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Noncoding RNAs endogenously rule the cancerous regulatory realm
while proteins govern the normal
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Cancers evolve from normal tissues and share an endogenous regulatory realm distinctive from that of
normal human tissues. Unearthing such an endogenous realm faces challenges due to heterogeneous
biology data. This study computes petabyte level data and reveals the endogenous regulatory networks
of normal and cancers and then unearths the most important endogenous regulators for normal and
cancerous realm. In normal, proteins dominate the entire realm and trans-regulate their targets across
chromosomes and ribosomal proteins serve as the most important drivers. However, in cancerous realm,
noncoding RNAs dominate the whole realm and pseudogenes work as the most important regulators that
cis-regulate their neighbors, in which they primarily regulate their targets within 1 million base pairs but
they rarely regulate their cognates with complementary sequences as thought. Therefore, two distinctive
mechanisms rule the normal and cancerous realm separately, in which noncoding RNAs endogenously
regulate cancers, instead of proteins as currently conceptualized. This establishes a fundamental avenue
to understand the basis of cancerous and normal physiology.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

All cancers generally result from genome abnormality and they
share an endogenous regulatory realm distinct from normal
human tissues[1–4]. Understanding the regulatory realm endoge-
nous in all cancers and normal humans helps to advance our deep
insights toward fundamental mechanisms of cancer and normal
human physiology and to develop a general strategy to combat
all cancers and to maintain physiological homeostasis.

Numerous gene regulations and networks have been identified
for tumorigenesis, but most of these gene interactions are specific
for a given cancer type, which refers to a specific organ and tissue
[5–9]. Thus tumorigenesis mechanisms have been mostly marked
as cancer type specific. However, certain regulations have been
found endogenously in all cancer types. For example, TP53 has
been typically characterized as an universal suppressor endoge-
nous for all cancers [5]. More recently, a pseudogene PTENP1 has
also been identified to be an endogenous regulator that regulates
PTEN in examined cancer types [8,10]. Given million gene regula-
tions in the human genome, the magnitude of endogenous cancer-
ous regulations for all cancer types should be very large. These
gene regulations usually assemble a systems cancerous regulatory
network distinct from that of normal humans, yet revealing such a
network faces challenges due to two principal reasons.

First of all, human genome data is heterogeneous. Computation-
ally searching a systems network from this type of data suffers
high noise, with low accuracy < 50% [11,12]. Moreover, the human
regulatory network is complex, and emerging noncoding RNAs
complicate this network [8,9,13]. This network complexity adds
extra challenges in inferring a reliable network from heteroge-
neous data.

Secondly, there are not any appropriate biological approaches
to reveal a real natural gene regulation. Current biological
approaches like knockout suffer several limitations such as tran-
script compensation and genome alteration [14]. Knocking out a
single gene normally results in alterations of thousand gene activa-
tion, leading to a biased picture of gene regulations.

To overcome these limitations above, we previously developed
an algorithm called FINET to infer endogenous gene interactions
from heterogeneous big data with high accuracy (>92% precision)
[12]. In this present study, we utilized FINET [12] to infer a systems
regulatory network endogenous in all cancers and human normal
respectively from massive heterogeneous data, including all
human RNAseq data available from Sequence Read Archive (SRA
265361 samples) and The Cancer Genome Atlas (TCGA 11574 sam-
ples). After inferring networks, we generated quantitative patterns
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from these networks to reveal endogenous rulers for all cancers
and normal humans.
2. Materials and methods

2.1. Data resources

We downloaded human RNAseq data from two data resources,
SRA (265361 samples) and TCGA (11,574 samples). Total 265361
SRA samples were searched by Homo sapiens and RNA_seq from
the SRA database. Total 11,574 RNAseq samples from the TCGA
portal website were downloaded for 36 cancer types. All detailed
IDs and networks were available on our project website [15].
2.2. Download and alignment

The sra format files for total 265361 SRA samples were pre-
fetched by their running ID (SRR#) via sratoolkit.2.8, and then were
converted to fastq file via fastq-dump. The fastq files were aligned
to GRCh38.p10.v27 containing 63,925 unique genes by using STAR-
2.5 [16] with following settings, runThreadN 30 --genomeDir
GRCh38.p10.v27 --outSAMtype BAM Unsorted SortedByCoordinate
--outFilterMultimapNmax 20 --outFilterType BySJout --chim-
SegmentMin 20 --alignSJoverhangMin 8 --alignSJDBoverhangMin
1 --quantMode TranscriptomeSAM GeneCounts --outFilterIntron-
Motifs RemoveNoncanonical --twopassMode Basic.

The files of total 11,574 cancer samples were directly down-
loaded from TCGA data portal website in.htseq.counts file format,
which counted 60,483 genes annotated by GRCh38.p2.v22 done
by TCGA.
2.3. Sample filtered

We focused on high quality samples with whole transcriptome
RNAseq, and automatically filtered out any abnormal samples. All
TCGA RNAseq data were sequenced for the whole transcriptome
and we used the distribution of zero count in each TCGA sample
as a normal reference of full transcriptome (Fig. S1A). The distribu-
tion of zero count in each sample was close to normal distribution,
with the majority containing 30,000 zero count and few containing
<10,000 or >40,000 zero (zero contained in each sample, X-axis).
Rare are found samples carrying 50,000 zero count, which was
used as a cutoff for SRA samples as described below. We treated
all TCGA samples as high quality samples, but filtered out the con-
trol samples (no cancer samples) and got 8,972 samples for 36 can-
cer types.

For SRA samples, we first filtered out any abnormal samples
from downloaded and aligned steps, such as unauthorized, unpub-
lic, undownloadable, unaligned to the whole genome, and
uncountable for the whole genome. These filtered steps generated
65,314 samples from 265361 aligned samples. Based on zeros dis-
tribution (Fig. S1B), we further filtered samples with zero count
>50,000 to get the overall zero distribution close to normal distri-
bution, finally getting 26,896 high quality samples for the rest of
the analysis.
2.4. Calculating TPM and filtering genes

To make gene expression comparable for each sample, we nor-
malized RNAseq data by calculating TPM (Transcripts Per Kilobase
Million) for each sample as following.

TPM = ratio / sum(ratio) * 1,000,000
ratio = read counts /gene lengths
1936
After TPM, we filtered out genes with all zeros and kept genes
with nonzero counts >3 samples, and finally got 58,871 genes in
26,896 SRA samples, and 58,517 genes in 8,972 TCGA samples.
2.5. Regulatory network construction

The normalized TPM data for SRA and TCGA were used respec-
tively to build the normal and cancerous regulatory networks. The
current software for this task fails to produce reliable results effi-
ciently [11]. We employed our algorithm called FINET to infer reg-
ulatory networks, which produces a network with >92% precision
[12]. Briefly, FINET treats each gene as a target (set as y) and
searches its regulators from the rest of genes (set as X) in the
TPM matrix, in which samples were arranged as rows and genes
as columns. FINET randomly split total samples into m groups
(m = 8 in this study) and select target-regulator interactions from
each group via elastic net. If an interaction like A to B is consis-
tently shown in each group, this interaction (A to B) could be true
and it has a frequency of 8. This random sampling repeats n times
(n = 50 in this study). A frequency score, which is equal to fre-
quency/(m*n), is calculated for each interaction. If A to B still
showed up in all iterations (m*n), this A to B had a frequency score
of 1 and it was treated as true endogenous interaction, indepen-
dent of any conditions. This study used diverse heterogeneous data
and applied frequency score > 0.95 as a cutoff, meaning that an
interaction showing in 380 out of 400 random trials was selected,
in which the error is less than 5% in all conditions. This ensures our
results are truly robust. These selected interactions were assem-
bled into an endogenous regulatory network for all cancers and
humans respectively.

We run FINET as: julia finet.jl -c 120 -k 5 -n 50 -m 8 -a 0.5 -p
0.95 -i mydata.txt -o mynetwork

The results of frequency score with 0.95 was reported here, but
the network data deposited in our server [15] were permitted to
search networks with p from 0.9 to 1.0 (frequency score cutoff
0.9 to 1), allowing more flexibility to users.
2.6. Survival analysis and hazard ratios estimation

The survival analysis and hazard ratios (HR) estimation was
performed by ISURVIVAL [17] as we previously described [18].
The software implementation of ISURVIVAL was available [17].
Briefly, we inserted stability-selection into Cox Proportional-
Hazards Model to run the modified survival analysis and to esti-
mate HR. All RNAseq and clinical data available in TCGA were used
to run this model. The top 480 deadliest inducers were extracted
from top 525 deadliest regulators with cutoff abs(coef) > 1 & p-
value < 1.0e-9, which included 480 inducers and 45 repressors
[18]. The significance shown here was derived from the wald-test.
2.7. Network centrality

Network centrality was calculated by using NetworkX imple-
mented in python [19]. To avoid biases, we calculated two types
of centrality, degree and eigenvector, for normal and cancer net-
works respectively. Genes with degree and eigenvector centrality
for each network were ranked separately on the basis of ranking
score as approached for network node ranking [11]. The final rank-
ing was made based on the sum of two ranking scores as practiced
in gene ranking in a regulatory network [11].

The cancerous network was filtered by gene interactions signif-
icant in survival analysis (p-value < 0.01 an HR < 0.9 or HR > 1.1),
which was performed as our paralleled clinical data study [18] as
described above.
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2.8. Module identification and category

Network modules were clustered by network topology via
MCODE [20] as following settings, degree cutoff: 3, K-score: 3,
node score cutoff:0.2, max.depth:100, finding: haircut.

A module was clustered into the protein or noncoding category
depending on the proportion of proteins and non-codings in a
module. If protein or noncoding members occupied more than
50% of total members in a module, this module was referred to
as protein or noncoding module respectively. If protein and non-
coding members were equal, 50% for each, this module was
ignored and was not classified into any category.
2.9. Statistics

All statistics like chi-squared test and figure drawings were per-
formed by the R3.6 library. Network was visualized by cytos-
cape3.8 [21].
3. Results

3.1. Systems regulatory networks endogenous in cancers and normal
human

To assemble a systems regulatory network endogenous for all
conditions in all cancers and normal humans respectively, we first
need a complete set of data representing endogenous genomic
activation for all conditions. SRA and TCGA provided such data.
SRA RNAseq contained various heterogeneous data sets. Endoge-
nous gene interactions in total SRA data sets reasonably represent
interactions endogenous in normal humans (Fig. S1, materials and
methods). Similarly, TGCA provided RNAseq data for 32 cancer
types [18] and endogenous gene regulations in this data set repre-
sent gene interactions endogenous for common cancer types.

Secondly, we need software that can infer an accurate unbiased
gene regulation. We previously developed algorithms and a soft-
ware, FINET [12]. Compared to the current software with high
noise during inference, FINET significantly improves the accuracy,
and it can efficiently and accurately infer unbiased gene interac-
tions with >94% precision, true positives/(true positives + false pos-
itives) (materials and methods). FINET filters out all condition-
dependent interactions and only keeps the true endogenous ones
independent from any conditions such as biological sample hetero-
geneity and sequencing technique variations.

We employed FINET to search all possible gene regulations in
the human genome by systematically treating each gene as a target
and selecting its regulators from the rest of all annotated genes
(Fig. 1A, materials and methods). In this way, each gene has an
equal chance to be a target or a regulator without any presump-
tion, regardless of its gene category in protein_coding or noncoding
RNA. This search was separately performed for SRA and TCGA data,
and the result eventually was assembled into a network for normal
human and cancer respectively. The normal network contained
19,721 nodes (genes) and 63,878 edges (interactions), and the
cancerous one included 25,402 nodes and 61,772 edges (Fig. 1B-
1C).

As expected, our networks were much less complex than those
of current reports because we only collected the reliable interac-
tions endogenous in all conditions, yet these two networks actually
represented two distinct regulatory realms endogenous for normal
human and cancer at systems level, in which all endogenous lay-
ered crosstalk of any pair of genes were included.

As a validation, our cancer network contained an interaction
between PTEN (protein_coding) and PTENP1 (a pseudogene of
PTEN) (Fig. 1D), which was validated by plotting Loess regression
1937
of PTENP1 and PTEN (Fig. S2). This PTENP1-PTEN interaction only
existed in the cancer network but did not exist in our normal net-
work [15], consistent with experimental reports showing it only in
cancers [8,10]. This indicated our network with high reliability and
specificity. Furthermore, in contrast to conventional approaches
showing PTENP1 as a regulator for PTEN only, our systems network
expands this PTENP1-PTEN interaction to a cancerous PTENP1 reg-
ulatory network including several novel PTENP1 interactions
(Fig. 1D). PTENP1 also interacted with its-own antisense_RNA
(PTENP1_AS), two pseudogenes (RP11-181C21.4, MEMO1P1), and
a lincRNA (RP11-384P7.7). These natural endogenous interactions
provide a complete systems regulatory picture for PTENP1. More-
over, our network is universally true for all types of cancers as
expected by our algorithm [12] (materials and methods), which
was also validated by plots of 26 individual cancer types with sam-
ple size > 100 [15]. These indicated that our results are highly
reproducible and suggested PTENP1 regulating PTEN as a universal
endogenous regulation in all cancers.

Similarly, a complete systems regulatory picture of any univer-
sal endogenous regulation can be easily extracted from our net-
work online [15]. Strikingly, an antisense RNA RP11-335k5.2,
which was recently uncovered by our clinical data analysis as the
most strongest inducer for all cancers [18], was consistently found
here in our cancer network [15], but not in the normal network.
This indicated RP11-335k5.2 indeed as an endogenous cancer dri-
ver for all types of cancers.

Overall, our networks provide a reliable and comprehensive
resource for understanding the complete systems pictures of
endogenous regulations in the cancer and normal genome.

3.2. Overall noncoding RNA crosstalk are unexpectedly activated at
cancers

Multilayered crosstalk among proteins and various types of
noncoding RNAs play key roles in physiologic states but the com-
plete picture of crosstalk endogenous in cancers and normal
human tissues remains elusive [8,9]. Here we first examined the
picture by grouping activated genes into gene sets via set algo-
rithms [22], which clusters a network into sub-network sets on
the basis of node and edge properties. By using gene annotated cat-
egories as node attributes, we separated the entire network into 5
gene category sets, including protein_coding (referred as protein
hereafter), lincRNA, processed-pseudogene (p-pseudogene), anti-
sense RNA (antisense), and others that pooled the rest of gene cat-
egories (Fig. 1B-1C).

In normal tissue, the majority of proteins and p-pseudogenes
were mostly either separated or self-targeted, in which targets
and their regulators at the same gene category (referred as self-
regulation thereafter), but most of antisense RNAs and lincRNAs
were highly cross-talked to proteins (Fig. 1B). However, in cancer
these 5 sets were overall separated, and the density of the protein
set became less than normal (Fig. 1B_1C), indicating that cancerous
protein–protein crosstalk declined but crosstalk within noncoding
RNAs increased. Statistically, we counted the regulators and their
targets in each gene category in both normal and cancer
(Table S1, Table S2). Overall, at normal the total crosstalk around
proteins occupied 87.7% (56039/63878), and the rest 12.3% was
around noncoding RNAs (Table S1). However, for cancer the overall
crosstalk around proteins significantly declined to 73.9%
(45660/61774), and crosstalk around noncoding RNAs increased
to 26.1% (Table S2) (p-value = 0.02157, Pearson’s Chi-squared test
with Yates’ continuity correction, referred as chisq-test thereafter).
We next counted the specific gene category interactions. The inter-
actions from proteins to proteins at normal counted for 82.5%
(52692/63878, Table S1), but declined to 64.8% at cancer
(40053/61774, Table S2). The protein regulators and protein tar-



Fig. 1. Gene regulatory networks endogenous in cancers and normal humans. A, the workflow of this study. B-C, Completed gene regulatory network endogenous in normal
(B) and cancer(C). The nodes (genes) and edges (interactions) were grouped into 5 gene category sets, including protein (light green), antisense(blue), lincRNA (pink),
p_pseudogene (red), and the rest (other, lightblue). Interaction domains shift from protein interactions at normal(B) to noncoding interactions at cancer(C). D, an example of
sub_network, PTEN interacting with PTENP1 in the cancer network directly extracted from our network database. Network annotation follows these 4 points: 1) Node color
denotes gene category, lightGreen, blue, pink, red, lightSkyBlue respectively denote protein_coding, antisenseRNA, lincRNA, processed-pseudogene, other. 2) Edge color
represents regulation strength: red, pink, blue, lightSkyBlue, and lightGray respectively represent strong positive, middle positive, strong negative, middle negative and weak
regulation(positive or negative). 3) Edge thickness denotes confidence, thicker, more confident. 4) Edge arrow denotes the regulatory direction, from a regulator to a target. E,
overall distribution of regulators and their targets at normal and cancer. The top 5 most abundant categories were shown. F, The target distribution of three categorized
noncoding RNAs, antisense, lincRNA, and p-pseudogene, at normal (n_) and cancer (c_). Targets were counted separately when the three individual noncoding RNAs were
regulators. Self denotes the targets as self-categorized genes. For example, c_self antisense represents cancerous antisense RNAs that were targeted by cancerous antisense
RNAs. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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gets also decreased from normal to cancer, but noncoding RNA reg-
ulators and targets dramatically increased in cancer (Fig. 1E, p-
value < 2.2e-16, Chisq-test). These indicated the primary regula-
tory crosstalk shifted from normal protein domination to cancer-
ous noncoding RNAs.

To further explore the detailed targets of noncoding RNAs, we
plotted the primary targets of three abundantly categorized non-
coding RNAs, including antisense, lincRNA, and p-pseudogene. Tar-
gets of noncoding RNAs primarily contained not only proteins but
also self-regulated genes such as p-pseudogenes primarily regulate
p-pseudogenes (Fig. 1F, Table S1, Table S2). These self-targets of all
three categorized noncoding RNAs were significantly induced by
cancer (p-value = 1.46e-08, Fig. 1F). For example, p-pseudogenes
targeted self-targets, p-pseudogenes, with significantly increasing
from 1288 at normal to 2185 at cancer (Fig. 1F). This indicated that
noncoding RNAs, especially p-pseudogenes, increase self-
regulation in cancer.

Together, protein crosstalks dominate the normal network, but
noncoding RNA crosstalks become unexpectedly activated in can-
cers. Noncoding RNAs significantly turn to self-regulation in
cancers.
3.3. Network module composition shifts from normal proteins to
cancerous noncoding RNAs

To understand the module differences between normal and
cancer networks, we examined module member compositions.
We identified modules by network topology [20] and then clus-
teredmodules into either proteinmodules (proteins occupied > 50%
of members in a module) or noncoding modules (noncoding
RNAs > 50% of members in a module, materials and methods).
Modules with 50% of proteins or noncoding RNAs were ignored.
At normal, protein modules occupied 60.52% out of total 38 mod-
ules and noncoding modules only took 28.94% (Fig. 2A, table S3),
while cancerous modules significantly changed their compositions,
in which protein modules reduced to 47.29% and noncoding mod-
ules increased to 45.94% of total 74 cancer modules (p-
value = 0.02963, chisq-test) (Fig. 2A, table S4). Theoretically the
network modules execute the primary functions for a network.
This module pattern shifting from proteins to noncoding RNAs sug-
gested noncoding RNAs as the key rulers in the cancer regulatory
realm.
3.4. Noncoding RNAs serve as the centrality in cancerous network but
ribosomal proteins dominate in the normal

To understand the core controllers of the normal and cancerous
networks, we investigated the centrality of normal and cancer net-
works (materials and methods). At the normal network proteins
worked as the primary centrality (top 1000, Fig. 2B) and ribosomal
proteins dominated the top 20 centrality in normal (Fig. 2C). The
top 1 centrality, RPS23, abundantly interacted with proteins and
noncoding RNAs (Fig. 2D), but at cancer the interactions of RPS23
declined dramatically (Fig. 2E).

To validate this network, we randomly selected a node, UBE2E3,
which was presenting in normal (Fig. 2D) but absent in cancer
(Fig. 2E), and plotted the LOESS regression of RPS23 and UBE2E3
with all normal and cancer data (Fig. S3). Consistent with interac-
tions in the normal and cancer networks, there was strong correla-
tion between RPS23 and UBE2E3 in normal but not in cancer
(Fig. S3). Based on gene ontology (GO) [23], these top 20 centrali-
ties in normal networks performed crucial functions in translation
(RPL18, RPL3, RPL30, RPL39, RPS10, RPS23, RPS28). Consistently,
the functions for the whole normal network and modules (table
S3) were also relevant to translation and negative regulations, sug-
1939
gesting ribosomal proteins as the delicately regulatory core of the
normal human genome.

In contrast, p-pseudogenes dominated the cancerous centrality
(Fig. 3A, materials and methods) and most of these centrality
worked as cancer inducers (regulators with coefficient > 0
and < 0 were respectively referred as inducers and repressors dur-
ing FINET inferences, materials and methods, Fig. 3B). Most of
these inducers were p-pseudogenes (Fig. 3C), and all top 20 cen-
tralities were p-pseudogenes (Fig. 3D). This indicated p-
pseudogenes as the primary rulers for cancers. Literature mining
[24] showed no functions associated with these top 20 p-
pseudogenes. Their functions remain to be further investigated.

These pseudo-gene interactions escalated in cancers have been
shown in our database. For example, cancers activated much more
interactions in the top listed pseudo-gene (Fig. 3D),
ENSG00000250144.1, than normal (Fig. 3E).

These data suggest that ribosomal proteins serve as the most
important regulatory core for the protein-dominated normal net-
work, but noncoding RNAs, especially p-pseudogenes, primarily
control the center of the cancerous realm.

3.5. Noncoding RNAs and proteins respectively serve as the strongest
regulators in the cancerous and normal network

To understand the strongest regulators governing normal and
cancer genomes and to make our pattern robust, we examined
the composition of the top 300 regulators and their corresponding
targets based on their absolute coefficient rankings. For pattern
recognition and clear illustration, we only presented any gene cat-
egory with abundance > 10%. At normal, proteins worked as the
strongest inducers. From the top 300 to top 10 inducers, proteins
occupied 60% to 50% respectively (Fig. 4A left). LincRNAs came next
and occupied �20%. These inducers mostly targeted proteins and
p-pseudogenes (Fig. 4A right). Yet in cancer, proteins even did
not show up (<10%), instead, noncoding RNAs dominated the top
inducers, including p-pseudogene, antisense RNA and lincRNA
(Fig. 4B left). For example, p-pseudogenes counted 70% out of the
top 10, suggesting p-pseudogenes as the primary strongest drivers
in the cancer genome, instead of proteins as conventionally
thought. Interestingly, these cancerous inducers mostly targeted
proteins (Fig. 4B right). This suggested that proteins work as tar-
gets at cancer instead of as cancerous drivers. The conventional
practice treating protein-coding genes as cancerous drivers is very
misleading. Consistently, our results from big clinical data also
found p-pseudogenes as the primary drivers universal for all types
of cancers [18].

As for the strongest repressors, almost all repressors and their
targets were proteins at normal (Fig. 4C). However, cancerous
repressors contained proteins, p-pseudogenes, and antisense RNAs,
with at least 10% at each (Fig. 4D). Surprisingly, regardless of nor-
mal and cancerous repressors, almost all their targets were pro-
teins > 85%, and noncoding RNA targets in any categories were
too low to show (<10%). This pattern revealing proteins as targets
for both inducers and repressors in cancer interprets why the cur-
rent observations have focused on proteins, yet treating protein-
targets as cancerous drivers is fundamentally misleading. Noncod-
ing RNAs, especially p-pseudogenes, serve as the primary universal
drivers for all types of cancers.

3.6. Noncoding RNAs serve as the deadliest inducers in cancers

To understand the cancerous association of noncoding RNAs, we
calculated the HR (hazard ratios) of top 300 inducers in the cancer
network as described above (Materials and methods). Among these
inducers, p-pseudogenes and all noncoding RNAs (including p-
pseudogenes) had significant higher HR than proteins, with p-



Fig. 2. Network module compositions and normal network centrality. A, the module composition differences between normal and cancer network. B, Compositions of top
1000 normal network centrality. C, Top 20 normal centrality. D-E, RPS23 first neighbors in normal (D) and cancer(E).

Fig. 3. Cancer network centrality. A, Compositions of top 1000 cancer network
centrality. B, proportion of inducers and repressors in top 1000 cancer network
centrality. C, compositions of inducers in top cancer centrality(B). D, top 20 cancer
centrality. E, ENSG00000250144.1 has more interactions in cancers than normal.
Please note that the gene symbol was different in the two annotation versions as
labeled in the figure and our database.
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value = 0.01 between p-pseudogenes and proteins and p-
value = 0.0027 between noncoding RNAs and proteins (Fig. 4E).
To further confirm this result, we examined these HR differences
between proteins, p-pseudogenes and noncoding RNAs in top
deadliest inducers derived from unbiased survival analysis of all
cancer type data from TCGA [18](Materials and methods). Simi-
larly, both p-pseudogenes and noncoding RNAs had significantly
higher HR than proteins, with p-value = 0.00061 and 0.00063
respectively (Fig. 4F). These results consistently indicated that non-
coding RNAs, especially p-pseudogenes, play more important roles
in causing cancer death than proteins. This and our previous
results [18] provide strong systems evidence to validate our sys-
tems network results showing noncoding RNAs as the most impor-
tant drivers for tumorigenesis, instead of proteins.
1940
3.7. Noncoding RNAs primarily turn to regulate their local targets at
cancer

Understanding the systems distribution of distances between
regulators and their targets helps to understand the functional
framework of genome regulations but it remains debated
[8,9,25–27]. To capture the systems profiling of target distances
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Fig. 4. Top 300 strongest inducers and repressors at the normal and cancer network. The composition of strongest inducers and repressors at normal and cancer network (A-
D). A, The top 300 strongest inducers (left) and their targets (right) of normal network. B, the top 300 strongest cancerous inducers and their targets. C, the top 300 strongest
repressors and their targets at normal. D, The top 300 strongest cancerous repressors and their targets. Clinic data of top cancerous inducers(E-F). E, comparison of hazard
ratio (HR) between protein, p-pseudogenes and noncoding RNAs in top 300 strongest inducers in the cancer network built by this present study. F, HR profiling of top 480
deadliest inducers directly extracted from Cox proportional-hazards model analysis of all TCGA RNAseq data [18]. P-values (above line) were calculated by t-test.
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Fig. 5. Target distance distribution. A-B, lincRNA regulatory network in normal (A) and cancer(B). These two networks were grouped by chromosome to show crosstalk
between chromosomes. The chromosome 14 section (circle in B) was detailed in Fig. S4. LincRNAs trans-regulate their targets at normal(A) but cis-regulate their targets at
cancer(B). C-D, target location distribution of top abundant gene categories (>10%) in normal (C) and cancer (D). OutChro represents targets located outside the chromosome,
and M denotes million bp inside the chromosome. E, the percentage of cognates and non-cognates targeted by antisense RNAs and pseudogenes at normal and cancer. Non
denotes non-cognate.
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altered by cancer, we compared it to that of normal in top four
gene categories, including protein, p-pseudogene, lincRNA, and
antisense. To overlook the profiling, we clustered the targets by
chromosomes via using set-algorithm as done in Fig. 1 above. At
normal, all chromosome sets were mixed up but these sets were
clearly separated at cancer (Fig. 5A-5B, Fig. S4), indicating that
noncoding RNAs increasingly regulated their self-chromosome tar-
gets at cancer compared to normal. Statistically, most normal
genes worked as trans-regulators regulating their targets outside
their chromosomes (Fig. 5C). Especially, more than 80% p-
pseudogene targets located outside the chromosome, and 70% pro-
tein and 55% lincRNA targets were also located outside the chro-
mosome. Furthermore, p-pseudogenes and proteins rarely
regulated their targets with overlapped sequences (inside genes,
Fig. 5C). However, in cancer, most regulators of all categories turn
to regulate their local targets (<1M bp Fig. 5D). Specifically, more
than 80% of lincRNAs and antisense RNAs worked locally.

However, these antisense RNAs and pseudogenes rarely regu-
lated their cognates at both normal and cancer conditions
(Fig. 5E). Furthermore, cancer stimulated the non-cognate propor-
tion. The non-cognate rate for antisense increased from normal
22.8% to cancerous 60%, and this for p-pseudogene also increased
1943
from 17.6% (normal) to 33.5% (cancer). In contrast, the cognate pro-
portion shifted slightly from 85 (1.4% normal) to 241 (4.2% cancer)
for antisense, and from 73 (0.6% normal) to 254 (2.3% cancer) for
pseudo-gene (Fig. 5E). This suggested primary noncoding RNAs as
cis-regulators in cancers, but not as cognate regulators as recently
proposed [28].

This together suggests that regulations switch from normal
trans-regulations to cancerous cis-regulations, yet noncoding RNAs
do not serve as cognate-regulators.
4. Discussion

This study revealed a complete systems picture of endogenous
regulatory mechanisms regulating the cancer and normal realm,
in which noncoding RNAs endogenously rule the cancerous regula-
tory realm while proteins govern the normal. Numerous regulatory
mechanisms have been uncovered for regulating cancers and nor-
mal physiology, but they are biased to a given biological experi-
ment and are condition-dependent and thus are not universally
endogenous for all conditions. The systems mechanism endoge-
nous across all conditions remains unknown. Here, we revealed
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that proteins control the normal human regulatory realm at sys-
tems level and ribosomal proteins endogenously govern the core
of the normal realm. Ribosomal proteins have been known as
important factors in controlling cell type specific physiology and
pathology [29], but we found more important role for them in
which they actually work as an universal endogenous center to
regulate whole human normal realm via interacting with other
proteins and noncoding RNAs. This realm is dominated by proteins
working as trans-regulators to regulate proteins as their primary
targets, consistent with current practices in biology in which pro-
teins are treated as both key regulators and targets. However, this
normal protein-dominant realm cannot be applied to cancers. Can-
cers are endogenously regulated by noncoding RNAs. Noncoding
RNAs, especially p-pseudogenes, serve as the primary centrality
and the strongest inducers, and they also control the cancerous
modules functioning for the entire systems realm. This parallels
our recent observation from clinical data showing noncoding RNAs
as the universal deadliest drivers for all types of cancers [18]. Our
finding conceptually refreshes cancer systems mechanisms in
which noncoding RNAs drive cancers, instead of proteins as con-
ventionally thought [30–32]. This presents a novel basis for under-
standing the cancerous fundamental.

Pseudogenes were once thought as junk DNAs but recently they
have been reported as regulators for cognate genes, in which they
might regulate their corresponding protein-coding genes [8]. For
example, pseudo-gene PTENP1 regulates PTEN in cancer. However,
the number of known functional pseudogenes are very limited and
the functions of these pseudo-genes have been thought as sec-
ondary. Here, we systematically revealed that the abundant pseu-
dogenes were activated in cancer and these pseudogenes
functionally worked as the most important cancer drivers instead
of secondary regulators as thought. This was validated by clinical
data in our paralleled study [18]. In contrast to the conventional
validation via biochemistry in vitro in which results might not be
applied to in vivo regulations, we systematically validated these
noncoding RNA regulations by clinical data as in vivo evidence
[18], which ensures our results are more reliable than in vitro
results.

Pseudogenes rarely target their cognate genes, but they mostly
regulate their remote targets outside the chromosomes. Pseudoge-
nes should execute their functions in a way similar to proteins as
trans regulators and drivers. This further suggested that pseudoge-
nes might act as flexible and energy-saving activators for various
physiologic conditions. This opens the block around pseudo-
genes to explore their functions in other physiologic conditions like
stress stimulation.

Understanding the majority of noncoding RNAs working as
cis- versus trans-regulators provides the first step to understand
their functions and mechanisms, but it remains controversial
due to lack of knowing the complete crosstalk involved in all
noncoding RNAs [8,9,13]. Here, we revealed that different types
of noncoding RNAs have their own target-distance patterns vary-
ing with physiologic states, but universally, the majority of non-
coding RNAs works as trans in normal, even antisense RNAs have
only � 50% working in local (<1M). This parallels the recent
observation showing trans-regulation patterns in noncoding RNAs
[33]. However, in cancer the majority of noncoding RNAs such as
antisense RNAs and lincRNAs turns to target the local genes
(<1Mb) as cis-regulators but not their cognates. Only a very lim-
ited number of noncoding RNAs target their cognates. Therefore,
the hypothesized mechanism of noncoding RNAs executing their
functions via bindings to complementary sequences of their
cognates is misleading. In general, normal noncoding and coding
genes primarily work as trans-regulators, but cancerous noncod-
ing RNAs primarily serve as cis-regulators but not cognate-
regulators.
1944
Gene regulatory networks have been widely studied, but most
of them have been derived from gene pair studies and condition-
dependent experiments [8,13]. In addition, the current network
inference approaches have suffered high noises and recently
increasing noncoding RNA species have complicated the network
inferences [8,9,11–13], resulting in seriously biased observations
and leaving an actual blackbox of gene crosstalk. Here, we revealed
the all endogenous crosstalk as systems networks hidden in mas-
sive data. Without any presumption, we generated unbiased quan-
titative patterns from systems networks and revealed the systems
mechanisms from the data patterns, which made our results reli-
able. To ensure our networks were robust, we only included inter-
actions with high precision. High precision selections dramatically
reduced the false positives and all interactions in our networks do
not depend on any conditions. Obviously, some conventional inter-
actions might not be found in our network due to they are
conditional-dependent, not endogenous. Indeed we intentionally
missed numerous interactions that were conditionally dependent
because including those condition-dependent interactions could
dramatically introduce noise [12]. This practice to filter out noise
to ensure reproducibility is also of first concern in experimental
biology, in which biologists normally conducted many experi-
ments to prove true gene regulation. Here our computational algo-
rithm has systematically revealed thousands of reliable regulations
in two systems networks. These networks are invaluable and pro-
vide a novel foundation to advance our insights into cancer and
human normal physiology.

The limitations of this study reside in the lack of biological val-
idations and functional data, but data derived from biological
experiments are avoidably biased to experimental conditions like
tissue types, leading to biased results. For example, only 22% of
lncRNAs annotated by the GENCODE project are endogenous and
88% of them are condition-dependent [34]. Yet we filtered out
the interactions with frequency score > 0.95 to ensure our final
network reproducible as evidenced by overall data plots
(Figs. S2-S4) and individual cancer type plots [15]. In contrast, con-
ventional software without stability-selection and frequency score
could lead to 90% false positives [12]. The functions of pseudo-
genes generated by this study remain elusive, but our recent study
promised their application in cancer discrimination [35]. Future
research on these noncoding RNAs helps to understand the big pic-
ture of cancer mechanisms.
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