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ABSTRACT Research into the evolution and pathogenesis of Vibrio cholerae has
benefited greatly from the generation of high-throughput sequencing data to drive
molecular analyses. The steady accumulation of these data sets now provides a
unique opportunity for in silico hypothesis generation via coexpression analysis.
Here, we leverage all published V. cholerae RNA sequencing data, in combination
with select data from other platforms, to generate a gene coexpression network that
validates known gene interactions and identifies novel genetic partners across the
entire V. cholerae genome. This network provides direct insights into genes influenc-
ing pathogenicity, metabolism, and transcriptional regulation, further clarifies results
from previous sequencing experiments in V. cholerae (e.g., transposon insertion se-
quencing [Tn-seq] and chromatin immunoprecipitation sequencing [ChIP-seq]), and
expands upon microarray-based findings in related Gram-negative bacteria.

IMPORTANCE Cholera is a devastating illness that kills tens of thousands of people
annually. Vibrio cholerae, the causative agent of cholera, is an important model or-
ganism to investigate both bacterial pathogenesis and the impact of horizontal gene
transfer on the emergence and dissemination of new virulent strains. Despite the
importance of this pathogen, roughly one-third of V. cholerae genes are functionally
unannotated, leaving large gaps in our understanding of this microbe. Through co-
expression network analysis of existing RNA sequencing data, this work develops an
approach to uncover novel gene-gene relationships and contextualize genes with no
known function, which will advance our understanding of V. cholerae virulence and
evolution.
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Since the completion of the first Vibrio cholerae genome sequence in 2000, over
1,000 V. cholerae isolates have been sequenced (1, 2). These sequences have

allowed for the development of sophisticated phylogeographic models, which empha-
size the importance of controlling the spread of virulent and antibiotic-resistant V.
cholerae strains to lower disease burden, in addition to fighting endemic local strains
(2–6). The integration of hundreds of genomes paired with temporal and geographic
information into ever-growing phylogenies enables analyses using selection models to
predict future population trends and derive biologically meaningful insights into V.
cholerae evolution (7, 8). By developing treatment and vaccination strategies based on
phylogenetic models (9), organizations and governments can more efficiently leverage
limited resources and more effectively prevent disease spread in line with the World
Health Organization’s goal of eradicating cholera by 2030 (10).

Alongside advances in genomics research, the V. cholerae and broader bacterial
biology communities have benefited greatly from other next-generation sequencing
(NGS) technologies. Targeted sequencing experiments have been essential in mapping
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complex virulence pathways, illuminating a novel interbacterial defense system, and
expanding our knowledge of the role of noncoding RNAs (ncRNAs) in the Vibrio life
cycle (11–17). Further discoveries, such as transcription factor-mediated transposon
insertion bias (18) and the role of cAMP receptor protein in host colonization (19), have
benefited from composite research strategies utilizing multiple technologies. Similarly,
meta-analyses utilizing pooled data from multiple experiments are empowered by the
increasing availability of high-quality bacterial NGS data sets. Expression data are
particularly amenable to such pooling and can be used to accurately group genes into
functional modules based on their coexpression (20). In bacteria, weighted gene
coexpression network analysis (WGCNA) (21) has been successfully used to underscore
biologically important genes and gene-gene relationships via “guilt-by-association”
approaches (22, 23). These studies have taken advantage of larger and larger hetero-
geneous microarray data sets to provide novel biological insights via existing data.

Despite major advances in sequencing technologies and research strategies, most of
the over two dozen existing transcriptome sequencing (RNA-seq) experiments in V.
cholerae have been limited to targeted approaches that involve quantifying the differ-
ential abundance of genetic material across a few conditions. Via these approaches, it
is nearly impossible to generalize about any change in expression observed in one
experiment to other treatment conditions, and analyses are limited to a few pathways
or genes of interest. In contrast, meta-analyses such as WGCNA can uncover much
broader relationships throughout the genome by combining information from multiple
data sets. As there is no existing coexpression analysis in V. cholerae to date, the
accumulation of over 300 publicly available RNA-seq samples from targeted RNA-seq
experiments represents a heretofore untapped resource for the cholera community.

Motivated by the success of pooled genetic sequencing analyses, our current work
utilizes all publicly available V. cholerae RNA-seq-based expression-level data to gen-
erate a coexpression network. We expand upon existing bacterial WGCNA approaches
by integrating broader sequencing data (including chromatin immunoprecipitation
sequencing [ChIP-seq] and transposon insertion sequencing [Tn-seq]) and multiple
annotation platforms into our analysis. Our network ultimately contributes information
on connections across all V. cholerae genes, including the roughly 1,500 predicted but
functionally unannotated genetic elements that account for some 37% of the genome.
More specifically, we implicate new loci in virulence regulation and clearly demonstrate
a powerful and accurate approach to hypothesis generation via our described network.

RESULTS
Gene network generation. To generate our coexpression analysis in V. cholerae, we

applied our WGCNA pipeline to analyze 27 V. cholerae RNA sequencing experiments
deposited in NCBI’s Sequence Read Archive (SRA) in addition to two novel experiments.
The RNA sequencing samples are derived from experiments exploring a range of
important V. cholerae processes including intestinal colonization, quorum sensing, and
stress response. In total, our network includes 300 individual RNA-seq samples (see
Table S1 in the supplemental material). All samples were mapped to a recently inferred
V. cholerae transcriptome derived from the N16961 reference genome (1, 13). This
reference was chosen because the majority (293) of samples were collected from strain
N16961 or the closely related strains C6706 and A1552.

Figure 1 outlines the process used to generate our coexpression network with a
small subset of genes. The five included loci are known to be involved in cysteine
metabolism with loci VC0384 to VC0386 and loci VC0539 and VC0540 falling within two
separate operons. Following normalization of mapped transcripts (Fig. 1A), a weighted
gene coexpression network analysis was performed using WGCNA, as follows (21). First,
a Pearson correlation matrix was calculated for expression levels of all genes (Fig. 1B).
This correlation matrix clearly captures strong relationships between coexpressing
genes but can produce background noise from unrelated gene pairs and underlying
gene structures (i.e., operons). We limit this noise by calculating a topological overlap
matrix (TOM) (24) that weights pairwise coexpression data based on each gene’s
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interactions with all other genes (Fig. 1C). In this way, the relationships between genes
that fall within the same subnetwork are favored while signals from less tightly
coregulated genes are abated. This TOM, after filtering is performed for normalized
values greater than 0.1, is used to construct an accurate coexpression network that
captures biologically meaningful relationships while minimizing background noise
(Fig. 1D).

In addition to coexpression data, our network and analyses incorporated informa-
tion from multiple other sources. Our network includes predicted pathway annotations
and gene functional knowledge from the NCBI Biosystems database as well as the
DAVID, Panther, and KEGG databases (25–28). Operon structure was inferred using
Operon-mapper (29). Additionally, importance labels were applied to genes with no
known function which have been implicated as playing a role in intestinal colonization
or in vitro growth via Tn-seq-based essentiality experiments (14, 30). Information from
ChIP-seq binding assays and microarray results were incorporated in downstream
analyses to substantiate network-derived relationships. By combining all of these data
sources, we were able to develop and analyze an informative network of coexpressing
genes that provides both qualitative and quantitative information about relationships
between transcripts across 49 gene clusters covering the entire V. cholerae genome
(Data Set S1 and S2).

A network of novel, unexpected, and informative interactions. As many func-
tionally related bacterial genes are coexpressed in operons such as the operon of
VC0384 to VC0386 above, we sought to discover if operon structure was a contributing

FIG 1 General outline of network construction. To explain the overall WGCNA process, we have chosen a subset of genes that are involved in the same core
process, cysteine metabolism. Loci VC0394 to VC0386 are predicted to fall within one operon while loci VC0539 and VC0540 are predicted to be in another.
(A) Normalized (log2) expression reads for the same genes across multiple conditions supply the basis for our coexpression analysis. (B) Correlations are
calculated from the normalized counts shown in panel A for every pair of genes. (C) An adjacency matrix (not shown) was calculated from the correlations
shown in panel B and ultimately used to produce a topological overlap matrix (TOM) that supplies network edge weights with less noise than the raw
correlation matrix. While the signal of coexpressing pairs is dampened slightly, this step greatly decreases spurious relationships as it favors transcripts which
coexpress with similar sets of genes rather than potentially noisy direct correlations. (D) The final network groups transcripts that tightly coexpress while
indicating what pathways they are involved in. In this example, all genes significantly coexpress, with the exception of VC0539 and VC0540 despite their
colocalization within the same operon. After network construction, information was added to label genes based on their function and essentiality under
virulence and growth conditions.
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factor to our network or specific subnetworks. Indeed, gene pairs predicted to fall
within the same operon did show significantly higher average normalized coexpression
than their nonoperon counterparts (0.186 versus 0.147; P � 0.001), and some subnet-
works, such as the ribosome-related subnetwork (Fig. 2A), contain a high proportion of
intraoperon gene pairs (Fig. S1). However, across our full network only 0.2% of all
coexpressing gene pairs fell within the same operon, and no subnetwork had a majority
of such pairs (Fig. S1). Moreover, our overall network captured information on relation-
ships with roughly one-third of unannotated V. cholerae genes (Fig. S2), providing
insight into functional roles that are not obvious based on gene homology or known
operon structure.

Genes in known pathways cluster together and contextualize genes of un-
known function. As a demonstration of the accuracy of our approach, we have
highlighted several clusters that recapitulate known interactions between transcripts
involved in highly conserved, well-studied cellular processes (Fig. 2). The correct
grouping of transcripts encoding ribosomal proteins, tRNAs, and amino acid synthesis
proteins into significantly coexpressing subnetworks provided a positive control for our
overall network (Fig. 2A to C). Importantly, our analysis clustered together genes known
to be involved in more specialized processes such as motility and biofilm formation
(Fig. 2D and E), with corresponding Gene Ontology (GO) (31) and KEGG (27) pathway
terms enriched for genes within these subnetworks (Fig. 3 and Table S2).

In addition to capturing relationships between genes involved in specific pathways,
our approach can also accurately group genes involved in interconnected processes
that share overlapping regulation, as seen in the environmental sensing subnetwork
(Fig. 2F). This subnetwork includes high-level transcriptional regulators, such as AphA,
TfoS, and TfoY, with known roles mediating the complex interplay between quorum
sensing, natural competence, type VI secretion, and other related pathways (32–37). As
each of these transcription factors is involved in a multitude of cellular processes and

FIG 2 Subnetworks recapitulating known results. The depicted subnetworks each contain transcripts that are known to be largely involved in one or more
related biological process(es). For each subnetwork, the nodes represent transcripts while the edges represent a coexpression relationship of at least 0.1
between transcripts. (A to F) Subnetworks involved in the following core processes: ribosome related, tRNA transcripts, amino acid synthesis, motility, biofilm,
and environmental response.
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significantly coexpresses with hundreds of other genes, our analysis describes their
closest connections under parameters designed to find meaningful and practically
interpretable relationships. By altering these parameters (significance cutoffs, minimum
number of genes per cluster, clustering algorithm, etc.), analysis of the overall network
can be fine-tuned to focus in on specific biological processes or explore the nodes that
drive connections between processes that are necessary for V. cholerae to adapt and
survive in diverse environments.

The subnetworks outlined in Fig. 2 support the utility of our analysis in powering the
inference of gene function based on guilt by association (38). Because each of these
gene clusters contains coexpressing genes that are involved in the same biological
process, it can be assumed that unannotated genes in the same cluster are likely
involved in the same process. Such links, while not definitive on their own, can be used
with other data to hint at gene functions. For example, the genes with known function
shown in Fig. 2E are primarily involved in biofilm formation (39, 40). This clustering of
biofilm genes suggests that the few genes with no known function in this subnetwork
may be involved in the same process. Two of these unannotated transcripts, VC1937

FIG 3 Significantly enriched GO and KEGG terms for specific subnetworks. The indicated terms are significantly enriched within highlighted pathways, with
the color indicating the significance of the enrichment as determined via the false-discovery rate-adjusted P value (q value). The terms are divided by database
and, for Gene Ontology (GO) terms, GO domain, as indicated to the right.
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and VC2388, are, per GO cellular component location labels, integral membrane
components. Further, the VC2388 locus is directly upstream of a Vcr084, a short RNA
involved in quorum sensing which is essential for biofilm formation (41). Taken to-
gether, this evidence suggests that VC1937 and VC2388 may play a role in some of the
complex membrane restructuring necessary for biofilm formation. In facilitating such
guilt-by-association approaches to novel hypothesis generation, our coexpression net-
work serves as a highly efficient substitute for more traditional screening assays.

A virulence subnetwork suggests novel gene functions. While the biofilm-
associated subnetwork (Fig. 2E) presents a relatively simple example of the functional
insights our coexpression data can yield, the virulence-related subnetwork (Fig. 4A)
represents a more complex case in which genes of known function provide clues to the
role of unannotated genes. The majority of transcripts in this module originate from
within the virulence-related ToxR regulon that consists principally of genes on V.
cholerae pathogenicity island 1 (VPI-1) (VC0809 to VC0848) and cholera toxin subunits
A and B (ctxAB, VC1456, and VC1457) (42). Other genes in this subnetwork, such as vpsJ,
VC1806, VC1810, and chitinase, are predominately localized to virulence islands and
other areas of the genome under tight control of the known virulence regulator ToxR,
ToxT, or H-NS as determined via ChIP-seq and/or RNA-seq (43–45). Genes in this
subnetwork are also enriched for virulence-related GO and KEGG terms, such as
“pathogenesis” and “Vibrio cholerae infection” (Fig. 3). The clustering of such genes with
well-characterized interactions into a cohesive subnetwork is further validation of our
ability to generate accurate coexpression maps of related genes. The association of
uncharacterized genes in these clusters suggests that they may also play a role in V.

FIG 4 Virulence-related subnetwork. (A) This subnetwork contains a majority of genes that are predicted to be involved in
virulence-related pathways, providing clues to the genes with no known functions, such as those at loci VCA0094 to VCA0096. PTS
subunit IIABC, phosphotransferase system fructose-specific transporter subunit IIABC; T6SS, type 6 secretion system. (B) Mean binding
affinity (log2 fold change in occupancy compared to level of the loading control) for different virulence-associated transcription factors
near loci VCA0094 to VCA0096. Both H-NS and ToxR show significant binding preferences for this region. Error bars indicate standard
deviations from the means.
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cholerae virulence and generates hypotheses about the function of unknown genes
within this module.

Many of the important transcripts with unknown function are expected to coexpress
with known virulence genes because they fall within VPI-1 (VC0810, VC0821 to VC0823,
and VC0842) or VPI-2 (VC1806 and VC1810) or are proximal to other virulence genes
(VC1945) (46, 47). However, our analysis also identified genes such as VCA0094 to
VCA0096 which are on a completely different chromosome than the rest of the
subnetwork and do not neighbor any known virulence elements.

A major benefit of our approach is that we incorporate additional regulatory data
such as ChIP-seq and Tn-seq into our coexpression analysis, allowing us to verify the
association between VCA0094 to VCA0096 and virulence pathways using existing
experimental data. Tn-seq analysis has previously identified VCA0094 and VCA0095 as
essential for infection of a rabbit intestine (14), suggesting that these loci play a role in
virulence. Because transcripts for these genes coexpress with genes regulated by ToxT,
ToxR, and H-NS, we also probed existing ChIP-seq binding data sets (12, 19, 43) to see
if any of these well-studied transcription factors bind near loci VCA0094 to VCA0096.
While ToxT binding was not observed near this site (data not shown), our analysis
identified significant peaks in the promoter region of VCA0094 for both ToxR and H-NS,
as calculated via reanalysis of existing binding data from Kazi et al. (43). Both peaks
showed large and significant increases in binding affinity (log2 fold change in average
occupancy) compared to levels of the input controls (Fig. 4B). H-NS showed a clear
binding peak in the region of the VCA0094 promoter that extended in a diffuse manner
to the VCA0095 transcription start site while ToxR binding covered a similar region but
was more diffuse throughout (data not shown). Collectively, these results indicate
virulence-related functions for the products of the transcripts of VCA0094 to VCA0096.
Although the exact mechanistic role of these genes remains elusive, we have never-
theless demonstrated the ability of our pipeline to generate meaningful hypotheses by
incorporating existing data from a multitude of sources.

Coexpression data provides an accurate in silico complement to RNA-seq. In
addition to the guilt-by-association inference described above, coexpression analysis
can provide a partial substitute or complement to RNA-seq experiments. Novel, mean-
ingful genetic relationships can be found in a coexpression network by focusing on the
transcripts that are coregulated with a gene of interest.

We can apply a network-based approach in lieu of new RNA-seq-based experiments
to identify genes which coexpress with rpoS (VC0534) and are similarly involved in the
bacterial stress response. As our network utilizes only RNA-seq-based transcriptomics
studies and as none of these studies involves direct manipulation of rpoS, we can
compare existing microarray data involving an rpoS (VC0534) deletion mutant (48) to
determine how accurate our approach is. When an absolute coexpression cutoff of 0.1
is applied, 272 genes are identified as having a relationship with rpoS expression in
both our network analysis and the rpoS mutant microarray data (Fig. 5A). This repre-
sents nearly two-thirds of genes identified as differentially expressed in the original
microarray study. While our network links far more genes with rpoS than the microarray
approach, this is in line with recent RNA-seq-based work that found that 23% of the
Escherichia coli genome is regulated by RpoS (49). Additionally, all of the flagellum- and
chemotaxis-related proteins highlighted as particularly informative in the original study
were identified by our analysis (Fig. 5B), and relevant values (i.e., network coexpression
and microarray-derived log fold change in expression) for the 273 shared transcripts
have a Spearman correlation of �0.516. This accuracy was achieved without any direct
genetic manipulation of the rpoS locus in the RNA-seq data sets used to generate our
coexpression network and serves as a testament to the potential utility and versatility
of our approach.

Our approach to isolating genetic interactions also has advantages over
transcriptomics-focused sequencing. As seen in Fig. 5A, our network-based analysis
identified far more genes associated with rpoS. This is likely because RNA-seq-based
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approaches can identify a broader range of gene transcripts as they are not limited by
restrictive microarray probes (50). Separate from differences in underlying technology,
coexpression networks are also more likely to detect genes regulating a target’s
expression than traditional transcriptomics experiments, which largely capture down-
stream responses to changes in a target’s expression (51, 52). Thus, a coexpression
network can provide an alternative perspective to complement or clarify transcriptom-
ics data.

DISCUSSION

We have successfully constructed the first V. cholerae coexpression network through
a computationally inexpensive process that is simple, easily expanded upon, and
straightforward to implement in other organisms. Our network effectively identifies
canonical gene clusters related to specific molecular pathways or functions, such as
those corresponding to tRNAs or biofilm proteins. We have also outlined two use cases
for the data provided and have shown the accuracy of both approaches using existing
data. Additionally, we have included relevant network files as well as raw read counts
across RNA-seq conditions (see Data Sets S1 and S2 and Table S3 in the supplemental
material) alongside all code used in our analysis (see Materials and Methods) to
encourage broad usage of these data.

Our results have proven both the utility and accuracy of our approach despite
in-depth analysis limited to a few genes across 5 of the 49 observed gene clusters.
Furthermore, our work with the virulence subnetwork supports previously published
research loosely implicating genes VCA0094 to VCA0096 in virulence and virulence-
related functions. All three transcripts have shown up in screens focusing on biofilm
development (53) and the SOS response (13). From a mechanistic perspective, protein
homology analysis via NCBI’s Conserved Domain Database (54) indicates that VCA0094
possesses a DNA-binding transcriptional regulator domain while VCA0096 contains
domains that implicate it in protein activation via proteolysis. These data combined
with our novel findings hint at the potential biological importance of this genomic
locus.

When viewed through the lens of a specific gene of interest, coexpression data are
in large part analogous to the differential expression data produced by RNA-seq
experiments. While RNA-seq offers finer assay control and can be tailored more exactly

FIG 5 Comparing RpoS microarray data to data of coexpressing genes in our WGCNA. (A) Overlap of
genes with expression patterns related to the pattern of rpoS expression as identified via our network
analysis (blue) and existing microarray data (red). The overlapping region identifies 272 genes that are
common between the two analyses. (B) Breakdown of shared genes (overlapping region in panel A). All
of the flagellar and chemotaxis genes highlighted as particularly important in the microarray data set are
identified by both methods.
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to suit a specific research question, there are both technical and practical limitations
that may make such an approach impractical. Whether an experimenter is interested in
examining the role of an essential locus or is limited by available resources, our
coexpression analysis presents a fast, free, and faithful alternative for probing genetic
interactions, as outlined in our analysis of rpoS above.

Major motivations for this work include the successful implementation of bacterium-
focused, microarray-based coexpression networks and the lack of clear functional
knowledge for a large portion of V. cholerae genes. In addition to simpler guilt-by-
association studies (22, 23), coexpression networks have helped to elucidate relation-
ships in diverse microbial communities (55–58) and to enable comparisons across
strains and species (59–61). These works as well as the relative dearth of knowledge
about the V. cholerae genome (roughly two-thirds of genes are annotated whereas
around 86% percent of all E. coli genes are annotated [62]) and the growing abundance
of V. cholerae-focused NGS data served as the impetus for this research.

The calculated coexpression network, though accurate, could be improved via the
inclusion of more experiments and more extensive SRA annotations. Our somewhat
limited pooled data set consisting of 300 samples is an order of magnitude below the
few thousand samples necessary to derive the most faithful coexpression estimates
(63). Though sample size will improve as more V. cholerae RNA-seq experiments are
published, more samples may also increase the risk posed by batch effects which cause
spurious correlations among genes through technical variation (64, 65). The diverse
structure of our current data helps to minimize the impact of batch effects, but this
would be offset by the future inclusion of larger data sets from single experiments.
While automated sample clustering methods (66–68) can effectively group overly
correlated samples, there is no way to know if the correlation is biological (i.e.,
meaningful) or technical (i.e., noise) in origin. Similarly, manual curation of batch
annotations is also difficult since few SRA records are extensively annotated with
detailed experimental conditions (e.g., bacterial growth stage or exact medium used).
Thus, careful consideration may be necessary when expanding and generalizing this
analysis to include future data.

The mapping of raw reads to a transcriptome derived from a single reference
genome presents a limitation to our current work. While this approach is reasonable
given the similarity of the vast majority of included strains to our reference, a
more elaborate comparative transcriptomic strategy (69, 70) would be ideal if more
diverse samples are included in future analyses. This is especially true when we consider
the inclusion of expression data from clinical samples which are likely to have much
more genomic variability than the closely related lab cultured strains used to construct
our network. On the other hand, because comparative transcriptomics requires defin-
ing homologous alleles across all strains analyzed (71), such an approach would greatly
increase the difficulty of incorporating strains without an assembled genome.

In summary, our coexpression network can drive functional hypotheses for unan-
notated genes in V. cholerae. As the Vibrio community steadily adds high-quality data
from increasingly sophisticated sequencing experiments to public databases, our im-
puted network can only improve, providing ever-deeper insights into the V. cholerae
genome. At the same time, highly annotated transcript-based coexpression networks
can empower research with related technologies (e.g., single-cell transcriptomics and
dual RNA-seq) and research into a host of other clinically relevant bacteria, such as
Pseudomonas aeruginosa or Staphylococcus aureus, for which there are over 2,000 and
1,400 RNA-seq experiments, respectively, in the SRA.

MATERIALS AND METHODS
Data collection and processing. All RNA and ChIP sequencing data were downloaded from the

Sequence Read Archive (SRA) (72) and converted to compressed fastq files using the SRA Toolkit
(https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view�software) (see Table S1 in the supplemental ma-
terial for details on included experiments). RNA-seq samples were selected by searching the SRA on 10
September 2019 for the organism and strategy terms “vibrio cholerae” and “rna seq,” respectively,
resulting in 326 initial samples including the 34 novel samples from this publication . Samples were
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mapped to a recently inferred V. cholerae transcriptome derived from the N16961 reference genome (1,
13) using Kallisto, version 0.45.1 (73). This reference was chosen because the majority (293) of samples
were collected from strain N16961 or the closely related C6706 and A1552 strains. Twenty-six low-quality
samples with �50% of reads mapping to the reference transcriptome were discarded before further
analysis, leaving 300 samples used for further analysis.

For ChIP-seq analysis, accession numbers were identified via the relevant publications (12, 19, 43),
and sequences were downloaded from the SRA and converted to fastq files as described above. Raw
reads were mapped to the same N16961 reference genome using Bowtie 2, version 2.3.5.1 (74). From this
mapping, peaks were identified using MACS2, version 2.1.2, with the parameter extsize set at 225 (various
sizes from 150 to 500 were tested with little observable difference in the peaks identified) (75), and
differential binding and significance were calculated using DiffBind, version 2.12.0 (76).

Processed Tn-seq data were collected directly from published data sets. In vitro essentiality and
semiessentiality labels were derived from Table S1 in Chao et al. (30), with the original labels of domain
essential and sick genes replaced with essential and semiessential, respectively. We used Table S2 from
Fu et al. (14) to label genes involved in host infection, with any gene exhibiting a log2 fold change of less
than �3 deemed essential and any gene with a log2 fold change between �1 and �3 deemed
semiessential.

Network construction. Figure 1 highlights the process used to generate our coexpression network.
Kallisto-derived reads were first imported into R via tximport (77) and then normalized using DESeq2,
version 1.24.0 (78), resulting in values that are comparable across conditions and experiments. Following
normalization, a weighted gene coexpression network analysis was performed using WGCNA (21). This
process is highlighted with a subset of data in Fig. 1 and consists of the sequential calculation of a
Pearson correlation matrix, adjacency matrix with power � � 6, and, ultimately, a topological overlap
matrix (TOM) (24) from normalized gene expression counts across conditions. We further filtered this
TOM to exclude samples with weighted coexpression of �0.1 for all analyses included in Results.

Predicted pathway annotations and gene functional knowledge were derived from the NCBI Biosys-
tems database as well as the DAVID, Panther, and KEGG databases (25–28). Genes for which functional
knowledge is lacking and which are identified as essential or semiessential in either Tn-seq data set are
labeled in network visualizations as “important unknown.” Operon predictions were inferred using
Operon-mapper (29).

Data availability. Information on the 34 novel samples are available in the SRA database under
accession numbers SRR10905341 to SRR10905344, SRR10905351, SRR10905362, and SRR10905369 to
SRR10905396 and under BioProject accession number PRJNA601792. SRA accession numbers and
information on all included samples can be found in Table S1 in the supplemental material. A full,
unfiltered network graph is provided in Data Set S1, with the corresponding node labels given in Data
Set S2. Raw, unnormalized read counts are also provided in Table S3. All data analysis and figure
generation were performed using the R programming language, with code available at https://doi.org/
10.5281/zenodo.3572870.
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