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Abstract: Indoor positioning systems for smartphones are often based on Pedestrian Dead
Reckoning, which computes the current position from the previously estimated location. Noisy sensor
measurements, inaccurate step length estimations, faulty direction detections, and a demand
on the real-time calculation introduce the error which is suppressed using a map model and a
Bayesian filtering. The main focus of this paper is on grid-based implementations of Bayes filters
as an alternative to commonly used Kalman and particle filters. Our previous work regarding
grid-based filters is elaborated and enriched with convolution mask calculations. More advanced
implementations, the centroid grid filter, and the advanced point-mass filter are introduced.
These implementations are analyzed and compared using different configurations on the same
raw sensor recordings. The evaluation is performed on three sets of experiments: a custom simple
path in faculty building in Slovakia, and on datasets from IPIN competitions from a shopping mall in
France, 2018 and a research institute in Italy, 2019. Evaluation results suggests that proposed methods
are qualified alternatives to the particle filter. Advantages, drawbacks and proper configurations of
these filters are discussed in this paper.
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1. Introduction

Pedestrian navigation in a building complex [1], guiding visually impaired visitors in a
museum [2], helping patients to find a ward in a hospital [3], navigating a drone in a warehouse [4],
positioning in a historical building [5], navigating a person on a wheelchair [6], orientating firefighters
in a unknown indoor environment [7], and navigating cars in a parking garage [8] describe application
examples of indoor navigation system including the indoor localization. The existence of various
use cases determines assorted requirements on a positioning system. Unlike the outdoor navigation,
there is no unique adopted solution, as GNSS signal (e.g., GPS) is generally not available indoors.

Typically, an indoor localization system available to a large scale of users utilizes the smartphones
with embedded sensors. As an alternative for some use cases, standalone Inertial Measurement Unit
(IMU), consisting of accelerometers, gyroscopes, and magnetometers, is fixed on a human body, mostly
on the foot [9] or sensors are attached to a robot [10]. Smartphone-based implementations able to cope
with the sensor bias are demanded, as the sensors produce noisy and inaccurate measurements [11–13].
Unlike the robot navigation, a smartphone position may be less predictable leading to approaches for
an activity recognition [14,15] to distinguish a movement type (e.g, walking, standing, using elevators,
or escalators) or a smartphone placement (e.g., in hand, in a pocket, or near ear in calling mode).
These methods improve the location awareness and provide additional input for the localization
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system. Typically, methods for the classification problem of human activity recognition are based
on machine learning approaches, mostly artificial neural networks, e.g., long short-term memory
(LSTM) [16].

Some positioning approaches require an infrastructure in the building often including its
calibration and maintenance, e.g., solutions based on Bluetooth Low-Energy (BLE) devices [3],
Ultra-wideband (UWB) [17], existing Wi-Fi access points [18], or so-called pseudolites to transmit
signals detectable by GPS receivers [19]. On the other hand, an infrastructure-independent approach
called Pedestrian Dead Reckoning (PDR) [9] exploits human kinematics and incorporates processed
sensor measurements as detected steps, their headings, and a map model into the relative position
estimation. The technique is suitable for a fusion with other methods, e.g., PDR, Wi-Fi, and landmarks
(walk types) [20], or PDR and visual landmarks (lights) [21]. A Bayesian filtering probabilistically
estimates the system state and is able to deal with the uncertainty introduced by noisy measurements
making the PDR approach applicable.

In this paper, we consider a use case where a user is equipped with a smartphone with embedded
sensors. Precise floor plans are available and no additional building infrastructure or devices are
required. Evaluation experiments are situated in a faculty building, a research institute, and a shopping
mall. The main aim of the paper is to evaluate different implementations of the Bayesian filtering,
analyze the results depending on selection of their parameter values, and compare them with focus on
the localization accuracy.

This paper is organized as follows. In Section 2, a related work based on Bayesian filtering
and PDR is reviewed followed by the overview of our approach and comments on the Bayesian
filtering applied on indoor positioning. In Section 3, the basic grid-based filter [22] is referenced and
extended with the convolution mask calculation, and further elaborated to a so-called centroid grid
filter. Section 4 introduces the advanced point-mass filter which we applied on the indoor positioning.
This filter is able to reduce some drawbacks of other grid-based approaches. The evaluation (Section 5)
reveals observations in three buildings where the algorithms are analyzed offline with different
parameter configurations on the same measurements. Moreover, the evaluation is performed using
various configurations of the particle filter to provide a reference for other methods, and the paper is
concluded with the results discussion and recommendations for the parameters setting.

2. Solution Background and Related Work

The dead reckoning approach computes a current user or device position from the previously
estimated position. Considering pedestrians, it is called pedestrian dead reckoning (PDR). Bayes filters
probabilistically estimate a state of a dynamic system using noisy measurements obtained up to the
current time of the estimation [23]. The Bayesian approach has found numerous applications in various
fields. In [24], a list of selected domains is proposed including, but not limited to, target tracking,
computer vision, robotics, speech enhancement and recognition, machine learning, financial and time
series analysis, and fault diagnosis. The Bayesian filtering and the PDR are two core components
of the proposed system. The PDR approach estimates a new user location and the Bayes filtering
technique incorporates the map model and deals with the uncertainty caused by noisy measurements
and inaccuracies introduced by PDR, e.g., inaccurate step length estimation.

2.1. Pedestrian Dead Reckoning and Bayesian Filtering Formulation

The PDR method calculates a position relative to the current estimation. When a step is detected,
the succeeding location is calculated from the sensors measurements, which may be expressed
as follows,

positiont = positiont−1 + Lt

[
sin(θt), cos(θt)

]T
(1)

where θt is the heading and Lt is the length of the step detected at the time t.
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Imperfect smartphone sensors producing noisy measurements are not capable of indicating the
accurate state (considering the indoor positioning, it is the user position and possibly other parameters,
e.g., the direction or the velocity). The uncertainty introduced by measurements is modeled by Bayes
filter, which represents the state at the time k ∈ N by a multivariate random variable xk. The belief
is a probability distribution over xk. The aim of the filter is to sequentially estimate the conditional
probability density function (pdf) p(xk|z1:k) of the state xk given the sensor data as measurements
z1:k = {zi, i = 1, . . . , k} for the discrete-time stochastic system:

xk = fk(xk−1) + wk, k = 1, 2, . . . (2)

zk = hk(xk) + vk, k = 1, 2, . . . (3)

where xk ∈ Rnx is a vector representing the system state and zk ∈ Rnz is a vector representing the
measurements at the time k. Vector functions fk : Rnx → Rnx and hk : Rnx → Rnz are known and
wk ∈ Rnx , vk ∈ Rnz represent known, mutually independent zero-mean state, and measurement
noise, respectively. The solution of the filtering problem is given by the Bayesian recursive relations
consisting of two stages: the prediction and the correction:

p(xk|z1:k−1)︸ ︷︷ ︸
prediction

=
∫

p(xk−1|z1:k−1)︸ ︷︷ ︸
prior pdf

p(xk|xk−1)︸ ︷︷ ︸
transition

dxk−1 (4)

p(xk|z1:k)︸ ︷︷ ︸
correction (posterior pdf)

=

predicted pdf︷ ︸︸ ︷
p(xk|z1:k−1)

evaluation︷ ︸︸ ︷
p(zk|xk)∫

p(xk|z1:k−1)p(zk|xk)dxk︸ ︷︷ ︸
normalizing constant

(5)

At the prediction stage, the pdf is distributed and spread according to the transition model
(Equation (2)), which brings more uncertainty to the state estimation regarding the noise wk. For the
system state estimation xk at the time k, the measurements z1:t are required. Depending on the
available measurements, one can distinguish stochastic smoothing if t > k, stochastic prediction given
t < k, and stochastic filtering problem for t = k. The posterior pdf estimation is computed from the
prior pdf, the transition and the evaluation model according to Equations (2) and (3), respectively.
This recursive approach to the stochastic filtering enables sequential processing of the measurements,
which is suitable for the real-time position estimation. The initial system state is determined at the
time k = 0 with no available measurements p(x0|z0) = p(x0).

2.2. Particular Tasks Associated to Pedestrian Dead Reckoning

Various particular methods should be implemented to support the system to serve as a
comprehensive indoor positioning system. We review and comment on a few of them, which form
the proposed solution, i.e., a step detection, a walk heading calculation, a step length estimation,
a vertical localization, and an initial position determination. A supplementary positioning method
(e.g., Wi-Fi fingerprinting), in the fusion with the PDR and map constraints, arranges the initial location
determination and may update the position estimation, as the PDR error is increasing with the number
of estimated positions using inaccurate Lt and θt values caused by noisy sensor measurements.

2.2.1. Initial Position

The PDR approach estimates a relative position based on a prior estimation. The initial information
regarding the absolute position is required for the localization accuracy. Gionata et al. [25] introduced
a navigation system for impaired wheelchair users. IMU mounted on a wheelchair provides sensors
measurements for PDR and QR codes are used as landmarks with the encoded absolute position.
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Scanning a QR code may be more user-friendly approach compared to a manual position setup.
An outdoor–indoor transition may be detected using machine learning approaches [26]. When the
navigation route or the localization initialization starts at the entrance of the building, the initialization
with GNSS signal is possible.

Solin et al. [27] initialize the solution based on a first magnetometer reading. Together with other
methods, the model converges to a reasonable certainty within a few seconds. If the initial location is
unknown, it is possible to setup a stochastic model to represent the prior position as a list of positions
with corresponding probabilities. In multiple approaches, where so-called particle filter is utilized,
the particles are initialized at random positions with equal weights across the map [21,28].

2.2.2. Step Detection

The detection of a performed step invokes the process of a new position estimation. Typically,
the step is detected from acquired accelerometer measurements, and the applied method is influenced
by the technique of mounting or holding the device. When the sensors are fixed on the user’s foot,
the stance phase of the foot can be easily detected in measurements and the periodic zero velocity
updates (ZUPT) are performed to bound the error [29]. Zhang et al. [30] introduced a method describing
zero velocity detection with the hidden Markov model, and four states are used to describe the walking
motion. Radu and Marina [31] proposed a localization system called HiMLoc for pedestrians holding
their smartphones in hand or in a pocket. The authors reference three different types of step detection
methods from accelerometer measurements, i.e., peak detection searching for local maximum or
minimum in the acceleration magnitude, searching for acceleration values crossing zero value, and the
autocorrelation leveraging the repetitiveness of human walking. In that solution, the zero crossing
method was applied on smoothed data. Ho et al. [32] applied a fast Fourier transform to smooth the
data and proposed a set of step detection rules. Lee et al. [33] proposed a step detection algorithm
with the average accuracy more than 98.6% for any combination of considered step modes and device
poses. In the project FootPath [34], the steps are detected when the acceleration value falls by at least
a given number within a given time window. An additional timeout value prevents multiple steps
detection within the same executed step. Brajdic and Harle [35] evaluated the step detection and
counting methods for different smartphone placements, and they highlighted the fact that none of the
examined algorithm was 100% reliable.

2.2.3. Step Heading

The magnetometer, often in combination with the gyroscope and the accelerometer, provides
a framework for the device orientation detection. The measurements may have a drift, and the
overall accuracy is influenced by metals and electrical equipment in the building [36]. Kang et al. [37]
proposed an improved step heading estimation, where the drawback of the gyroscope is reduced by
magnetometer measurements and vice versa. Seo and Laine [38] in their approach determine the device
orientation and then count the steps, which enables dynamic changes in the way of holding the device
without any significant error in the step detection. Wu et al. [39] introduced a heading estimation
method based on a robust adaptive Kalman filtering, which incorporates measurements from the
accelerometer, gyroscope, and magnetometer. Moreover, they integrated a model to limit outliers in
the measurement data and to resist negative effects of state model disturbances. Ettlinger et al. [40]
observed systematic deviations present in the data obtained from sensors. Their research is focused on
an analysis of a measure for the reliability (so-called partial redundancies), i.e., how well systematic
deviations can be detected in single observations, and the behavior of partial redundancy by modifying
the stochastic and functional model of the Kalman filter.

2.2.4. Step Length Estimation

Vezočnik and Juric [41] provided an in-depth analysis of different approaches to the step length
estimation. All thirteen considered models are classified to one of four categories: step-frequency-based,
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acceleration-based, angle-based, and multiparameter. The evaluation was performed for different
walking speed values and various device placements: pocket, bag, hand-reading, and hand-swinging.
Constants were classified either as universal for all tests or personal tuned for each subject. Experiments
using personalized constants gained better accuracy compared to the universal constants. However,
the process of constants determination is time-consuming, which may be avoided in some use cases.
For personalized constants, the accelerometer-based solutions outperformed the others. For universal
constants, the step-frequency-based models obtained the most accurate results. Model proposed by
Tian et al. [42] performed best for personalized and model proposed by Weinberg [43] for universal set
of constants.

2.2.5. Vertical Localization

The indoor environment introduces a few novel challenges compared to outdoor navigation
systems including the positioning and the path planning through multiple floors. Bojja et al. [44]
proposed a localization approach for vehicles and pedestrians, where the three-dimensional position is
estimated using the particle filter. However, most solutions utilize barometer measurements to detect
floor transitions or to obtain the altitude information. Moreover, the position estimation is performed
on a single floor. The activity recognition supports the floor change detection by determining the
transition method, e.g., stairs, escalators, or elevators. Detecting a less frequent activity, such as using
an elevator, may further serve as a landmark to reduce the localization error in PDR by providing
more precise ground truth information [20]. Different solutions were implemented for the activity
recognition, e.g., deep learning approach [45] or a decision tree proposed by Wang et al. [36], where at
the top level the elevator is identified based on a unique accelerometer data pattern. The variance
in acceleration measurements separates walking and stairs from escalator and stationary, which are
discerned using magnetometer values. Xia et al. [46] highlighted the fact that the height of a floor is
not always known. In their solution, multiple barometers were installed in the building to provide
reference pressure values. Pipelidis et al. [47] proposed a dynamic vertical mapping system using
crowdsourced sensor measurements.

2.3. Bayesian Filtering Methods

Indoor localization systems using PDR for the position estimation utilize the Bayesian filtering
technique to deal with the uncertainty accumulated by noisy sensor measurements. The error
is reduced by incorporating another source of information, typically the map model. Moreover,
the filtering may be applied to various particular problems, e.g., the step length model calibration [48]
or the activity recognition [49].

Bayesian relations (defined in Equations (4) and (5)) specify only the conceptual solution
of the filtering problem. Arulampalam et al. [50] provide an overview of the Bayesian filtering
and its implementations, i.e., Kalman filters, particle filters and grid-based methods. As stated
by Arulampalam et al., the belief distribution is approximated when certain assumptions for the
exact solution calculation are not true, i.e., the analytic solution is intractable. The optimal Kalman
filter assumes the posterior density at every time to be Gaussian and the optimal grid-based filter
requires the state space to be discrete with a finite number of states, that is not fulfilled in the indoor
positioning problem.

Considering the indoor localization, the Kalman filter and the particle filter are the most
frequent approaches. In general, the state computation using the Kalman filter or its derivatives
has smaller computational demands compared to other approaches. However, if a probability
density is non-Gaussian, the Kalman filter cannot describe it well. In ref. [51], the Kalman filter
was overperformed by the particle filter in case of an imperfect trajectory obtained using Wi-Fi or
with fewer available access points. Table 1 presents an overview of a few published approaches to
indoor localization using Bayesian filtering. Use cases and device configurations vary in different
solutions. Presently, most of existing solutions utilize smartphones equipped with sensors which
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provide connectivity and accessibility to the localization system. The particle filter is widely used
Bayes filter implementation for the positioning. Nevertheless, different approaches for the system state
definition and a fusion with additional techniques are applied to achieve satisfactory results.

Table 1. A comparison of a few selected indoor positioning systems in terms of considered device,
Bayesian filtering implementation, state representation, and other techniques applied to increase the
localization accuracy.

Year & Publication Device Bayes Filter State Additional Techniques

2019, Lu et al. [52] chest-mounted
IMU

particle filter position, scale,
heading correction

map matching

2019, Xie et al. [53] robot with
camera

unscented
Kalman filter

position, velocity,
ratio value

visible light

2018, Fetzer et al. [5] smartphone particle filter 3D position,
heading

Wi-Fi, floor detection,
activity recognition,
navigation mesh

2015, Chen et al. [20] smartphone Kalman filter 2D position Wi-Fi, landmarks

2015, Xu et al. [54] smartphone particle filter 2D position luminaries

2014, Bojja et al. [44] smartphone particle filter heading angle;
East, North and
vertical coordinates

3D map matching,
moving maps, on-board
diagnostics in a vehicle

2013, Radu & Marina [31] smartphone particle filter position,
PDR component
(activity, distance &
compass deviation)

activity classifier, Wi-Fi,
map, landmarks

2012, Rai et al. [55] smartphone augmented
particle filter

2D position,
stride length,
heading offset

Wi-Fi, map

2.4. Solution Overview

The aim of this paper is to evaluate and compare different Bayesian filtering methods,
which probabilistically model the uncertainty introduced by noisy measurements. Even though
ideal approaches are not chosen for every particular problem, the analysis of the performance with
inaccurate parameters is conducive to the overall solution set-up, e.g., how to configure methods to
handle underestimated or overestimated step lengths. An overview of our approach is outlined in
Figure 1 with the description of chosen methods.

Figure 1. Solution Overview. The aim of the paper is to compare different Bayesian filtering
implementations.
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• Smartphone sensors used for the step detection and the walk direction determination are the
accelerometer and orientation sensors, the magnetometer, and the gyroscope, depending on the
device. The barometer is utilized for the floor change detection. We consider only the handheld
smartphone or tablet with the user looking at the screen. Sensors measurements are obtained via
API provided by the Android operating system.

• Initial position is set manually for the evaluation purpose, as it is assumed to be known. However,
in deployed application it would be replaced by an approach, which is more user-friendly, such
as scanning QR codes strategically placed in the building or possibly using an additional method,
e.g., Wi-Fi fingerprinting. When a floor transition is detected, the initial position is set at the entry
point to the floor, e.g., elevator doors or a position at the top of stairs.

• Step detection is performed on accelerometer measurements, which are smoothed to reduce the
noise. A low-pass filter is applied for smoothing and zero-crossing method proposed in [22] is
executed to detect steps.

• Step heading is obtained using API provided by the operating system. Android operating system
calculates the device position from the accelerometer and a geomagnetic field sensor [56]. Bearing
values are filtered to reduce the noise.

• Step length estimation is predefined for the purpose of this paper and fixed for a single evaluation
path. One of the research questions is, how the system is able to handle underestimated and
overestimated step lengths. In this case, the step length may be calibrated for a selected user
instead of computing the value from measurement data.

• Floor detection transition is performed using barometer measurements. The current position is
estimated on a single floor. Locations of all stairs, escalators, elevators and other places, where
it is possible to change the current floor, are collected in advance. If the transition is detected,
the new user position is set to the appropriate location according to the prior position knowledge.

• Map model is semi-automatically generated from floor plans by labeling walls manually in the
image. Map model provides information whether a position is accessible in the building or there
is a permanent obstacle, e.g., walls, places behind walls, and outside the building.

• Bayesian filtering probabilistically estimates a dynamic system state, which is restricted to a
single floor. We compare different implementations of the Bayesian filtering in this paper.

• Position estimation is calculated from the Bayesian filtering state, where the place with the
highest belief value is denoted as the estimated position.

2.5. Indoor Positioning Using Bayesian Filtering

The indoor positioning can be designed as the Bayesian filtering problem, i.e., the transition and
the evaluation functions, the state and the measurement noise, the system state, and the measurement
vectors are required to be defined. Some of these settings are analyzed in this paper, as we considered
and tested multiple choices. Our research is focused on grid-based implementations of the Bayesian
filtering. The main drawback of such filters is the computational complexity, which is growing
exponentially with the number of dimensions [23]. Therefore, the system state is preferred to be
low-dimensional. The system state vector may consists of more parameters, e.g., velocity and direction,
as discussed later. In our case, the state is determined only by the 2D position:

xk = (xk, yk) (6)

where the xk and yk coordinates may be expressed as longitude and latitude, respectively. However, we
prefer to use integers with centimeter-level precision denoting a distance to the reference point in the
map. When a step is detected, the posterior system state xk is computed using recursive relations from
the state at the time k− 1. The current measurement vector at the time k may be expressed as follows,

zk = (θk, L, Amap) (7)
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where θk denotes the heading value in degrees and L is the detected step length. In our model,
we consider the same value of the estimated step length for all detected steps. The parameter Amap

represents the map model by storing information about the accessibility of positions in the building.
Many buildings are formed of regular corridors which are mostly parallel or perpendicular to each
other. The map model coordinate system is adjusted that the orientation of the corridors are west–east
or north–south. Heading values obtained from sensors are translated with regard to the map rotation,
i.e., θk = 0 denotes the direction along the y-axis of the respective floor plan instead of the direction to
the north. When a transition between floors is detected, the estimation model is reset (k = 0), a new
map model is loaded and the current initial state is set according to the entry position.

Transition (Equation (2)) is performed using the PDR relative position estimation (Equation (1)):

fk(xk, yk) = (xk + L× sin(θk), yk + L× cos(θk)) (8)

The state noise is a zero-mean white noise with the covariance matrix cov(wk) = diag(σ2, σ2). Different
standard deviation values σ are tested in our experiments.

Evaluation (Equation (3)) is based on the provided map model, as seen in this simplified function:

hk(xk, yk) =

{
1 if (xk, yk) is accessible

0 if (xk, yk) is not accessible
(9)

Inaccessible positions in the building represent walls, restricted places, permanent obstacles, and,
in some cases, places outside the building or the map. However, determining the accessibility only
from the location vector is not sufficient in most approaches. The direct PDR transition from an
accessible point A to an accessible point B with a wall between them should be restricted. Related
indoor localization systems often incorporate the map model into the transition function. In ref. [5],
a navigation graph and a mesh approach are proposed. The transition is performed only along these
structures preventing the step transition to intersect any obstacle. In our approach, the transition is
accomplished with no restrictions, but at the evaluation stage, the accessibility is determined using
both positions—the current one and the previous position, from which the transition was performed.
Moreover, the evaluation depends only on the map model. Therefore in our implementation,
the measurement noise is omitted, i.e., vk = 0.

3. Grid-Based Filter

The grid-based filter applied on the indoor positioning, extended with some practical
improvements, is discussed in ref. [22]. For the purpose of this paper, the brief outline of the method
is introduced in accordance with the specified Bayesian filtering formulation and these methods are
further elaborated. The enhanced convolution mask computation and the centroid grid filter are
proposed as an extension to the referenced work.

3.1. Grid Design and Computation

A floor plan is tessellated into a regular grid consisting of Ns grid cells {xi
k : i = 1, . . . , Ns} or

Ns isolated points {x̄i
k : i = 1, . . . , Ns}. Typically, x̄i

k is a center of the grid cell xi
k. The probability

distribution is approximated at these points with associated weights wi
k, likewise the particle filter:

p(xk|z1:k) ≈
Ns

∑
i=1

wi
kδ(xk − xi

k) (10)
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In this case, the weight or the belief value of a point denotes the probability that the current position is
within the grid cell. Probability density after the prediction stage execution is expressed as

p(xk|z1:k−1) ≈
Ns

∑
i=1

w̄i
kδ(xk − xi

k) (11)

where weights w̄i
k are computed from the prior grid using the transition model:

w̄i
k ≈

Ns

∑
j=1

wj
k−1 p(x̄i

k|x̄
j
k−1) (12)

Weights in the posterior state are computed using the predicted weights w̄i
k and the evaluation model

followed by the normalization

wi
k ≈

w̄i
k p(zk|x̄i

k)

∑Ns
j=1 w̄j

k p(zk|x̄
j
k)

(13)

In Equation (12), the belief value is calculated using a convolution. Convolution masks depend on
transition and noise models and define how the probabilities are redistributed during the prediction
stage. Moreover, it is possible to precompute the masks for selected values of the direction and the
step length to reduce the computational demands during the state estimation. Convolution masks
are typically smaller than the entire grid since the transition probability p(x̄i

k|x̄
j
k−1) = 0 for all pairs of

points with the distance greater than a single step length plus the maximal noise value. Equation (12)
expresses the method that for every point in the posterior grid, the weight is calculated from the
set of points in the prior grid according to the mask. The reverse process may be beneficial for
the implementation, where the prior grid points are iterated in a loop instead of the posterior grid
points. It allows to omit the convolution execution for points with zero or negligible weights. In the
implementation, the evaluation (Equation (13)) is performed during the convolution, enabling to
improve the usage of the map model. Therefore, the accessibility of a grid cell is not determined only
by its position, but also as an accessibility of the transition, i.e., a grid cell T is accessible from a grid
cell S if all cells composing the path from S to T are accessible. The path is constructed using a line
drawing algorithm and precomputed for relative positions of any two grid cells in the mask. Moreover,
different grid structures were investigated in the referenced previous work, i.e., the regular square
grid and the hexagonal grid consisting of regular hexagons, where the distance between centers of two
adjacent grid cells is the same in all six directions.

To sum up a single iteration, when a step is detected, a convolution mask is loaded according to
the step length and the direction, the convolution is performed, the grid is normalized, and the new
position estimation is found at the grid cell (center point) with the highest belief value. The convolution
mask is applied on all grid cells with positive belief values, whereas the accessibility of the path between
a source cell and the target cell is verified.

3.2. Convolution Mask

Processing a detected step is performed using the convolution followed by the weight
normalization. An efficient convolution implementation iterates only over active prior grid cells,
i.e., grid cells with positive weight values. It is possible to define the threshold making the cells with
their associated weight under the threshold negligible and prevent them from the computation. In this
case, the threshold is set to 0. Weights in the posterior grid are computed in the loop using the formula
for a pair of indices i and t denoting the transition between these two grid cells:

wt
k = wt

k + mt−i
α,L wi

k−1h(i, t) (14)
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where the index i denotes a point in the prior grid associated with the positive weight, i.e., i = {b ∈
{1, . . . , Ns} : wb

k−1 > T} with the threshold T = 0 and the index t denotes the target point in the
posterior grid. The function h(i, t) returns the value one, if the grid cell t is accessible from the grid cell
i, and it is zero otherwise. The convolution mask Mα,L models the transition and the noise. The mask
for a given direction α and a step length L is expressed as Mα,L = {mj

α,L : j = −Nm, . . . , 0, . . . , Nm},
where the position with the index 0 determines the origin, i.e., the mask position associated with the
grid position where the mask is applied. The mask size 2Nm + 1 is selected to cover relative positions
of grid cells which are affected by the convolution, i.e., the values which are not 0. The value mj

α,L
represents the probability of the transition from the origin position (j = 0) to the relative position at the
index j. The value m0

α,L encodes the probability of no movement. The construction of the convolution
mask is visualized in Figure 2. The step length and the direction are modeled using normal distribution
with the mean at the estimated step length or the measured step heading, respectively, and multiplied
by each other to form the value mj

α,L. The belief value of a mask grid cell is determined by the
cumulative distribution function regarding the bounds of the grid cell. The same approach is applied
for the mask computation on hexagonal grids, where only the bounds of a grid cell calculation differs
from the square grid. To reduce the computation costs, the masks can be precomputed and stored for
specified step lengths and headings. Measured and expected values for the length and the heading
are rounded. Therefore, one of stored masks is loaded and applied for the state calculation when a
step is detected. In our implementation, relative indices in the mask representing the shifts in the
grid are transformed in regard to the full grid size, as the two-dimensional position is encoded in a
single index.

Figure 2. The convolution mask computation. The green grid cell denotes the origin of the mask,
and the value for the yellow grid cell is computed using the cumulative distribution function for the
normal distribution of the step length or the heading, respectively. The left figure displays the bounds
for the step length and the bounds for the heading in the right figure.

A more accurate method for the mask computation is proposed in this work using two layers
of grids. A coarse grid is identical with the previous method, where the space is tessellated into grid
cells with assigned weights. A fine grid layer has the same structure, but consists of more points,
as the distance between two adjacent points is smaller, i.e., the density of points is several times greater.
The probability density value is calculated at these fine grid points denoting the probability of the
transition from the origin to the given point. The coarse grid weights are expressed as a sum of
probability density values of all fine grid points within the single coarse grid cell. The weights are
normalized in the grid.

The mask in this approach is defined as a distributing mask, i.e., a value in the mask denotes the
probability of the transition from the origin to the given target point. Therefore, the convolution is
iterated over the prior grid and the mask determines how the belief value is distributed in the posterior
grid. The opposite method defines a mask value as the transition probability from the given point
to the origin. The step processing algorithm iterates over the posterior grid cells. This approach is
beneficial for the centroid grid filtering method introduced in this paper.
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3.3. Centroid Grid Filter

A rule of thumb for a real-time indoor positioning application is that the position estimation
should be completed before the succeeding step is detected. Therefore, it is possible to improve the
localization accuracy by increasing the number of all grid points only to some extent. The localization
error is influenced not only by noisy inputs, but also by the discrete approximation of the continuous
state space in grid-based filters. The proposed approach assumes two grid layers, as in the introduced
mask computation. The weight is associated with the coarse grid cell, but the estimated position is not
always represented by the center of the grid cell, as visualized in Figure 3.

Figure 3. Purple arrow represents the step from the red point. Left figure shows that in the grid filter,
the next position is estimated at the green point in the grid cell center point instead of the true location
denoted by the blue point. In the centroid grid filter (figure on the right), the next position is chosen
from the set of fine grid points.

Formally, the coarse grid Gk consists of Ns grid cells Gk = {xi
k : i = 1, . . . , Ns}. Every grid cell xi

k
is associated with the weight value wi

k (Equation (10)), and the position estimation expressed as x̄i
k

and a fine grid of Nu points G′k,i = {x
′ i
k : i = 1, . . . , Nu}. In this approach, the x̄i

k is not the center of the
grid cell, but selected from the set of points G′k,i. A so-called centroid of a coarse grid cell xi

k is labeled

as ci
k, and it denotes the corresponding index in the G′k,i, i.e., ci

k = j such that x̄i
k = x′ jk. The fine grid

covering the entire state space is defined as G′k =
⋃Ns

i=1 G′k,i. Coarse and fine grid point positions are
fixed. Therefore, it is sufficient only to compute weights and select centroids for all coarse grid cells in
the posterior state, when a step is detected. Belief values are computed for all coarse grid cells using
the formula

wt
k =

Ns

∑
i=1

wi
k−1m′ i−t

α,L,ci
k−1

h(i, t) t = 1, . . . , Ns (15)

where h(i, t) is zero, if the transition from the grid cell i to the target coarse grid cell t is not
possible and one otherwise. The value m′ i−t

α,L,ci
k−1

is obtained from the mask M′α,L,c = {m′ jα,L,c : j =

−Nm, . . . , 0, . . . , Nm}. The mask is constructed similarly to the aforementioned method using the fine
grid, but the value mi−t

α,L,c denotes the probability of the transition from the centroid position at index i
to the origin, i.e., the target grid cell where the weight is computed. Masks are created and stored for
all combinations of considered step lengths L, step headings α and centroid indices c. The index of the
fine grid position within a coarse grid cell is selected using the weighted centroid approach:

ct
k =

∑Ns
i=1 wi→t

k ci→t
k

wt
k

t = 1, . . . , Ns (16)

where wi→t
k = wi

k−1m′ i−t
α,L,ci

k−1
h(i, t) is the summand expressed in Equation (15), i.e., wt

k = ∑Ns
i=1 wi→t

k .

The value ci→t
k is precomputed and stored with the mask values determining the target fine grid index,

when the probability is transformed from a coarse grid cell i to the cell t.
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To reduce the computational demands on the convolution, the masks are precomputed for selected
step lengths and directions. The real values from sensors are rounded and the corresponding mask is
applied on the filtering. The weight calculation (Equation (15)) is not performed for all coarse grid
cells. Active coarse grid cells with positive weight values in Gk−1 are iterated, and reachable cells in
Gk, which are not yet computed, are considered as target cells t. Another technique to improve the
speed of the posterior state computation is resetting the negligible values. Values lower than a selected
threshold are set to 0 in the correction phase before all weights are normalized. A less efficient but more
stable method keeps a predefined maximum number of active grid cells. Therefore, weights for all
cells, sorted by belief values, extending the limit are set to 0. The drawback of such methods is that in
some scenarios, especially with incorrect step length estimations, the knowledge of a position may be
lost and a recovery method must be implemented based on the history of estimations or other inputs
to avoid the uniform distribution of the probability over the entire map as discussed in the evaluation.

To sum up a single iteration, the process after a step is detected is the same as for the
aforementioned basic grid filter. However, the convolution phase differs. In our implementation,
all grid cells in the prior grid with positive values are iterated to mark grid cells in the posterior
grid which are reachable, i.e., the distance is within the mask size. The convolution mask is loaded,
the belief values are computed, and the centroid of the particular target cell in the posterior grid is
calculated. Optionally, grid cells with positive values in the posterior grid are sorted and reset based
on the given maximum number of active grid cells.

4. Advanced Point-Mass Filter

The advanced point-mass filter (APM) is a numerical approach to solve Bayesian recursive
relations based on the approximation of a continuous state space by one or multiple grids of points.
Like grid-based filters, the belief values are computed only on these points. However, the floating
grid technique used in APM enables the grid to transform and rotate according to the non-negligible
support of the pdf. Therefore, the APM filter is able to focus on the relevant positions with the higher
resolution, similarly to the particle filter, but with all advantages provided by the grid approach
and the convolution computation. In ref. [57], the full algorithm of the APM is introduced by
Šimandl et al. and it is compared with the particle filter applied on a nonlinear state estimation
problem. In their evaluation, lower computational demands are achieved without a loss of accuracy.
The applicability of the method on the indoor localization problem is investigated in this paper.
Specifics of the algorithm and the implementation are commented. Moreover, the evaluation includes
the the parameter configuration discussion and the comparison with other filters, especially in terms
of the accuracy.

4.1. Algorithm Overview

A basic scheme of the adapted method for the two-dimensional indoor localization problem is
proposed in this paper. A density function p(xk|z1:k) at the time k is represented by a grid of Nk points
Gk = {xi

k : xi
k ∈ R2, i = 1, . . . , Nk}, by a set of volume masses for grid cells Dk = {∆xi

k, i = 1, . . . , Nk},
and by a set of belief values at the points Pk = Pk|1:k = {wi

k : wi
k = p(xi

k|zk), xi
k ∈ Gk}. A set of belief

values after the prediction stage of the Bayesian filtering is defined as P̄k = Pk|1:k−1 = {w̄i
k : w̄i

k =

p(xi
k|zk−1), xi

k ∈ Gk}. A grid cell volume mass is for the two-dimensional localization interpreted as the
area covered by the grid cell. The APM filter assumes the points to be the centers of the corresponding
grid cells.

Initialization: Define an initial state represented by a grid G0, D0, and P0 for the prior pdf p(x0). Then,
proceed to following four steps for k = 1, 2, 3 . . . .

(1) Filtering: Compute values of the approximate filtering pdf at points of the grid Gk using the
Equation (5) for the correction stage, for i = 1, . . . , Nk:

wi
k = c−1

k w̄i
k pvk (zk − hk(x

i
k)) (17)



Sensors 2020, 20, 5343 13 of 31

where pvk (zk − hk(xi
k)) denotes the evaluation p(zk|xk) from the Equation (5) and the

normalization constant is defined as c−1
k = ∑Nk

i=1 ∆xi
kw̄i

k pvk (zk − hk(xi
k)). As the measurements

depend only on the map model, its integration is included in the algorithm during the convolution
phase likewise the grid-based filter implementation. Therefore, the filtering step consists only of
the normalization

wi
k =

w̄i
k

∑Nk
i=1 ∆xi

kw̄i
k

(18)

Optionally, the negligible belief values may be reset to zeros. In this step, the grids are split,
if necessary in the multigrid version of the filter and the weights of the grids are computed.

(2) Time Update of Grid: Transform the grid Gk to a grid Hk+1 = {yi
k+1 : i = 1, . . . , Nk} with the

equal number of points using the PDR system dynamics:

yi
k+1 = fk(x

i
k) i = 1, . . . , Nk (19)

where fk denotes the state transition function defined in (8). In general, the transition function
is allowed to be nonlinear and the grid Hk+1 may have different structural properties than Gk.
The grid Hk+1 integrates the state transition noise and covers the support of pdf, i.e., the relevant
area, where positive belief values would occur. The local predictive mean and the covariance
matrix is calculated and the grid merging for multigrid APM is executed, if necessary.

(3) Grid redefinition: Redefine the grid Hk+1 to obtain a new grid Gk+1 = {xi
k+1 : i = 1, . . . , Nk+1}

for the state xt+1, incorporating the state noise wt, with the same structural properties as the
original grid Gk. The number of points Nk+1 may be different than the value Nk in the preceding
state. Compute the number of points, Dk+1, and rotate the grid according to a computed
transformation matrix.

(4) Prediction: Compute values of the approximate predictive pdf at the new grid Gk+1 using (4) for
i = 1, . . . , Nk+1:

w̄i
k+1 =

Nk

∑
j=1

∆xj
kwj

k pwk (x
i
k+1 − yj

k+1) (20)

where pwk (x
i
k+1 − yj

k+1) denotes the transition pdf p(xk+1|xk), xi
k+1 ∈ Gk+1 and yi

k+1 ∈ Hk+1.
Predictive belief values are calculated using the convolution from corrected belief values Pk and
grid points determined by the grid Hk+1.

Figure 4 visualizes a computation of a posterior state. The grid Gk is transformed to the grid Hk+1
and redefined to the posterior grid Gk+1. The time update stage relocates all points from the prior grid
according to the PDR, the measured step heading, and the estimated step length. The posterior grid is
further redefined. Moreover, the process includes a calculation of the grid size and the point density in
the grid. In the prediction phase, new values for the belief set are computed, based on the prior grid
and the map model or measurements in general.

The filtering phase consisting of the normalization and the prediction in the form of the
convolution are present also in other grid filters implementations. However, the PDR translation
according to the step length estimation and the direction is included in the convolution mask for grid
filters. The APM separates these two parts, i.e., all points composing the grid are translated along the
vector in the second phase and the convolution models only the noise and is direction-independent.
Moreover, the grid points are constructed for the following state (in the third phase) unlike other grid
filters where point positions are fixed.
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(a) Single step detected. (b) Time update. (c) Grid redefinition. (d) Prediction.

Figure 4. A step is performed from the yellow to the blue point. Circles denotes true pdf (a) which is
approximated by a grid. Grid Hk+1 (blue points) is obtained from the original grid Gk (b), which is
later (c) redefined to the grid Gk+1 (black points). The convolution sets belief values (d) in respect to
the prior grid and the measurements (red area represents a wall; a larger point width denotes a larger
belief value).

4.2. Method Features and Implementation Remarks

The computational time for the APM filtering technique may be reduced by applying particular
methods for the grid manipulation. An outline of adopted features of the framework (anticipative and
boundary-based approaches, thrifty convolution, and multigrid representation) is provided with
additional implementation remarks.

The convolution is a demanding operation of the APM filter and should be implemented smoothly
to enable the algorithm to provide position estimations in real-time. The thrifty convolution derives
only significant points in the transformed grid Hk+1 for points in Gk+1 based on the their distance,
i.e., points too far from each other are not included in the convolution computation as the belief gain
would be negligible. Moreover, the map accessibility is verified for all grid points. Convolution masks
cannot be stored as for other grid filters. However, the calculated values from normal distributions
may be cached to speed up the convolution.

The so-called anticipative approach determines the number of grid points and the point mass
(corresponding to the grid cell size in grid filters). These calculations are performed during the
third phase of the algorithm (grid redefinition). However, for larger scenarios it may be necessary
to limit the number of all points. Therefore, this approach is not fully utilized in this work.
Moreover, the boundary-based approach detects the area of interest where the grid should be placed.
This process is similar to storing active grid cells as proposed in grid-based filters to be considered in
the convolution.

To support multimodal distributions, the multigrid representation is introduced by authors of the
APM. The basic algorithm is extended with a grid splitting and a merging process. During the first step
(filtering) and after the normalization, the grids are examined and a grid is split to two disjoint grids
if there are separable areas on the marginal densities. This process should be performed repeatedly
until there is no grid to split. However, we found it sufficient to perform this step only once. Two grids
may be merged after the PDR transition in the second step (time update of the grid). The criterion
for merging two overlapping grids is the Mahalanobis distance between a point and a distribution
(mean and covariance matrix are computed for all grids). This method is not covering all situations
but it is convenient for the purpose of the method. Moreover, weights are assigned to all grids and
these grids are handled independently. The grid weight is computed as a multiplication of the belief
sum and the point mass.

5. Evaluation

Proposed methods are evaluated on a few sets of experiments. Raw sensor measurements are
recorded for each subject with a handheld device while they are walking along the predefined path.
Checkpoints with known positions for measuring the localization accuracy are denoted on the floor
and indicated in data manually by the user during the experiment. The evaluation of different
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approaches and configurations is executed afterwards using an offline simulation tool on the same
sensor measurements. More than 3000 simulations are considered for this evaluation. The core input
files, map models, results, and visualizations are published [58].

Various scenarios were used to support the expectations of proposed approaches and to expose
different aspects of the methods. Three different venues are locations of the evaluation. A simple
path to verify methods and configuration was set in a faculty building in Slovakia. To evaluate the
performance in a real scenario, we used datasets from a competition held at IPIN 2018 (International
Conference on Indoor Positioning and Indoor Navigation) in a shopping mall in France (the dataset [59]
and the work in ref. [60] available) and IPIN 2019 competition in a research institute in Italy [61].

The main research focus is on the localization accuracy. The overall accuracy may be increased
using additional approaches, e.g., Wi-Fi fingerprinting. In the evaluation, we address the following
research questions.

• How robust are Bayesian filtering implementations to the inaccurate step length estimation?
• What is the difference in the localization error using introduced versions of grid-based filters and

various configuration values?
• What values of standard deviation are suggested to use for considered filters?
• What configuration and version of the particle filter gives the best results and can be chosen as a

reference for overall evaluation of considered filters?
• What is the stability of considered filters in terms of using rotated maps or the

experiment repetition?
• What is the overall accuracy of the proposed system? Is the performance at the satisfactory level

in a new building without any further calibration?

Followed sections discussing the evaluation is organized as follows. A summary of considered
methods and scenarios provide an insight to the evaluation background. A methodology and a
general performance of the proposed system are outlined followed by the discussion of the parameter
configuration for grid based filters, the particle filter, and the advanced point-mass filter. The overall
localization accuracy is evaluated on IPIN competition datasets and the discussion of these results
concludes the observations for all considered filters.

5.1. Considered Methods

The following approaches are applied to estimate user locations especially on predefined
checkpoints. These methods are compared with focus on the localization accuracy, computational
demands, and their reliability.

1. Basic Grid Filter (basic GF) with a two dimensional square-shaped grid introduced in the
referenced publication and recapitulated in Sections 3.1 and 3.2.

2. Fine Mask Grid Filter differs from the basic GF in the mask design. The fine mask construction
proposed in the Section 3.2 is used for the convolution to estimate the posterior grid state.

3. Hexagonal Grid Filter utilizes hexagonal grid cells as proposed in the referenced research and
the Section 3.1.

4. Centroid Grid Filter with square-shaped grid cells where the position is not attached to the
middle point but is chosen from a set of points, as introduced in Section 3.3.

5. Particle Filter (PF) is selected for the comparison with grid-based filters. The SIR particle filter
implementation introduced by Teammco and Xie [62] is adapted for the evaluation.

6. Advanced Point-Mass Filter (APM), proposed by Šimandl et al. [57], is applied on the indoor
localization according to the Section 4.

Various configurations of selected methods are investigated. Noise models, i.e., step length and
direction standard deviations, and step length estimations are analyzed for all six methods. The accent
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is on the step length selection. Other parameters are tested with various step lengths to demonstrate
how the solutions deal with underestimated and overestimated values.

5.2. Scenarios

The first set of experiments was conducted in the faculty building (Park Angelinum 9, 04001
Košice, Slovakia). Nine checkpoints were placed at positions which support the analysis of the
localization error (Figure 5). The scenario consists of a straight walk and two 90◦ turns performed in a
few steps. Six subjects, mostly students, were asked to walk along the path and mark the checkpoint on
the Lenovo tablet held in hand. Before the experiment, their approximate step lengths were calculated
using the distance measurement after 20 executed steps (one subject performs the experiment twice),
which are expressed in cm {79.1, 91.1, 79.1, 84.7, 66.4, 78.0, 84.7}. The main purpose of this scenario is
to evaluate and observe methods and parameter settings in the controlled environment with known
subjects and devices supported by external camera recordings. The path is 85 m long and its simple
layout, compared to other experiments, makes it suitable for proving concepts, observing tendencies in
data, and comparing the influence of some parameters, instead of the complex verification of methods.

Figure 5. Checkpoint positions in the first scenario. The route starts on #1 and ends on the marker #9
consisting of more than a hundred steps on average. Every subject traveled 85 m along the markers in
the ascending order.

The main part of the evaluation is performed on data acquired in the shopping mall Atlantis le
Centre near Nantes, France (Boulevard Salvador Allende, 44800 Saint-Herblain, France). Organizers of
the IPIN 2018 competition provide the dataset useful for the competition preparation but also for the
more objective comparison with other solutions. The dataset consists of testing and validation logfiles.
An additional single track for the off-site competition was not used in this evaluation. Every logfile
contains between 10 and 24 landmarks where the ground truth position is known and the localization
accuracy is computed. These files were used to calibrate parameters of the considered methods and to
systematically find the most suitable configuration, especially the major part of testing was executed
on the fourth testing path labeled by the logfile T04_01 in the referenced dataset, which is more than
220 m long. The validation logfiles are prepared to score the positioning system. Only a few best
configurations based on the testing logfiles are executed in the validation process. The validation
measurements were obtained on 6 routes. Every file from 13 available sensor logs has from 10 to
17 ground truth positions. Details regarding the device and the user are unknown.

In the same shopping mall, the on-site competition was held during busy hours on a Saturday
afternoon. The more comprehensive path was 800 m long with 70 ground truth locations and
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includes multiple floors. Sensor recordings were obtained by the author of the paper with Xiaomi MI5
smartphone. Unlike the validation dataset for rating the best configurations, this logfile was used to
find the most successful configuration using random search through more possible parameter settings.

The third set of experiments is from CNR Area of Pisa (Via Giuseppe Moruzzi, 56127 Pisa, Italy).
Using configurations with the best results from the previous datasets, this part of the evaluation
suggests that applied methods are not tailored for the single building scenario but are applicable on
different types of maps. The research institute building consists mostly of straight narrow corridors
and 90◦ turns. The floor transition is possible via multiple stairs and elevators on various positions in
the building (elevators were not used in provided data). On the contrary, the shopping mall provides
wider corridors with more options in the movement.

5.3. General Performance and Observations

The methodology of evaluation on all scenarios is in accord with IPIN competitions [63].
The current user position is computed every time, when the step is detected. If the user steps
over the marker sticker on the floor, the button on the device is clicked, the label is inserted into the
measurement recording, and stored together with raw sensor data. The position, computed after the
checkpoint event is triggered, is compared with the ground truth position for the respective landmark.
The Euclidean distance between the horizontal estimation and the corresponding ground truth location
is calculated. A floor misdetection is penalized with additional 15 m to the error. The final criterion for
the competition is the third quartile (75% percentile) of the position errors on all checkpoints in the
single trial.

To demonstrate a general overview of the proposed method, a single trial is chosen from the
first set of experiments in the faculty building in Slovakia. The measured step length for the subject
was 78 cm. The position error may increase as a result of various factors, e.g., noisy measurements,
and incorrect direction estimations and configurations. However, the accuracy improvement may
occur due to the map model. Markers #3 and #8 are first checkpoints after junctions. A significant
direction change supplemented by map restrictions contribute to the location estimation recovery.

The configuration based on the fine mask grid filter with the best output error was applied using
different step length values. Other parameters, which are discussed in next sections, were not changed.
Figure 6 demonstrates the performance with selected step length estimations. The step length of 80 cm
matches the expected trajectory and produces minimal error. The value of 70 cm underestimates
the reality, leading to shorter paths on single corridors compared to the original trajectory. After the
direction change, the positions should be predicted outside the accessible area, which is prevented by
the map model. If the trajectory of 70 cm steps with given headings fails to continue because of the map
restrictions, other convolution mask values become more important and form the position estimations.
It is observable mostly after junctions with a larger skip between two consecutive position estimations.
In this approach, the step length estimation is not adaptive and therefore the model resumes with the
previous value.

The step length estimation of 60 cm enlarges these skips. After the first junction, the position
was recovered after a few meters due to the restricted area consisting only of two perpendicular
narrow corridors. The second junction caused a significant error as the position is not estimated
on the correct corridor. The overestimated 90 cm step length produces similar results to the 70 cm,
but skips are replaced by situations with estimated locations accumulated on a very small area
along a few consecutive steps. These observations are related to the map model and the performed
path. Nevertheless, they support the visual identification of the critical segments when detecting
positions along the path. Other parameters affect the ability of the method to deal with these situations.
With proper variable values, the system is able to match the correct corridor in this experiment. Third
quartile errors in this experiment are 0.5 m for 80 cm step length, 3 m for 90 cm, 4.2 m for 70 cm,
and 10.1 m for 90 cm.
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(a) Step length 60 cm. (b) Step length 70 cm.

(c) Step length 80 cm. (d) Step length 90 cm.

Figure 6. Trajectories of the detected positions using the same sensor measurements, methods,
and configurations with different step length estimations. The subfigures display the underestimated
step length values (a,b), the best achieved result (c), and the step length overestimation (d).

5.4. Parameters of Grid-Based Approaches

The main research question about the grid-based approach is how the grid design and the position
calculation influences the overall accuracy. Location of points, where the belief is computed, depends
on the grid cell size and the type of grid (e.g., hexagonal and square grids). Noise models for step
length and direction values are included in the selected convolution mask and determine the posterior
grid state. The step length and the direction are considered as independent random variables with
normal distributions. The mean of the step length distribution is the predetermined step length
estimation and the step standard deviation (step SD) is adjustable. The direction has its mean in the
measured step heading and the standard deviation (turn SD) is adjustable as well.

The convolution mask introduced in Section 3.2 depends on these two normal distributions.
Standard deviations (SD) represent the level of the estimations certainty. Figure 7 displays the area
where both the step length and the direction are within one sigma of their distributions. The smaller
values of SD give more importance to the mean value and may be less sensitive to invalid estimations.
Larger values suppress the significance of estimations, e.g., a large turn SD forms the mask where the
step length is more significant and positions may be chosen in all directions with similar probabilities.
In the worst case, such configuration may lead to the false trajectory with no possible recovery to the
true path. As an example, the fine mask for the step length 80 cm with both SD = 15 has the maximal
value 0.3, i.e., the 30% probability of the transition to the respective grid cell. The mask with both
SD = 40 has its maximum at 7%. Smaller values of SD increase this number, e.g., both SD = 5, the step
length 80 cm gives the maximum value 68% and 90% for the step length 90 cm.

Under certain conditions (e.g., incorrect direction values) the position may be lost. Mostly,
in the case of the step length where underestimation with possible posterior positions outside the
accessible area occurs, no positive belief value may be left after the calculation is performed and the
position is lost. Considering different configurations on the simple path from the faculty building
and the T04 logfile from the shopping mall. this phenomenon was detected in 24 runs out of 888.
The observation suggests that this problem is present for masks with small standard deviations
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(under 5 cm). Moreover, the centroid grid filter is more likely to lost its position. The method requires
additional computation for the centroids and uses more space to store precomputed masks. In the
implementation, more grid cells with negligible values are cut off from the mask compared to other
three methods. Other implementations, e.g., the fine mask GF does not fail on the smaller map or
with larger standard deviation values. The solution to avoid this phenomenon is to incorporate the
no-step in the convolution mask, i.e., set a positive probability to the center position of the mask which
is assigned to the prior position estimation. Another option is to implement a backup method to
recover from the lost position. If the position is lost, the rollback of the computation is performed
and the previous known location is restored. Possibly, the location is restored with a different belief
distribution. This option may be beneficial in the presence of an alternative localization method,
e.g., the Wi-Fi fingerprinting.

Figure 7. The red point is matched with the current position. The blue dot represents the relative
position with the highest probability. Dotted lines marks the mean of the distribution for the step
length and the direction. The green area is within the one sigma for both distributions.

Figure 8 demonstrates the improvement in the grid-based filter design. Errors for all checkpoints
from the first experiment were processed, i.e., 9 checkpoints, 7 subjects, 4 methods, 3 step lengths (70, 80,
90), 2 standard deviations (5, 15) excluding all trials where the position is lost, in total 2556 position
errors. The most suitable methods for different configurations are the centroid GF and the fine mask
GF. The basic grid filter with square cells outperforms the hexagonal grid filter in robustness. However,
considering the best of all methods for particular configurations, the fine mask GF got the best result
for 30 configurations, the centroid GF for 29 configurations, the hexagonal GF for 19 and the basic GF
only for 6 configurations. The hexagonal grid filter achieved satisfactory results for 90 cm step length
estimation but accumulated greater error for underestimated step lengths. The overall performance in
absolute numbers is discussed together with other methods in this evaluation section. Observations
suggests that the centroid GF and the fine mask GF are at the same level, although the centroid GF is
more sensitive to the loss of position according to the current implementation.

The influence of step and turn standard deviations was examined on the T04 logfile from IPIN2018
dataset (T04_01). More than 500 outputs were generated with the trajectory visualization, compared,
and analyzed. In this case, 160 configurations are considered using the fine mask GF with different
step lengths, step and turn standard deviations. Similar tendencies are observable for the centroid
grid filter, but the fine mask grid filter was chosen due to full results with no attempts experiencing
the position loss. The third quartile of errors for selected configurations vary from 1.9 m to 28.5 m,
which supports the significance of the parameters selection.

Figure 9 visualizes two final paths. This logfile was chosen knowingly to limit the impact of the
map model. The ending position is not bounded by a wall, therefore the last checkpoint is sensitive to
the proper parameters configuration. Results demonstrate that outputs with the third quartile less
than 8 m gain the larger error values mostly near the turnover (typically for 60 and 70 cm step lengths).
However, outputs with the overall error greater than 8 m consistently produce the maximal error at
the last position (80 cm and 9 cm step lengths). The real step length is unknown, even though the
subsequent analysis suggest its value to be 65 cm.
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Figure 8. Comparison of lgrid-based filters on all checkpoints in the first experiment scenario with
different configurations.

Different values of the step standard deviation does not significantly change the error in contrast
to the step length and turn SD. In general, smaller step SD values results to lower error for more
accurate step length estimation (60 cm and 70 cm in this case). Considering all configurations, the value
15 cm is a reasonable choice according to the output errors.

(a) Step length 70 cm, error 1.9 m. (b) Step length 90 cm, error 21.8 m.

Figure 9. Two trajectories for the T04 logfile. The path in the shopping mall consists of the walking
along the corridor, passing to the next corridor to the right, the 180◦ turnover, and the walking back to
the initial position. Both outputs are based on the fine mask grid filter using the step SD 5 cm and the
turn SD 25 cm.

Figure 10 demonstrates the standard deviation of the direction. As discussed before, small SD
values concentrates the belief values on a single or a few positions in the convolution mask. Therefore,
the correct step length estimation is essential for the satisfactory output. Large SD values spread
probabilities in the mask producing more grid cells with similar positive values even in opposite
direction of the current heading. Surprisingly, good results were achieved with turn SD = 50 cm and
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overestimated step length 90 cm. Nevertheless, these experiments recommend to use turn standard
deviation up to 30 cm. Smaller values may be useful in case of the known step length.

Figure 10. Third quartile of errors for four different step lengths and five turn standard deviations
based on T04 logfile with the fine mask GF and step SD = 15.

The mean of all distances between two consecutive position estimations was calculated for
each configuration output. Figure 11 presents the relation between these mean step lengths and
the third quartile of errors. Based on this analysis, it is possible to estimate the true step length
which is approximately 65 cm. However, the proper configuration for the given mean step length is
not straightforward.

Figure 11. Step lengths are computed as means from all distances between two consecutive steps along
the same path. It is not trivial to find the proper configuration for mean step length.

These experiments focus on the convolution mask design and the normal distribution standard
deviations analysis. The grid cell size was selected to 33 cm. First attempts operated with 30 cm,
then the value changed to 33 to simplify the centroid grid filter calculation using the fine layer of
11× 11. The analysis of the grid cell size was not performed and it is still open to further investigation.
Another aspect of the evaluation is the map model. The faculty building and the research institute
comprise regular corridors which are mostly parallel or perpendicular to each other. The map model
coordinate system is adjusted that the orientation of the corridors are west–east or north–south.
Direction values obtained from sensors are translated with regard to the map rotation. The analysis
of the map rotation influence was performed on the faculty building. The same map rotated by 45◦

was created. Based on previous results and observations, the most suitable configuration was selected
for each trial. Results for grid-based methods (basic GF, fine mask GF, hexagonal GF, and centroid
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GF) were compared on the default and the rotated map. The maximum difference on a checkpoint
was 19× under 1m and 25× under 2 m out of 28 configurations. Overall, the maximum difference
was 6.49m, but under 1m on the marker corresponding to the third-quartile. In total, the final error
was worse on the the default map 12 times and 16 times on the rotated map. The situations with
better results for the rotated map were observed mostly for the same logfile (subject #6) and for the
basic grid filter (6 out of 7). In general, the particle filter and the advanced point-mass filter are map
rotation independent. However, the grid tessellation is used for the final position estimation in our
implementation. Nevertheless, the differences in the error are not significant.

5.5. Particle Filter

Various approaches based on the particle filter contain the current step heading in the Bayesian
filter state. Proposed grid-based methods insist on using a minimal number of state parameters, as the
complexity and computational demands grow significantly in that case. On the contrary, particle
filter may be operating with richer state description. The real time calculation could be guaranteed by
reducing the number of particles. This evaluation includes the particle filter with the direction in the
system state and with only 2D position for more thorough comparison with introduced grid-based
methods. When a step is detected, positions of all particles are translated according to the PDR vector.
Moreover, the randomness is introduced by a random movement of the particles typically followed by
the weight update and resampling.

Figure 12 illustrates the computation in the considered particle filter implementations. In the
particle filter with only 2D position as the state, the particle displacement is calculated from the normal
distribution of the step length with the mean zero and the step SD standard deviation and the direction
normal distribution with the respective parameters. The green area in Figure 12a covers possible
positions, where one sigma intervals of both distributions intersect. Another implementation in
Figure 12b omits the direction normal distribution and each particle is displaced in a random direction
according to the step normal distribution. The green area describes its one sigma interval. Experiments
with different configurations suggest no distinct advantage of one of these two versions. Therefore,
we use the particle version from Figure 12b as it matches the advanced point-mass implementation.

(a) Step and Turn SD. (b) Only step normal distribution. (c) Direction in state.

Figure 12. The particle is moved from the red point to the blue point. Afterwards, the particle is
transited according to the normal distribution. In panels (a,b), the direction is not included in the
system state.

The particle filter with the position and the direction in the state (inspired by the work in [62])
calculates the random displacement for every parameter in the state separately from the uniform
distribution (within the green are in Figure 12c). Moreover, the particle direction value is changed
by a random value. The referenced particle filter implementation turns each particle randomly by a
given angle to the left or to the right and then performs the movement by the expected step length.
Our system does not compute the turning angle but the absolute direction. Therefore, better results are
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achieved in our evaluation with the proper turning angle with no randomness as calculated directly
from the sensors.

The particle filter is a stochastic implementation and the particles are displaced randomly during
the posterior state calculation. However, all proposed grid-based filters are deterministic, i.e., repeating
the computation with the same configuration produces the same result. Therefore, the part of the
evaluation for the particle filter was performed repeatedly. Experiments on the smallest scenario in
the faculty building suggests that greater variation in the errors with the same configuration is when
the output error is larger. The relative variation for proper configurations achieving sufficient error
was under 5%. Considering the shopping mall sensor recording T_04 and 30 different configurations,
the relative variation for the same configuration was 12× under 10% and 25× under 25%. Outliers are
observable with inaccurate parameter settings.

Different configurations were verified on the same datasets as grid-based approaches (simple path
in the faculty building in Slovakia and T04 logfile from the shopping mall). A fixed amount of
1000 particles was set for all experiments which was later increased for the overall accuracy evaluation.
Small values of the step standard deviation step SD = 5 lead to position loss and require location
recovery. In the faculty building scenario with a relatively small map area, it is expected for the particle
filter to outperform the selected grid-based filter for some configurations. The discretization of the
space has bigger impact on the final result. The particles are able to model the path with more precision.
Tested values between 15 and 25 are not as robust to the incorrect step length as observed in grid-based
approaches. Considering the shopping mall scenario and different values for the step length, the best
results were obtained with 65 cm step length and step SD = 15 with the average third quartile 3.4 m.
Using slightly incorrect step lengths 60 cm and 70 cm, better results were achieved with larger step SD
values 30 and 40 (third quartile was between 5.3 m and 6.5 m).

The main goal of this paper is to analyze the grid-based Bayesian approach applied on the indoor
positioning. The particle filter is aimed as the reference method for the comparison. Various upgrades
may be performed to achieve better results in real scenarios. For instance, Fetzer et al. [5] suggest
to calculate the final estimated position at one of the modes of the particle clusters instead of the
computed average location from all particles.

5.6. Advanced Point-Mass Filter

The process of the posterior state computation in advanced point-mass filter is performed using
the same approach as described in the particle filter, where particles are moved according to the step
length and the direction and displaced in the random direction by the distance obtained from the
normal distribution. In APM, all grids are moved along the PDR vector and subsequently redefined.
The convolution is performed to calculate belief values for all grid points. Only the step length normal
distribution with the mean zero and the step standard deviation as the parameter is required for the
convolution. This method provides more parameters for the configuration. A value A defines the
non-negligible support of the state noise (the value A > 3 is recommended). In our implementation,
the value A = 4 is used. Greater values enlarges the area covered by the grid during the grid
redefinition and considering the same number of the points, the distance between adjacent points is
larger, i.e., the resolution is less detailed.

Another parameter, γ, determines the number of points in the grid. The value is recommended to
be γ < 1. The value γ = 0.5 in this implementation produces the spacing in the grid on the level of the
given step standard deviation. Smaller values expand the amount of grid points. A grid covering larger
areas requires smaller number of points to be able to finish the computation in sufficient time. However,
large γ values also reduce these points in grids covering small areas, leading to the larger spacing and
thus reduced precision. Therefore, we introduced a threshold for the maximum number of points in a
single grid. The amount of grid points is computed automatically using γ = 0.5 and for large grids the
upper bound on the grid size is set. Therefore, the spacing between points is increasing instead of the
number of points in large grids which is necessary for the real-time computation. Moreover, a large
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grid models the current situation more inaccurate, but it is preferred avoiding the true path loss over
the high resolution or the centimeter accuracy.

The value K defines the threshold for merging two grids based on their mahalanobis distance.
The value K ≥ 3 is recommended. The evaluation on the T04 logfile from the shopping mall
demonstrates the influence of this parameter on the grid count and the split or merge grid events.
The path consists of 389 detected steps. Using K = 3, the maximum number of grids at one iteration
was 20 (between 8 and 13 grids for 60% of iterations). The split grid event occurred 565 times (79% of
iterations) and merging event 541 times (65% of iterations). Using greater value K = 8, two grids are
more inclined for the merge. The maximum number of grids was 8 (between 2–4 for 68% of iterations).
The split event occurred 124 times (25% of iterations) and merging event 116 times (22% of iterations).
The overall accuracy was better for the K = 8 (third quartile 3.8 m) than K = 3 (third quartile 6.4 m).
Other observations supports the tendency to have less grids with larger K value which leads to less
splitting and merging and the number of points in total for the convolution, even though the difference
in the error is not so significant.

In this scenario, the configuration is sufficient for the real time computation. Depending on
the implementation, it may be required to reduce the points in grids or to increase the γ for larger
scenarios. The largest experiment from the on-site IPIN 2018 competition consists of 882 steps on a
few floors. The transition between floors restarts the algorithm with a new initial position. The main
segment on a single floor consists of 497 steps. Using the K = 3 and the single grid size limit
45× 45 points, the maximum number of grids was 30 (only 5 iterations with more than 25 grids).
The maximum 60 grids was observed using the grid size limit 23× 23 which also leads to less accuracy.
Our observations suggests to increase the γ and K to achieve the real time computation. Another option
is to reset negligible values which is a feature of the algorithm we did not apply in these experiments.

Smaller values of the step standard deviation (less than 10) often cause position loss similarly
to other methods. The recovery solution used in our implementation initiates a new small grid on a
position of the last location estimation if belief values in all grids are zero. Similar to the particle filter,
better results are obtained with greater values of the step standard deviation (more than 20). Figure 13
demonstrates the performance of the APM algorithm with the ability to focus on selected areas on
the map.

Figure 13. Example of the APM performance. A single grid is placed and rotated with respect to the
map and the position estimation certainty. White color denotes accessible areas. Green points in the
grid have positive belief values. Yellow points are placed on inaccessible locations.
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5.7. Overall Localization Accuracy

The evaluation consists of three venues: the faculty building in Slovakia for the brief verification
of selected parameters and methods, the shopping mall in France with datasets from the IPIN 2018
competition, and the research institute in Italy with datasets from the IPIN 2019 competition. For the
final comparison of all proposed methods, the evaluation on three scenarios in the last two buildings
is executed with the goal to find the best result for every proposed method.

A validation subset of the IPIN 2018 dataset is selected to find the overall accuracy. The main
criterion is the third quartile of errors on all checkpoints among all files in the dataset. A few
configurations were applied based on the recommendations and observations discussed in previous
sections. Moreover, the final estimated path was visualized and critical segments were identified
leading to the verification of updated configurations. Table 2 specifies the configurations for the best
results, and Table 3 describes the performance of the best configuration on particular validation paths.

Table 2. The best overall result for every considered method on the IPIN 2018 validation dataset.

Method Result Step Length Step SD Turn SD

Fine Mask GF 4.60 m 70 cm 15 30
Centroid GF 4.60 m 70 cm 15 30
Hexagonal GF 4.92 m 70 cm 10 10
Basic GF 5.11 m 65 cm 15 15
APM 5.30 m 65 cm 30 n/a
Particle Filter 6.18 m 65 cm 30 n/a

Table 3. Third quartiles of errors in meters for considered methods with the best overall result on each
validation logfile.

Method V1.1 V1.2 V2.1 V2.2 V2.3 V3.1 V3.2 V4.1 V4.2 V5.1 V5.2 V6.1 V6.2

Fine Mask GF 6.7 6.8 5.8 4.5 3.2 2.3 3.5 9.8 8.8 4.8 3.1 3.1 3.5
Centroid GF 6.8 6.8 5.8 4.5 3.3 2.4 3.4 9.8 8.8 5.1 3.2 2.9 4.0
Hexagonal GF 6.2 6.2 4.4 3.6 5.4 2.3 3.5 10.8 8.4 3.9 3.9 4.3 5.4
Basic GF 6.2 6.2 2.9 4.0 5.4 4.0 5.2 11.5 9.4 3.7 3.5 3.7 4.7
APM 6.2 6.2 4.4 3.5 2.6 3.0 4.8 8.6 37.7 7.8 3.4 4.6 4.3
Particle Filter 8.5 9.5 5.5 4.5 3.9 3.7 6.2 8.5 7.9 6.0 5.1 3.5 3.5

Another validation set is present in the IPIN 2019 dataset. The main aim of this evaluation is
to prove the map independence. The methods were tuned based on the sensor measurements and
the map model of the shopping mall. The research institute differs from the shopping mall with the
presence of narrower straight corridors and multiple directions available on junctions. No further
result analysis was performed. Only a few best configurations from the first overall evaluation were
selected and applied on this dataset. Table 4 describes the best results for all files in the dataset and for
all methods and their configurations and Table 5 demonstrates the third quartiles for all particular
validation paths.

Table 4. The best overall result for every considered method on the IPIN 2019 validation dataset.

Method Result Step Length Step SD Turn SD

Fine Mask GF 6.23 m 70 cm 15 15
Hexagonal GF 7.09 m 70 cm 15 10
Centroid GF 7.27 m 70 cm 15 30
APM 7.49 m 70 cm 30 n/a
Particle Filter 8.01 m 70 cm 30 n/a
Basic GF 8.21 m 70 cm 15 15
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In all experiments, the configurations were selected systematically. The last experiment was
performed on the sensor measurements logfile from the IPIN 2018 on-site competition recorded by the
author (with the expected step length 90 cm). The path consists of 70 checkpoints and the duration
was more than 10 min. A random search approach was applied to find the best configurations,
i.e., the parameter were selected randomly respecting given upper and lower bounds. In total,
773 configurations for all methods were evaluated. This path is more challenging than single paths
in validation datasets and provides the comprehensive scenario for the indoor positioning. The best
results and configurations for all proposed methods are summarized in Table 6.

Table 5. Third quartiles of errors in meters for considered methods with the best overall result on each
validation logfile.

Method V01 V02 V03 V04 V05 V06 V07 V08 V09

Fine Mask GF 17.1 12.5 21.1 8.4 7.6 5.5 1.3 1.7 5.6
Hexagonal GF 21.7 8.3 21.0 8.5 9.0 6.3 3.5 3.7 5.9
Centroid GF 25.5 12.3 5.4 5.3 8.0 8.2 2.1 4.1 2.9
APM 8.3 14.1 14.5 8.4 7.7 6.9 2.1 2.6 3.7
Particle Filter 88.3 19.6 6.9 6.2 57.9 5.2 2.2 2.1 4.8
Basic GF 25.8 12.5 21.1 8.6 10.3 8.2 2.6 3.2 2.8

Table 6. The best results for considered methods on the IPIN 2018 on-site competition track. The mean,
median, and 90th percentile are listed together with the third quartile of errors on 70 checkpoints.

Method 75th Perc. Mean Median 90th Perc. Step Length Step SD Turn SD

Hexagonal GF 5.46 m 4.38 4.06 8.51 90 cm 5 5
Centroid GF 5.68 m 4.14 3.52 8.43 90 cm 5 15
APM 6.03 m 4.48 3.45 9.32 92 cm 44 n/a
Fine Mask GF 6.13 m 4.16 3.10 8.80 90 cm 25 25
Basic GF 6.37 m 4.60 3.74 9.21 90 cm 5 10
Particle Filter 7.00 m 4.79 3.65 9.33 88 cm 35 n/a

The considered particle filter is using 2000 particles and the state is without direction.
The advanced point mass filter uses the limit 45× 45 points in the single grid.

5.8. Discussion of Results

Considering the last evaluation experiment on the IPIN 2018 on-site track, five performances
obtained third quartile of the error below 6 m out of 773 runs (2× hexagonal GF, 3× centroid GF).
The average of the third quartiles for all used configurations are 27 m for fine mask GF, 26 m centroid
GF, 31 m basic GF, and 35 m hexagonal GF which supports the previous observations (Figure 8).
The particle filter reached 39 m and the APM 12 m (less configurations with underestimated step
lengths were used for these two methods). Considering validation datasets results, tendencies for all
methods are observable, e.g., greater errors on the same path V4.1 and V4.2 (Table 3) as it was the
longest path with the most freedom in movement with no narrow corridors.

The hexagonal GF achieved the best result in the last experiment, even though the median
was the worst among these best runs. Another good result is V02 in IPIN 2019 validation dataset.
However, other results demonstrate that the filter is not robust enough to handle invalid step length
estimations compared to other filers. The fine mask GF has the same grid design as the basic GF and
only exceptionally it does not outperform the basic GF. An example of such event is V2.1 in IPIN 2018
validation dataset. Nevertheless, the visual analysis of the trajectories does not show any particular
reason for the exception. We may consider the fine mask GF as the improved version of the basic
GF. The centroid GF achieved best results in the last experiment for various configurations. Top 10
performances include 6 with this method. This method is stable and robust even though the position
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loss occurs with very small standard deviation values (11× out of 160 configurations, other two
position loss situations were for the hexagonal GF).

The particle filter obtained the worst results in general. Visualization of trajectories indicates
that the position estimations may be improved as the paths are not smooth and zig-zag sequences
are observable. Moreover, the filter was not robust enough to handle multiple corridors on junctions
resulting to the great error on V05 logfile from IPIN 2019 validation dataset.

Advanced point mass filter did not outperform other methods according to the third quartile
of the best performance criterion. However, in the last experiment there were performances with
greater third quartile but with the best median of all runs (2.3 m), mean (3.8 m), and 90th percentile
(8 m). Moreover, visualization of the paths in this experiment shows trajectories more similar to the
real path on the largest straight segment (almost 200 m) as other methods more often tend to have
positions close to the walls. One of the main observation of the APM is the ability to track multiple
paths. The main path is formed by the positions calculated by the PDR sometimes corrected by the map
model. However, when the main path fails, the APM is able to reconstruct the plan B position easier
and on larger distance compared to other filters due to the multigrid implementations. The particle
filter may suppress these positions by resampling and grid-based filters often cut off negligible values
to provide real time computation. This feature of the APM is the advantage as seen on V01 in Table 5
but also the drawback as seen on V4.2 in Table 3. The APM method requires more elaboration to find
the best configuration, e.g., in terms of number of grids and their spacing, to serve as the best method
for the Bayesian filtering on the indoor positioning. In general, these evaluation results demonstrates
the applicability of grid-based methods as alternative to the widely used particle filter.

6. Conclusions

In this paper, we investigated grid-based implementations of the Bayesian filtering. On the
contrary to the commonly used particle filter, these methods are deterministic and utilize the
convolution for the posterior state computation. Four versions of the grid-based filter were introduced:
the referenced basic grid filter and the hexagonal grid filter, the fine mask grid filter with improved
mask computation, and the centroid grid filter using two layers of grids. Moreover, the advanced
point-mass filter was proposed connecting strengths of the grid methods (e.g., convolution) and
particle filters (e.g., positions not fixed to the grid tessellation).

The evaluation was performed on three sets of experiments using custom measurements and
datasets from IPIN competitions. The performance of every method was analyzed and the observations
of the parameter configurations were discussed in this paper. The focus is on the overall accuracy
measured by the third-quartile of positioning error on checkpoints with known ground truth locations.
The parameters were tuned for the shopping mall dataset, where grid-based filters achieved best
results between 4.6 and 5.3 m on the validation dataset. The overall results for another venue with no
further calibration was between 6.2 and 8.2 m. The best results on the most comprehensive scenario
were obtained between 5.5 and 6.4 m.

The overall error may be reduced improving existing approach, e.g., the step length estimation and
using other source of information, e.g., Wi-fi fingerprinting. Therefore, as further investigation, we shall
focus on the sensor fusion using these Bayesian filtering implementations. Moreover, the influence of
the grid cell size, the total number of grids or particles and the time required for the computation is
not present in this paper.
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