where (drs, duv) are two original input proximities (correla-
tions), and (f(drs), f(duv)) are transformed distances. Thus,
the transformation in nonmetric MDS represents only
the ordinal properties of the data. In our case study,
f transforms the correlation coefficients into distance mea-
surements with the same order as their original ranks in
the correlation matrix.

Reposition of the probes onHG-U95 chip

The sequence-verified probe position information of
HG-U95 chip was obtained from http://lungtranscripto
me.bwh.harvard.edu/pseqdatabase.html. After we per-
formed sequence matching analyses, the positions of
4404 probe sets were verified from 12250 probe sets anno-
tated by Affymetrix.

Reverse transcription of eukaryotic RNA in HG-U133A
chips using random hexamer

To mimic cDNA synthesis using random hexamer primers
in Affymetrix prokaryotic RNA reverse transcription, the
RNA specimens extracted from four human cancer cell
lines (MDAH2774, PK, PN and TOV112D) were reverse
transcribed to cDNA using random hexamer primers.
The cDNA products were then fragmented by DNase I
and labeled with terminal transferase and biotinylated
GeneChip� DNA Labeling Reagent at the 30 ends. The
labeled cDNAs were subsequently hybridized to HG-
U133A. RNA labeling and Affymetrix array hybridization
were performed according to the manufacturer’s protocol.

RESULTS

Distribution of the LEV for different probe positions with
distinct probe intensities in various types of microarrays

The application of LEV was demonstrated using a Human
HG-U133_Plus_2 chip: chip #GSM147099 in the series
#GSE6400 (http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE6400). LEVs were calculated to be
0.34, 0.15, 0.52, –0.52, 0.21 and 0.39 in actin, beta
(ACTB), aldolase A, fructose-bisphosphate (ALDOA),
glyceraldehyde-3-phosphate dehydrogenase (GAPDH),
phosphoglycerate kinase 1 (PGK1), lactate dehydrogenase
A (LDHA) and ribosomal protein S27a (RPS27A),

respectively (Figure 1). These genes are the six most com-
monly used reference housekeeping genes in real-time
QPCR (28). LEVs in the Affymetrix chips may be affected
by the design of probes in each probe set, including nucleo-
tide sequence or GC content of the probes. Within the same
chip, among the 54675 probe sets, 43346 probe sets had
LEV information and the LEVs ranged from –1 to +1,
showing a normal distribution with a minor positive skew
with a median of 0.074 (Figure 2).

LEV is highly correlated with GEV in eukaryotes but not
in prokaryotes

Since gene expression level, RNA quality, and labeling
efficiency may also affect LEV, correlations between
LEVs and GEVs in Affymetrix GeneChips were analyzed.
Taking chip #GSM147099 as an example, the Spearman’s
rank correlation coefficients (Spearman’s rho=0.23)
between GEVs and LEVs are shown in a scatter plot
(Figure 3A). Spearman’s rank correlation coefficient (the
Kendall’s tau correlation coefficient gives similar results)
was used because of the nonlinear relationship observed
(see Figure 3 for an example). Furthermore, all
Spearman’s rho of the 12 chips in series #GSE6400 are
shown in box plots (Figure 3B). LEVs were correlated
with RNA intensities in GSE6400 with a median
Spearman’s rho of 0.26 (all of P-values �0) (Figure 3B).
The GEO data sets consisted of 152 U133A chips (from
nine different laboratories) showed that LEVs were corre-
lated with GEV in eukaryotes in HG-U133_Plus_2 chips
with a median Spearman’s rho of 0.27 (all of P-values �0)
(Figure 3B).
In addition to Human HG-U133 Plus 2 chips, the afore-

mentioned correlations exist in other eukaryotic chips
such as ATH1-121501 (Arabidopsis), Caenorhabditis ele-
gans, Drosophila 2, HG-U133A 2 (Human), HG-U133A
(Human), RAE230A (Rat), Rat230-2, Rice, Soybean,
Xenopus laevis, Yeast-2 and zebra fish chips. In contrast,
the significant correlation between LEV and GEV was not
found in prokaryotic cells, such as Staphylococcus aureus,
Pae G1a (Pseudomonas aeruginosa), Escherichia coli 2 and
E. coli ASv2. As an example, the scatter plots between
GEV and LEV of two eukaryotes (HG-U133-2 and
RAT230-2) and two prokaryotes (Pae G1a and E. coli
ASv2) chips are shown in Figure 4. The box plots of cor-
relation coefficients between GEVs and LEVs in all of the
analyzed data sets are shown in Figure 5, with the amount
of chips indicated in parentheses. These results indicated
the LEVs are significantly correlated with GEVs in
eukaryotes, but not in prokaryotes.
Our analyses detected low correlation coefficients

between LEVs and GEVs in three data sets derived from
DrosGenome1 chips, YG-S98 and HG U95Av2. These
three old chips (indexed 29-Jan-2002 in GEO) may have
mis-annotations in probe positions (29). After the probe
sets of the HG U95Av2 chips were repositioned and
the database was reconstructed using sequence-matched
probes, higher correlation coefficients between GEVs
and LEVs were found (Figure 5, red arrow). Similarly,
correlation of LEVs and GEVs in DrosGenome2 and
Yeast 2 (Figure 5, blue arrows) were increased when
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compared with the previous versions. Furthermore, when
reverse transcriptions using random hexamer for eukaryo-
tic RNA were tested, the correlations between GEV and
LEV were dramatically decreased (Figure 5, green arrow).

LEVs differentiate the results obtained from different
laboratories on the same specimens

We analyzed LEVs of the results of replicated specimens
(GEO accession GSE2004 Dataset) that are U133A chips
data generated by two different laboratories. By using
GEVs, each of four tissue samples (normal kidney, liver,
spleen and Stratagene Universal RNA) were well

separated from other three RNA samples (Figure 6A,
left panel). Strikingly, analysis of LEVs was able to differ-
entiate the results on replicated specimens obtained by
TGen laboratory and Children’s National Medical
Center in Washington, DC (Figure 6A, marked in red
versus blue in the right panel, respectively). Based on
these analyses, we propose that LEVs in highly variable
genes can represent the ‘laboratory signature’ of different
laboratories. The stress scores (badness measurement of
MDS model fitting) of MDS analyses for GEV or LEV
were 0.073 and 0.15, respectively, both were well below the
commonly acceptable threshold of 0.2. The same results
were obtained when three more MAQC data sets were

LEV = 0.34 LEV = 0.15

LEV = 0.52

LEV = –0.52

LEV = 0.21

LEV = 0.39

A

C

E

B

D

F

Figure 1. RNA degradation plots of six housekeeping genes. The horizontal axis indicates the probe position, and the vertical axis indicates the value
of probe intensity in the base 2 logarithm. (A) GAPDH (212581_x_at), (B) ACTB (AFFX-HSAC07/X00351_3_at), (C) ALDOA (200966_x_at), (D)
PGK1 (244597_at), (E) LDHA (206894_at) and (F) RPS27A in Human HG-U133_Plus_2 chip GSM147099 (of GSE6400). The labeling extension
values (LEVs) are defined as the Pearson’s linear correlation coefficient of the base 2 logarithm of probe intensity and probe position. Values of LEV
are indicated.
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analyzed by LEVs, supporting the notion that LEVs can
be used as ‘laboratory signatures’ to classify data sets from
different laboratories (Figure 6B–D). As shown in
Figure 6C and D, the difference between tissue types
was greater than the difference found in different labora-
tory sites in both LEVs (right panel) and GEVs (left
panel). Nevertheless, LEVs could clearly differentiate the
results obtained from different laboratories (right panels
of Figure 6C and D).

Filtering out the genes with highly differential LEV improves
the comparability between different laboratories

To test whether elimination of the genes with highly dif-
ferential LEV could decrease the variations and improve
comparability of data sets derived from different

laboratories, we analyzed the correlation coefficients of
fold change between two laboratories that were assayed
on the same specimens. For example, fold changes
between Aristolochic acid liver and Comfrey liver in the
MAQC Rat Toxicogenomics Dataset were calculated
separately in two laboratories. The Pearson correlation
coefficient of fold change between these two laboratories
was 0.785 for 22213 genes. When filtering out 5244 of the
highly differential LEV genes (genes having t-test P-value
<0.00001), the correlation coefficient was increased 0.03 to
become 0.815 for 16969 genes (indicated by a red arrow in
Figure 7). To examine whether the increment was statisti-
cally significant, we compared the removal of 5244 high-
LEV genes with a random deletion of 5244 genes. This
permutation process of a random deletion was repeated
1 000 000 times, and Pearson correlation coefficient of fold
change was calculated each time. The distribution of the
increment of interlaboratory correlation by random dele-
tion of 5244 genes were mean= �0.00016 and median=
0.00028 (Min=�0.044, Q1= �0.0040, Q3=0.0041,
Max=0.019, SD=0.0060). The difference between the
removal of the 5224 genes with high LEVs (improvement
of interlaboratory correlation of 0.03) and random dele-
tion of 5224 genes (mean increment of interlaboratory
correlation of –0.00016) was highly significant (P< 10–6).
We then carried out the same procedure for all 112 com-

parisons in the four MAQC data sets (Supplementary
Data 3). The original correlations of comparisons were
generally good (mostly >0.9), hence filtering out the
genes with highly differential LEV only resulted in
modest improvements of the interlaboratory correlations
(Figure 7). Nevertheless, with a paired Student t-test, the
increment of the 112 comparisons was highly significant
(P< 6� 10–7). These results strongly support the notion
that elimination of genes with highly differential LEV
can improve interlaboratory comparability of microarray
data.

Figure 3. (A) Scatter plot of the gene expression levels (GEVs) and labeling extension values (LEVs) in Human HG-U133 Plus2 chip #GSM147099
(of series #GSE6400) with the Spearman’s rho correlation coefficient at 0.23. The red line represents the Lowess smooth curve of GEVs and LEVs.
(B) Box plots of the Spearman’s rho correlation coefficients between LEVs and GEVs are shown as medians at 0.25 and 0.27 for 12 chips (in series
#GSE6400) and 152 chips from nine laboratories, respectively. Main body of a box-plot stands for first quantile (Q1), median (M) and third quantile
(Q3) while two whiskers represent Q1�1.5(Q3-Q1) and Q3+1.5(Q3-Q1), respectively.

Figure 2. Histogram of the labeling extension values (LEVs) of 43346
probe sets in Human HG-U133 Plus2 chip #GSM147099 (of series
#GSE6400), the median and mean of LEVs were 0.074 and 0.068,
respectively.
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Filtering out the genes with highly variable LEV improves
homogeneity of gene expression profiles within the same
class of specimens

To test whether removal of the genes with highly variable
LEV could improve the comparability among subjects,
we re-analyzed the data set GSE10797, in which RNA
samples were prepared from breast cancer epithelium
(CE) and cancer stroma (CS) of 28 subjects after tissues
were isolated by laser capture microdissection (24). For
each subject, differential expression of genes was shown
as log2 (CE/CS). To measure the intersubject similarity,
Pearson correlation coefficient was calculated for every
pair of subjects across all of log2 (CE/CS)’s. This inter-
subject correlation was computed for all of 378
(¼ C28

2 ¼ 28�27=2) possible pairs of subjects, and the aver-
aged correlation coefficient of 378 pairs was 0.137 for the

complete set of 18 729 genes. The genes with highly vari-
able LEV were defined as those genes with top-ranked
LEVs in the CE set or the CS set. After filtering out top
quarter, top two-quarters and top three-quarters of the
genes with highly differential LEV, the averaged correla-
tion coefficients were increased to 0.151, 0.168 and 0.187,
respectively (Figure 8A). To test for a statistical signifi-
cance, permutation processes of random deletion of the
same number genes for each proportion (1/4, 1/2 and
3/4) were done for 10 000 times. The corresponding
observed increments of 0.013, 0.031 and 0.050 were sig-
nificant (all P< 0.00001) for filtering out portions of 1/4,
1/2 and 3/4, respectively.

We also calculated Jaccard coefficients of top 300 log2
(CE/CS) genes to test whether the removal of genes with
high LEVs could be used as a filtering procedure to

Figure 4. Scatter plots of the gene expression levels (GEVs, in horizontal axis) and labeling extension values (LEVs, in vertical axis) in (A) HG-U133-
2 chip #GSM52623 (of the series #GSE2723), (B) Rat230-2 chip #GSM53 GSE287099 (of the series #GSE2870), (C) Pae G1a chip #GSM92164 (of
the series #GSE4026) and (D) E. coli ASv2 chip #GSM18235 (of the series #GSE1121). The red line represents the Lowess smooth curve of GEVs
and LEVs. The Spearman’s rho correlation coefficient between GEVs and LEVs are also indicated. Correlations between GEVs and LEVs were
highly significant (P� 0) in eukaryotic specimens (A, B), but less significant in prokaryotic ones (C, D).
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improve the comparability between any pairs of subjects
within the same laboratory. The averaged Jaccard coeffi-
cient of 378 pairs of subjects was 3.9% for the complete
data set of 18 729 genes. After filtering out the top 1/4, 1/2,
and 3/4 portions of the genes with highly differential LEV,
the averaged Jaccard coefficients were increased to 5.4%,
8.1% and 13.8%, respectively (Figure 8B). These incre-
ments were statistically significant (all P< 0.00001) when
compared with those derived from permutation processes.
These results indicate that filtering out high-LEV genes
improves intersubject comparability, increasing the homo-
geneity of gene expression profiles within the same class of
specimens.

To examine whether filtering out the high-LEV genes
would reduce the number of differentially expressed genes
and affect subsequent functional analyses of biological
functions, we compared the main biological processes
exerted by the differentially expressed genes before and
after filtering out the genes with highly variable LEV. In
the GSE10797 data set, Casey and associates found oxi-
dative phosphorylation to be highly expressed in CE by
GeneSifterTM analyses (24). In our analyses, among the
1036 gene that were 2-fold upregulated in CE, 220 genes
remained after filtered out three-quarters of genes with
highly variable LEV. We are delighted to find oxidative
phosphorylation to be the top-ranked pathway in
functional network analysis of these 220 genes using

Metacore algorithm (4). Similarly, Casey et al. (24)
found ECM remodeling and cell adhesion to be the top
biological processes as the CS signatures in the GSE10797
data set. After we filtered out the top 3/4 genes with high
LEV, ECM modeling and cell adhesion remained as the
most important biological processes. Our results show
that filtering out genes with high LEVs did not com-
promise subsequent functional analyses of biological
processes in this tested data set.

DISCUSSION

Affymetrix GeneChips provide the opportunity to unravel
changes in gene expression profiles under a myriad of
physiological, pathological and pharmacological condi-
tions. Collaborative groups of the MAQC project have
systematically analyzed several replicated specimens
and revealed promising results regarding the consis-
tency of microarray data between laboratories and
across platforms (http://www.fda.gov/nctr/science/cen-
ters/toxicoinformatics/maqc/). In this study, all of their
Affymetrix data sets were downloaded from GEO of
NCBI, and RNA expression profiles were rebuilt from
the original raw data of GeneChips using RMA or
dChip (30). From analyses of these replicated data sets
and additional data from more than 2000 chips, we have
demonstrated that LEVs are significantly correlated with

Figure 5. Box plots of the Spearman’s rho correlation coefficients between gene expression levels (GEVs) and labeling extension values (LEVs) in
three species (four chip types) of prokaryotes (left panel) and 10 species (16 chip types) of eukaryotes (right panel). The total number of chips
analyzed for each chip type is indicated in parentheses. Detailed chip information is available in Supplementary Data 2. The red arrow indicates the
increment of correlation coefficients after probe positions were re-annotated in the HG-U95Av2 chips. Blue arrows indicate the increase of corre-
lation coefficients when probe positions were corrected from old to new versions in the Drosophila chips (DrosGenome1 to Drosophila 2) and in
yeast chips (YG-S98 to yeast2). The green arrow indicates the decrease of correlation coefficients when the random primers were used to replace the
oligo(T) primer during cDNA synthesis in four eukaryotic RNAs. The blue box represents the lower quartile and upper quartile values, and the red
line represents median. Only boxes (without whiskers) with Q1, median and Q3 are plotted for easier comparison between chip types.
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GEVs in eukaryotes, but not in prokaryotes. To our sur-
prise, results of the same specimens from different labora-
tories could be clearly differentiated by their LEVs
(Figure 6A–D, right panels), although the RNA expres-
sion profiles shown by GEVs were quite consistent
(Figure 6A–D, left panels).
Based on current mRNA degradation models, most

mRNAs in eukaryotes undergo decay by the deadenyla-
tion-dependent pathway. In the first step, the poly(A) tail
has to be removed by a deadenylase activity, followed by
two mechanisms that degrade the mRNA: either decap-
ping followed by 50!30 decay or a 30!50 decay (31). Once
the mRNA poly(A) tail is removed, reverse transcription

reaction will not proceed, resulting in no detectable signal
on the GeneChips. Several studies have addressed the
impact of RNA degradation on gene expression profiles
and developed models to improve the reliability and effi-
ciency of microarray data (14–17). It is suggested in the
Affymetrix website that data with deviated 30/50 ratios may
reflect poor quality of input mRNA (32). In the RNA
degradation plots of several housekeeping genes such as
b-actin and GAPDH, higher 30/50 ratios are considered to
be the result of the following conditions: RNA degrada-
tion, incomplete conversion to the first stranded cDNA,
or low labeling efficiency (16). Ryan et al. (18) proposed
that, within a particular study, the outlying chips that

Figure 6. Multidimensional scaling (MDS) analyses of gene expression values (GEVs, left panel) and labeling extension values (LEVs, right panel).
(A) GSE2004 Data set (triangle: kidney, circle: liver, square: spleen, diamond: Universal RNA). Two laboratory sites are labeled with different colors
(red and blue). (B) MAQC Tumor Dataset (triangle: normal colonic tissues, circle: colorectal carcinomas). Two laboratory sites are labeled with
different colors (red and blue). (C) MAQC Rat Toxicogenomics Dataset (triangle: aristolochic acid-treated kidney, circle: control kidney, square:
aristolochic acid-treated liver, diamond: comfrey-treated liver, plus: control liver, star: riddelliine-treated liver). Two laboratory sites are labeled with
different colors (red and blue). Inserts stand for zoomed-in views where between-laboratory effect can be observed as a secondary structure. (D)
MAQC Brain Dataset (triangle: SUHRR, circle: HBRR, square: 25% HBRR: 75% SUHRR, diamond: 75% HBRR: 25% SUHRR).The four RNA
samples were Stratagene’s Universal Human Reference RNA (SUHRR), Ambion’s Human Brain Reference RNA (HBRR), 25% Brain/75%
SUHRR, 75% Brain/25% SUHRR. Three laboratory sites are labeled with different colors (red, blue and green). Inserts stand for zoomed-in
views where interlaboratory differences can be observed as a secondary structure.
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Figure 6. Continued.
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were detected by RNA degradation plots were considered
‘flagged chips’ and should be excluded from further ana-
lysis. Penland et al. (33) lso suggested the transcript 30/50

ratio as an indicator of RNA quality control. In addition

to paying attention to the quality of input RNA, our
results further emphasize the importance of analyzing
labeling efficiency in microarray experiments, which can
be readily done by analyzing LEVs.

In Affymetrix genechips, prokaryotic reverse transcrip-
tion is done by using random primers since the poly(A)
tail normally used for eukaryotic reverse transcription is
lacking. Our results show that prokaryotic mRNA as well
as four test eukaryotic mRNAs that were intentionally
processed with random hexamers have extremely low
LEVs (Figure 5). These results support our notion that
LEVs are results of uneven reverse transcription from
the poly(A) tail in highly expressed genes (Figure 9, left
panel).

As illustrated in Figure 9, the intensities of reverse
transcribed cDNA that are extended from the oligo-dT
primer vary with the amount of mRNA in the specimens,
resulting in the corresponding labeled cRNAs of different
lengths. Abundant mRNA increases the cRNA intensity
of each probe from the 30 to 50 ends of the mRNA, result-
ing in high GEVs. Depending on the starting conditions,
such as the activity of reverse transcriptase, the concentra-
tion and purity of deoxynucleotides and the structure of
mRNA, the synthesis processes are not equal among dif-
ferent laboratories but may remain fairly consistent within
each laboratory, resulting in a unique laboratory signature
for each laboratory. Demonstrated in Figure 6, LEVs can
clearly reveal the laboratory signature.

In addition to the classification of gene expression pro-
files made by GEVs (Figure 6A–D, left panels), the use of
LEVs could clearly divide the four replicated data sets
according to the laboratories where microarray experi-
ments were performed, leading to the identification of
‘laboratory signatures’ (Figure 6A–D, right panels). The
Affymetrix GeneChips are designed to standardize the

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.04

0.06

0.08

0.1

0.12

0.14

Ori 
(18729)

3/4 
(14047)

2/4 
(9365)

1/4 
(4682)

Ori 
(18729)

3/4 
(14047)

2/4 
(9365)

1/4 
(4682)

M
ea

n 
P

ea
rs

on
’s

 c
or

re
la

tio
n

M
ea

n 
Ja

cc
ar

d’
s 

co
ef

fic
ie

nt
  

of
 to

p 
30

0 
ge

ne
s 

A B

Figure 8. Filtering out the genes with highly differential LEVs improves the intersubject comparability between breast cancer epithelium (CE) and
cancer stroma (CS) of 28 subjects. Improvement of inter-subject correlations was validated by (A) Pearson correlation coefficients and by (B) Jaccard
coefficients of 300 top differentially expressed genes. Averaged intersubject Pearson correlation coefficients (blue dots in A) and Jaccard coefficients
(blue dots in B) of all of 378 (= pairs of subjects are computed when none, 1/4, 1/2 or 3/4 portions of highly differential LEV genes were filtered out.
The number of genes left for each portion of filtering is indicated in parentheses. Distributions for averaged Pearson coefficients (A) and averaged
Jaccard coefficients (B) from a permutation of 100 000 random filtering of the same number of genes for each filtering portion are presented as box-
whisker plots. In each plot, whiskers indicate the maximal value (upper) and minimal value (lower), box edges indicate Q3 (upper) and Q1 (lower),
and the horizontal red bar indicates the median value.
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Figure 7. Filtering out the genes with highly differential LEV improves
the interlaboratory comparability. Improvement of interlaboratory
correlations was greater in the genes with poorer correlations, as
demonstrated by the red dot and indicated by the red arrow. The
horizontal-axis indicates the correlation coefficients of fold change
ranking between two samples for all of possible comparisons. The
vertical-axis indicates the changes of corresponding correlation
coefficients after filtering out the highly differential LEV genes from
the results by different laboratories. Detailed comparison information
is available at Supplementary Data 3. Each line describes the distribu-
tion of the increments of interlaboratory correlation calculated from a
permutation process of repeatedly random deletions of 5244 genes for
1 000 000 times. Q1s, medians, and Q3s are indicated as cyan, magenta
and blue dots, respectively.

e61 Nucleic Acids Research, 2009, Vol. 37, No. 8 PAGE 10 OF 12



entire hybridization process including reagents, transcrip-
tion process and labeling efficiency. Theoretically, it
should derive the same results when performed in different
laboratories. However, our results show that this goal has
not been always achieved. Many of the steps of Affymetrix
analyses of gene expression, from cDNA transcription,
to cRNA labeling, to final hybridization, can introduce
variability. Some types of systemic variation have been
unknowingly added in each site, and these variations can
be characterized by using LEVs, but not by GEVs. Our
results indicated that filtering out the genes of highly
deviated LEV improves the comparability among labora-
tories (Figure 7), improves comparability among subjects
within a single laboratory (Figure 8A), and increases
homogeneity of gene expression profiles within the
same class of specimens (Figure 8B). Importantly to
note, filtering out the genes with highly variable LEV
may not interfere with functional analysis of biological
process on differentially expressed genes.

CONCLUSIONS

The Affymetrix platform has been used to identify genes
that are predictive of patient responses to treatment or
distinguish differences between diseased and control
groups (1–3). To minimize the nonconcordance of inter-
laboratory measurement of Affymetrix GeneChips results,
LEVs are shown to be useful in identifying ‘laboratory
signatures’, which represent the systemic variations
uniquely generated in each laboratory during the micro-
array procedures from probe labeling, hybridization, to
signal detection. The use of LEVs as a filtering parameter

also improves inter- and intralaboratory comparability of
gene expression profiles, without compromising subse-
quent functional analyses of biological networks on them.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Figure 9. Proposed mechanisms for the positive correlation between labeling extension values (LEVs) and gene expression levels (GEVs) in eukary-
otic RNAs. In the reverse transcription process, oligo dT primer is first annealed to the poly(A) tail of mRNA, and then cDNA synthesis proceeds.
Although the reactions are generally considered to complete thoroughly, they may not be as even and efficient as previously thought, resulting in
gradient intensities from high levels at 30 end of mRNA to low levels at 50 end of mRNA. The uneven intensities of probes within a probe set are
more markedly in the genes with higher copy numbers (left panel) and less notable for those with low copy numbers (right panel). Therefore, in the
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