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Chromatin landscapes reveal developmentally
encoded transcriptional states that define human
glioblastoma
Stephen C. Mack1*, Irtisha Singh2*, Xiuxing Wang3*, Rachel Hirsch2, Quilian Wu3, Rosie Villagomez2, Jean A. Bernatchez4,5, Zhe Zhu3,
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Glioblastoma is an incurable brain cancer characterized by high genetic and pathological heterogeneity. Here, we mapped
active chromatin landscapes with gene expression, whole exomes, copy number profiles, and DNA methylomes across
44 patient-derived glioblastoma stem cells (GSCs), 50 primary tumors, and 10 neural stem cells (NSCs) to identify essential
super-enhancer (SE)–associated genes and the core transcription factors that establish SEs and maintain GSC identity. GSCs
segregate into two groups dominated by distinct enhancer profiles and unique developmental core transcription factor
regulatory programs. Group-specific transcription factors enforce GSC identity; they exhibit higher activity in glioblastomas
versus NSCs, are associated with poor clinical outcomes, and are required for glioblastoma growth in vivo. Although
transcription factors are commonly considered undruggable, group-specific enhancer regulation of the MAPK/ERK pathway
predicts sensitivity to MEK inhibition. These data demonstrate that transcriptional identity can be leveraged to identify novel
dependencies and therapeutic approaches.

Introduction
Glioblastoma (GBM; World Health Organization grade IV gli-
oma) is the most prevalent and lethal primary, intrinsic brain
tumor (Ostrom et al., 2016). Standard therapy of surgery, radi-
ation, and alkylating chemotherapy offer only palliation, and
ultimately almost all patients succumb to this disease (Stupp
et al., 2009). Other than conventional therapies, the only US
Food and Drug Administration–approved GBM therapies include
tumor-treating fields (Stupp et al., 2017) and bevacizumab
(Gilbert et al., 2014). Although GBM has been extensively
characterized at the molecular level, current clinical manage-
ment has limited guidance from molecular pathology, beyond
mutations in isocitrate dehydrogenase 1/2 (IDH1/2) and MGMT
promoter methylation (Hegi et al., 2005; Cancer Genome Atlas

Research Network, 2008; Parsons et al., 2008; Yan et al., 2009;
Brennan et al., 2013; Frattini et al., 2013). Additionally, gliomas
have high intratumoral phenotypic heterogeneity, leading to the
hypothesis that self-renewing GBM stem cells (GSCs) persist
after therapy and are able to regenerate refractory tumors
(Singh et al., 2004; Bao et al., 2006; Chen et al., 2012a; Patel et al.,
2014; Suvà et al., 2014). GBMs possess remarkable cellular
plasticity and are highly responsive to changes in nutrient state,
oxygen levels, and the local tumor microenvironment (Li et al.,
2009b; Eyler et al., 2011; Flavahan et al., 2013; Zhou et al., 2015;
Quail et al., 2016; Miller et al., 2017; Quail and Joyce, 2017). These
data support highly dynamic and robust tumor ecosystems that
resist standard and genetically defined targeted therapies.
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Despite these challenges, transcriptional profiling of GBM
lacking IDH1 or IDH2 or classic driver mutations has identified
molecular subgroups that predominate among patient tumors
(Phillips et al., 2006; Verhaak et al., 2010; Wang et al., 2018a).
Several transcriptional profiling paradigms have been proposed,
but predominantly there have been at least three biologically
distinct profiles (Phillips et al., 2006; Verhaak et al., 2010). The
first is characterized by a proneural gene expression program,
likely defined by the OLIG1 and OLIG2 transcription factors (TFs),
which are master regulators of oligodendrocyte identity (Lu
et al., 2002; Yu et al., 2013). The second is marked by mesen-
chymal gene expression signatures and, likemanymesenchymal
tumors, has been associated with increased resistance to radio-
therapy (Carro et al., 2010; Kim et al., 2016). The third, referred
to as classical or proliferative, is typically driven by recurrent
genomic alterations found in EGFR, PTEN, and CDKN2A. Al-
though bulk tumors tend to fall into one category or the other,
single-cell RNA sequencing (RNA-seq) suggests that cells of
distinct states exist within the same tumor (Patel et al., 2014).
Emerging evidence suggests that tumors can transition between
these states, designated as proneural-to-mesenchymal transi-
tion, suggesting that this plasticity of cellular identity is a hall-
mark of the disease (Bhat et al., 2013; Mao et al., 2013; Segerman
et al., 2016).

At its core, cellular identity is defined and governed by a
small number of master TFs that are tissue specific and establish
the cell’s chromatin and epigenetic landscape (Takahashi and
Yamanaka, 2006). Overexpression of master TFs reprogram or
transdifferentiate cells (Weintraub et al., 1989; Graf and Enver,
2009). As a rule, master TFs are regulated by large adjacent
enhancer elements (often termed super-enhancers [SEs]), and
master TFs bind to their own enhancers and those of other
master TFs, thereby forming an autoregulatory TF core regula-
tory circuitry. Cancers often maintain portions of the core reg-
ulatory circuitry from their cells of origin, and at the same time,
oncogenic deregulation of SEs and core regulatory circuitry are
common themes across cancers (Mansour et al., 2014; Lin et al.,
2016; van Groningen et al., 2017; Wang et al., 2018b; Zeid et al.,
2018). Recently, we and others demonstrated in medulloblas-
toma, ependymoma, and neuroblastoma that molecularly de-
fined tumor subgroups each possess distinct core regulatory
circuitries and that defining TFs were often faithful tracers of
cell-of-origin and critically shown to be nonmutated tumor de-
pendencies (Lin et al., 2016; Garancher et al., 2018; Wang et al.,
2018b; Zeid et al., 2018).

Results
GBMs exhibit distinct chromatin and epigenetic profiles
distinguished from other brain tumors
To define the TF core regulatory circuitries of GBM, we inte-
grated active enhancer landscapes defined by histone H3 lysine
acetylated chromatin (H3K27ac) with gene expression, DNA
methylomes, copy number variations (CNVs), and whole
exomes across a large cohort of GSCs (n = 44), primary GBM
surgical specimens (n = 50), and neural stem cells (NSCs; n = 10;
Fig. 1 and Fig. S1). 101 samples were profiled by at least one

genomic measurement, and within this dataset, 79 samples were
matched for H3K27ac, gene expression, and methylation. In
sum, this integrated genomic and epigenomics dataset repre-
sents the largest integrated cohort of chromatin and epigenetic
profiling compiled for GBMs. All datasets were subjected to
rigorous quality control based on Encyclopedia of DNA elements
(ENCODE) best practices, and only datasets passing stringent
quality control metrics are presented in this study (Fig. S1).

Overall, we find strong concordance between gene expres-
sion, DNA methylation, and active enhancers. For instance, at
the SOX2 locus we see consistent hypomethylation of promoter
DNA, the presence of active euchromatin modifications
(H3K27ac) at both the promoter and proximal enhancer, and
evidence of abundant mRNA (Fig. 1, a and b). Globally, there is a
positive correlation between H3K27ac at gene promoters and
proximal enhancer with mRNA levels (Fig. S1 a) and anti-
correlation betweenDNAmethylation andmRNA levels (Fig. S1 a).
These data suggest that our combined profiling efforts faith-
fully capture the epigenetic, chromatin, and transcriptional
state of GBM.

Previously, we and others have shown that reference
chromatin and epigenetic landscapes of brain tumors can
be used to accurately to characterize tumor identity, classify
tumor subgroups, and faithfully recapitulate molecular
features of disease (Capper et al., 2018). Using t-Distributed
Stochastic Neighbor Embedding (t-SNE) dimensionality re-
duction, we mapped chromatin and epigenetic profiles of our
samples onto a comparative landscape of additional tumor
types and tissues. By active enhancer H3K27ac profiles, GSCs
and GBM surgical samples form clusters distinct from other
brain tumors (e.g., medulloblastoma and ependymoma), as
well as normal brain and other tissues drawn from the
ENCODE and Roadmap Epigenomics Consortium datasets
(Fig. 1 c). Integrating DNA methylomes into the German
Cancer Research Center brain tumor DNA methylation atlas
(https://www.molecularneuropathology.org/mnp; Capper et
al., 2018), GSCs and GBM surgical samples cluster closely
together with reference non-IDH1–mutated GBMs and were
distinct from other brain tumors, as well as genetically
defined GBM subtypes (e.g., IDH1/2 mutant; Fig. 1 d).
Supporting this finding, the most frequent somatic alterations
detected in GSC models included TP53 mutations, PTEN
mutations, EGFR amplifications, and CDKN2A/p16 deletions,
further reinforcing that our models recapitulate genetic features
of primary tumors while capturing molecular features of tumor
heterogeneity (Fig. S1 b). Within GBMs, classically defined
mutational spectra (e.g., EGFR mutations) fail to cluster either
by active enhancer or DNA methylation landscapes, suggesting
an additional contribution of chromatin and epigenetic state
to GBM identity (Fig. 1).

Recurrent SE genes define GSC identity and uncover
novel dependencies
To delineate genes important for defining and maintaining the
GSC state, we mapped SE loci across a large panel of patient-
derived GSC cultures. Our analysis revealed 8,533 distinct SE
loci detected in at least one GSC sample (Fig. 2 a; Materials and
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Figure 1. Active chromatin landscape of GBM and GSCs. (a) ChIP-seq H3K27 acetylation profile surrounding the SOX2 locus across GBM. (b) DNA
methylation levels (Illumina EPIC arrays) surrounding the SOX2 locus. (c) t-SNE analysis of the top 10,000 variant H3K27ac loci of GBM primary tumors, GSCs,
medulloblastoma primary tumors, ependymoma primary tumors, Roadmap consortium samples, and ENCODE consortium samples (Kundaje et al., 2015). n =
250 samples. (d) t-SNE analysis of the top 10,000 variant CpG loci across study GBM, GSCs, and DNA methylation brain tumor classification reference samples
(Capper et al., 2018). HSC, hematopoietic stem cell; iPSC, induced pluripotent stem cell; AM, placental amnion; EPD, ependymoma; MB, medulloblastoma.
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Figure 2. Core GSC SE genes delineate cellular dependencies and define a negative prognostic signature. (a) Bar plot indicating recurrent GSC SE genes
detected across GSC models with a frequency >75%. Color code indicates frequency of SE presence. (b) Examples of SE loci regulating CXXC5, SEPT9, SALL3,
and SOX2 in GSC, GBM, and NSC samples. (c) Kaplan–Meier survival analysis of the top 250 FASE gene signature scores in TCGA GBM and GBM-low-grade
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methods). Across all samples, we identified a subset of SE loci
and genes shared by a high proportion of GSCs (>75% of the
samples) that represent potential key mediators of GSC identity
(Fig. 2, a and b). These recurrent SEs were ordered by the pro-
duct of SE frequency and amplitude (H3K27ac levels), termed
FASE score. Many of these genes serve functional roles in GSC
maintenance, including CDK6, SOX2, EGFR, BRD4, POU3F2, and
SALL3 (Suvà et al., 2014; Lathia et al., 2015; Liu et al., 2015). Novel
core GSC identity transcripts were also identified, such as
MIR4316 and CXXC5 (Fig. 2 a and Fig. S2). SE-associated genes
exhibited elevated H3K27ac in GSCs, primary GBM tumor tis-
sues, and in some cases, NSCs (Fig. 2 b). Globally, proximity of
an SE to a gene correlatedwith increased expression in GSCs and
GBM surgical samples (Fig. S2 a). To delineate the impact of core
SE transcription on clinical outcome, we derived a gene signa-
ture composed of the top 250 SE-regulated genes identified in
GSCs, which predicted patient survival in an independent set of
transcriptional profiles defined by The Cancer Genome Atlas
(TCGA; Verhaak et al., 2010; Brennan et al., 2013; Wang et al.,
2018a). Patients with GBM that harbors enrichment of the core
GSC SE signature have inferior survival compared with those
with reduced enrichment (Fig. 2 c). Patients with high expres-
sion of this core GSC SE signature have higher-grade tumor
histology and are less likely to have tumors with IDH1mutations
and a glioma CpG-island methylator phenotype (Noushmehr
et al., 2010; Fig. 2 d). Our data support a paradigm in which
many genes that define GSC identity are highly expressed, de-
lineated, and regulated by the presence of SEs. To determine if
core GSC identity genes were required for tumor cell prolifer-
ation, we targeted several top SE genes—SOX2, SEPT9, CXXC5,
CDK6, SALL3, and EGFR—using shRNAs in a panel of patient-
derived GSC models (Fig. 2 e). Core GSC SE-associated identity
genes were essential for tumor cell proliferation over a 7-d time
course, suggesting that GSCs depend on expression of core SE
genes to facilitate cell growth. Collectively, our data uncovered a
set of GSC identity genes that are regulated by SEs and are re-
quired for GSC maintenance. Tumors that harbor enrichment of
this core GSC SE signature exhibit features of increased tumor
malignancy and correlate with a worse prognosis. Core GSC SE
genes, therefore, represent a lead set of non-mutationally classified
dependency genes as promising targets for therapeutic testing.

GSCs are composed of at least two distinct SE states
Given that core GSC SE genes define a shared axis of GSC
identity genes (Singh et al., 2017), we next sought to investigate
SE landscape heterogeneity in a large series of GSC models.
Using unsupervised hierarchical clustering of H3K27ac activity,
we found that two highly distinct SE states predominated among

GSCs (Fig. 3 a; Materials and methods). These subgroups, an-
notated as group 1 and group 2, comprised the majority (24/30)
of GSCs profiled and exhibited high similarity within groups and
low similarity between groups. Differential analysis of SEs be-
tween group 1 and group 2 revealed 597 group 1 and 651 group
2 SEs that drive group-specific differences (Fig. 3 b; Materials
and methods). These regions show opposing patterns of
H3K27ac at exemplary loci and globally (Fig. 3 c). Differential
H3K27ac patterns often appear binary—most regions have
greater than fivefold change in H3K27ac (Fig. 3 d)—indicative of
de novo chromatin acetylation in each subgroup as opposed to a
more quantitative increase/decrease in acetylation. Almost all
genes proximal to and associated with GSC group-specific SEs
are differentially expressed between groups consistent with
enhancer acetylation correlating to target gene expression
(Fig. 3 d). Using single-sample gene set enrichment analysis,
TCGA-defined molecular signatures from bulk primary GBM
samples profiles were used to classify group 1 and group
2 samples. While group 2 was highly associated with “mesen-
chymal” features, group 1 samples contained both “proneural”
and “classical” or “proliferative” features (Phillips et al., 2006;
Verhaak et al., 2010; Mao et al., 2013; Wang et al., 2018a), sug-
gesting potentially convergent pathways at the level of active
chromatin regulation. We hypothesized that group-specific SE-
associated genes are also likely to be enriched for dependencies
but in a group-specific manner. Genetic knockdown of group-
specific genes, such as BCAN and HMGA2, in GSCs expressing
concordant SEs attenuated tumor growth both in vitro and
in vivo (Fig. 3, e and f), reinforcing the relationship between SE
presence and dependency. Overall, these data suggest that GBM
and GSCs are composed of at least two distinct SE states and that
maintenance of SEs that regulate group-specific identity is re-
quired for tumor growth/proliferation.

Group-specific TFs define group identity and are required for
glioma growth
Cellular identity in both tumors and normal tissues is defined by
a small number of TFs that establish cell-type SEs, are often
regulated by large SEs, and regulate one another in what has
been termed a transcriptional core regulatory circuitry (Boyer
et al., 2005). Reverse analysis of active enhancer landscapes
maps putative TF core regulatory circuitry (Lin et al., 2016;
Mack et al., 2018). Here, we strengthened TF enhancer–target
gene regulatory predictions by implementing a ridge regression
model, which incorporates gene expression to identify TFs
where gene expression of the TF and target correlate or anti-
correlate significantly (Fig. 4 a). Using this approach, we iden-
tified cohorts of SE-associated TFs that formhighly interconnected

glioma (LGG) RNaseqV2 datasets, respectively. A log-rank test was used to calculate significance of survival differences with P values indicated as *, P ≤ 0.05
and ***, P ≤ 0.0001. Each patient cohort was stratified as high versus low groups at the corresponding median single-sample gene set enrichment analysis
z-score. The number of surviving or uncensored patients in each analysis group at noted time points was also displayed. (d) Distribution of top FASE gene
signature scores in TCGA GBM low-grade glioma RNaseqV2 dataset among TCGA molecular subtypes and relevant genotypes and epigenotypes (IDH1 mu-
tation; Chr. 1p/19q codeletion; PTEN deletion; PIK3CA mutation; TP53 mutation; MGMT promoter methylation status; TERT promoter methylation status; ATRX
mutation status). (e) shRNA knockdown of core SE genes SOX2, SEPT9, CXXC5, CDK6, SALL3, and EGFR in GSC models using two distinct hairpins compared
with a nontargeting control. Cell proliferation experiments were performed in biological replicates with more than four technical replicates per time point. Error
bars indicated as standard deviation of four technical replicates.
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Figure 3. GBMs display at least two distinct SE states. (a) Similarity of 30 GSC samples by consensus clustering of 10% most variable regions by H3K27ac
signal (n = 14,621). The GSCs clustered into four groups, group 1 GSCs (n = 15), group 2 GSCs (n = 9), group 3 GSCs (n = 2), and group 4 GSCs (n = 4). (b)H3K27ac
occupancy around the significantly different SE (FDR-adjusted P < 0.01) between group 1 GSCs and group 2 GSCs (group 1 SEs, n = 597; group 2 SEs, n = 651).
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circuitries and are enriched at the SEs of each respective group
(Fig. 4 b; Materials and methods). Group-specific TFs were also
shown to have group-specific SE association, expression, and ex-
hibited highly restricted expression patterns across human tissues
(Fig. 4 c). Functional analysis of high-confidence target gene sets
identified thematic pathways consistent with features of oligo-
dendrocyte and neuronal differentiation for group 1 and JAK/
STAT signaling for group 2 (Fig. S4 f). shRNA knockdown of
RUNX2, a group 2–specific TF with no prior association to GBM,
was lethal in vitro and in vivo (Fig. 4, d and e) but not in group
1 GSCs. OLIG2, a group 1–specific TF that has been implicated in
oligodendrocyte identity, showed a reciprocal pattern of depen-
dency with its knockdown highly sensitive in group 1 but not
group 2 (Fig. 4 d). These data suggest that GSC subgroups are
defined by and driven by highly tumor-specific TFs identified
within core regulatory programs and that group-specific TFs are
themselves highly specific dependencies.

Group-specific TF core regulatory circuitries are recapitulated
in primary tumors
Primary GBMs exhibit high intratumoral heterogeneity and are
highly dynamic to signaling queues from the tumor microen-
vironment (Hu et al., 2016; Venkatesh et al., 2017; Griveau et al.,
2018; Wang et al., 2018b). As TF core regulatory circuitries were
defined by using in vitro GSCs, we next sought to determine
whether primary GBMs contained similar group-specific tran-
scriptional regulation both across surgical tumor specimens and
in the individual cells comprising tumors. Using group-specific
TFs and their high-confidence target genes, we found that by
RNA-seq and H3K27ac profiling GBM biopsy specimens strongly
associated with one group or the other with a high overall degree
of similarity (Fig. 5, a–c; Materials and methods). These data are
consistent with prior multi-omic profiling efforts on primary
tumors that originally elucidated GBM subgroups (Phillips et al.,
2006; Verhaak et al., 2010). Moreover, they suggest that tumor
identity as defined by GSC TF core regulatory circuitry is stable
across GBM independent of cell culture conditions.

Within tumors, single-cell RNA-seq profiling has revealed
varying degrees of heterogeneity with some tumor cell pop-
ulations more homogenously aligning with a specific GBM
subgroup and others containing more mixed populations and
traits of multiple subgroups (Patel et al., 2014). To investigate
the TF core regulatory circuitry of single cells within GBM tu-
mors, we analyzed these single-cell expression data from five
GBM tumors with 50–100 cells each. The expression profile of
each cell was correlated against signatures composed of group-
specific TFs and their high-confidence target genes (Fig. 5 d;
Materials and methods). Considering significant correlations to
TFs, two of the tumors contained mostly cells assigned to group

1 (MGH26 and MGH30). Cells for tumors MGH28 and MGH29
showed a strong correlation to group 2 and more moderate
correlation to group 1. For MGH31, only a small number of cells
significantly correlated with a specific subgroup, and no group-
specific bias was observed. Our findings demonstrate the high
sample–sample variance in group 1 and group 2 identities and
potential utilization of other distinct GSC states found to be less
abundant across GBM (Fig. 3 a). Given our delineation of group
1– and group 2–specific genetic dependencies, there may be
utility in estimating GSC group/state-specific compositions
within GBM samples as a basis for molecular targeting.

Group-specific aberrant activation of developmental TFs
in GBM
The presence of at least two GSC subgroups suggests either
multiple cells of origin for GBMs or multiple transforming e-
vents that fundamentally alter cell state and transcriptional
identity. To further investigate this question, we interrogated a
cohort of NSCs, commonly considered to be useful comparators
for GSCs and upstream or primordial to the GBM developmental
cell of origin. By H3K27ac enhancer landscapes and TF activity,
NSCs subdivided and clustered with either group 1 or group
2 GSCs (Fig. 6, a–d). Further analysis revealed that although
most group-specific TFs are consistent between group-specific
GSCs and their associated NSCs, a small number of TFs exhibited
aberrant enhancer activity and expression in GSCs relative to
NSCs (Fig. 6, e and f). For group 1, GSC-specific TFs included
OLIG1/2, NR2E1, NKX2-2, EN1, and MEOX2. OLIG1 and OLIG2
are master regulators of oligodendrocyte identity and GSC
drivers (Lu et al., 2002; Yu et al., 2013; Tachon et al., 2019; Fig. 6
e). NR2E1 (TLX) is an orphan nuclear hormone receptor previ-
ously implicated in both GSC and NSC renewal (Zhu et al., 2014).
NKX2-2, EN1, and MEOX2 are developmental TFs with neural-
specific expression whose roles in glioma are heretofore un-
known. For group 2, HOXA and HOXB developmental TFs were
up-regulated compared with NSCs. Additionally, a cohort of TFs
with known roles in mesenchymal identity and inflammatory
signal transduction were up-regulated, including RUNX2,
STAT3/5, TFAP2A, and IRX3 (Fig. 6 e). As data above support
OLIG1/2 and RUNX2 as GSC-specific dependencies, we hypoth-
esized that GSC-specific TFs define a highly oncogenic gene
expression program. For each group, we defined high-confidence
target gene sets for GSC-specific and GSC/NSC shared TFs. Thus,
when compared with NSCs, GSCs activate and integrate highly
lethal oncogenic TFs into their core regulatory circuitry.

Core cell identity genes uncover therapeutic targets in GBM
Core GSC SE genes were integrated with the Washington Uni-
versity Drug Gene Interaction Database (Cotto et al., 2018) and

(c) H3K27ac activity at the BCAN, HMGA2, andMSRB3 SEs for group 1 GSCs (n = 15) and group 2 GSCs (n = 9). Gene expression from RNA-seq (FPKM, log2FPKM)
of BCAN, HMGA2, and MSRB3 shown on the right (group 1 GSCs, n = 14; group 2 GSCs, n = 9). (d) Change in H3K27ac activity at group 1 and group 2 SEs (FDR-
adjusted P < 0.01, left) and change in expression of SE-associated genes (FDR-adjusted P < 0.1, right). (e) Effect of in vitro shRNA knockdown of BCAN, HMGA2,
and MSRB3 on growth of group 1 and group 2 GSCs. Cell proliferation experiments were performed in biological replicates with more than four technical
replicates per time point. Error bars indicated as standard deviation of four technical replicates. (f) Effect of in vivo shRNA knockdown of BCAN and HMGA2 on
survival of mice. A log-rank test was used to calculate significance of survival differences with P values indicated as **, P ≤ 0.001 and ***, P ≤ 0.0001.
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Figure 4. Group-specific TFs define group identity. (a) Schematic representation of the methodology used for identification of group-specific TFs. (b)
Consensus TFs and group-specific TFs (P < 0.05), with fraction-of-target genes for which the TF potentially plays an important role in regulation (left), fraction
of group 1 and group 2 GSC samples that had an SE associated with the TF (middle), and median expression of TFs for both the groups (right). (c) Comparative
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annotated 718 SE associated genes as targets with drug interac-
tions with 309 genes nonannotated (Figs. 2 a and 7 a). Many of
these candidates were divided into targets defined as “clinically
actionable” or classified as “druggable” proteins, kinase targets,
or histone-associated proteins (Fig. 7 a). Four GSCmodels driven
by predicted clinically actionable SE genes EGFR and CDK6 were
treated with a combination of EGFR and CDK4/6 inhibitors, la-
patinib, and palbociclib, revealing cellular growth inhibition by
treatments (Fig. 7, b and c). GBM models were further inhibited
by combinatory treatments against EGFR and CDK6 in mice
bearing orthotopic xenograft tumors with relevant GSC SEs
(Fig. 7 d), validating this approach as potentially informative of
preclinical efficacy for precision-based therapy selection. Given
our findings that GBM identity (and group-specific specifica-
tion) are regulated by SEs and distinct TF programs, and that
these represent potential cellular dependency genes, we asked
whether this list of potential oncogenic drivers could be ex-
plored for therapeutic targeting by small-molecule inhibitors.
High-confidence group-specific target genes and pathways were
mined with publicly available gene–drug interaction databases
(Cotto et al., 2018) to pinpoint 16 small-molecule inhibitors of
interest targeting group 1 or group 2 SE genes. A high-
throughput screen was performed on 12 GSC models (n = 7 for
group 1 and n = 5 for group 2), testing 16 drugs, at 10 concen-
trations, in eight technical replicates, and in two biological
replicates (Fig. 7 e). This compound screen identified MAP3K1
(MEKK1) as a target with almost exclusive group 1 enhancer
regulation (Fig. 7 f). MAP3K1 is upstream of canonical MAPK/
ERK and JNK activity, and we hypothesized that group 1 GSCs
may harbor selective dependency to MAPK/ERK inhibition.
Using AZD8330, a potent and selective inhibitor to the MAPK/
ERK MEK family of kinases, we observed selective effects on
GSC group 1 viability at low micromolar doses with little effect
in group 2 GSCs (Fig. 7, e and g). Our findings, therefore, dem-
onstrate that SE programs that regulate GSC identity (both
core and group specific) can be effectively mapped and used for
therapeutic selection as a basis for discovery of non-mutationally
defined oncogenic dependencies.

Discussion
Numerous studies have sought to define groups of GBMs that
share transcriptional profiles. Classification schemes based on
these transcriptional signatures have ranged in the number of
groups widely, but none has reliably informed clinical man-
agement beyond the identification of the IDH1 or IDH2 mutant
tumors, which are tumors with a distinct molecular basis.
Transcriptional profiles appear dynamic, displaying both spatial

and temporal transitions. We recently showed that defined ra-
diographical features were associated with selected chromatin
regulation and transcriptional profiles: contrast enhancement
with an EZH2-associated vascular (proneural) transcriptional
signature and necrosis with a BMI1-associated hypoxic (me-
senchymal signature; Jin et al., 2017). GBMs display spatial di-
versity of genetic events, which have not, to date, been
associated with specific regional variation, but genetic analyses
have suggested that tumors may accumulate mutations selec-
tively based on heterochromatin and euchromatin states, sup-
porting crosstalk between epigenetic and genetic tumor
regulation (Chen et al., 1998; Zheng et al., 2014; Makova and
Hardison, 2015).

Further, GBMs may transition in the dominant signature
upon recurrence after radiation and chemotherapy (Phillips
et al., 2006; Verhaak et al., 2010). Despite these complexities
or perhaps because of them, the identification of core, re-
inforcing TF circuitry may provide relatively preserved molec-
ular regulation over time and space. We demonstrated across a
large panel of GSCs maintenance of such consistent chromatin
patterns as defined by presence and elevated expression of core
SE genes. Our results are in line with previous studies that use
comparable approaches to characterize the active chromatin
landscapes of GSCs in an effort to delineate GSC identity (Suvà
et al., 2014; Singh et al., 2017). However, owing to the large and
diverse panel of GSC models that we characterized in our study,
we were able to 1) robustly quantify the frequency of core SEs
detected, and 2) dissect the molecular subgroups of GSCs as
defined distinct SE landscapes. Elevated expression of the top
250 most frequent GSC SE-linked genes stratified patients with
poor survival. Furthermore, our characterization of a large
number of GSC models from patients revealed consistent pat-
terns of at least four GSC subgroups harboring unique SE sig-
natures. The two predominant groups, which we assigned group
1 and group 2, have some similarities in terms of their regulation
by key TFs (i.e., OLIG1/2 and RUNX2) that define proneural and
mesenchymal GBM subgroups, respectively. However, at the
transcriptional level, group 1 and group 2 do not significantly
match proneural and mesenchymal subgroup signature genes,
thus supporting that the GSC groups we identify are restricted to
specific tumor cell populations, highly consistent between dis-
tinct sets of patients, and defined by distinct transcriptional
programs.

A proneural–mesenchymal transition (Bhat et al., 2013; Mao
et al., 2013; Barnes et al., 2018) has been described in numerous
studies on GBM as a cell identity switch in response to micro-
environmental and/or treatment-associated factors (i.e., irradiation).
As nearly all of our specimens were derived from newly

traces for H3K27ac ChIP-seq and mRNA levels from GSCs in groups 1 and 2 are displayed (two-sidedWilcoxon rank-sum test, P < 6.37 × 10−05, P < 3.05 × 10−06,
P < 5.5405 × 10−03 for OLIG1, OLIG2, and RUNX2, respectively). (d) GSCs from group 1 and group 2 were transduced with either a control shRNA sequence that
does not target a sequence in the mammalian genome (shCONT) or one of two shRNAs targeting OLIG2 and RUNX2 (shOLIG2 and shRUNX2). Cellular pro-
liferation was measured over a time course using CellTiter-Glo. Cell proliferation experiments were performed in biological replicates with more than four
technical replicates per time point. Error bars indicated as standard deviation of four technical replicates. (e) GSCs from group 2 were transduced with either a
control shRNA sequence that does not target a sequence in the mammalian genome (shCONT) or one of two shRNAs targeting RUNX2 (shRUNX2) then
xenotransplanted into the right frontal lobes of immunocompromised NSG mice. Survival of tumor-bearing mice is displayed by the Kaplan–Meier method. A
log-rank test was used to calculate significance of survival differences with P values indicated as **, P ≤ 0.001 and ***, P ≤ 0.0001.
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diagnosed primary unirradiated specimens, the proneural–
mesenchymal transition process does not explain the group
2 GSC signatures we observed in treatment-naive GSC models

and tumors. This does not exclude the possibility that group
1 and group 2 GSC populations may transition between states
as this was not explicitly tested in our study and may be an

Figure 5. Group-specific TF core regulatory
circuitries are recapitulated in primary tu-
mors and coopted in NSCs. (a) Assigning the
primary GBM samples by H3K27ac signal at the
SEs of group 1 gene signature (group 1–specific
TFs, n = 14; target genes, n = 125) and group
2 gene signature (group 2–specific TFs, n = 18;
target genes, n = 171) by k-means. Assignment
was reconfirmed by using gene expression of
the two gene signatures (group 1–like primary
GBMs = 38; group 2–like primary GBMs = 5).
The figure shows the principal components of
the GSCs and GBMs for log2 (FPKM) of the
above set of genes along with groups to which
they were assigned. (b) The same as in Fig. 4 b
but for primary GBMs (group 1–like primary
GBMs = 6; group 2–like primary GBMs = 1). (c)
The same as in Fig. 4 c with gene expression of
the sample on the right. (d) Similarity of single
cells of five primary GBMs to group 1 and group
2 GSCs using the gene signatures used for
panel a. Left: The average gene expression of
the group 1 gene signature and group 2 gene
signature in every single sample. Right: The
median Spearman rank-correlation with P <
0.01 ≥75% of group 1 and group 2 GSCs.

Mack et al. Journal of Experimental Medicine 1080

The human glioblastoma chromatin landscape https://doi.org/10.1084/jem.20190196

https://doi.org/10.1084/jem.20190196


Figure 6. Group-specific TF core regulatory circuitries are co-opted in NSCs. (a) Similarity of group 1 and group 2 GSC samples along with NSC samples
(n = 7) by consensus clustering of the 10%most variable regions by H3K27ac signal (n = 16,817). (b)Median H3K27ac signal (rpm/bp) at SEs in group 1–like NSCs
and group 1 GSCs (top). Median H3K27ac signal (rpm/bp) at SEs (bottom) in group 2–like NSCs and group 2 GSCs. (c) Schematic showing (1) the identification of
NSCs similar to group 1 and group 2 GSCs by their H3K27ac landscape and (2) the identification of conserved and differential TFs of group 1 and group 2 GSCs
compared with NSCs. (d) Classifying the NSCs into group 1–like GSCs (n = 4) and group 2–like GSCs (n = 3) based on their average similarity with the group
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important area of further investigation, particularly in the
setting of prospective therapies targeting GSC group identity.

Our data also suggest that GSCs may adopt TF circuitry
similar to distinct signatures of neural stem and progenitor cells.
These findings may represent maintenance of distinct cells of
origin or convergent evolution driven by the collective effects of
genetic and epigenetic events. Genetically engineered mouse
models of GBM have supported divergent cells of origin (e.g.,
NSCs, oligodendroglial progenitor cells, or astrocytes; Chen
et al., 2012b), which may reflect divergent precursor cell states
adopted by GBMs. Further expansion of normal to tumor com-
parisons (at the chromatin level) in a large series of adult NSC,
oligodendroglial progenitor cell, and immature/mature astro-
cyte cell populations (cultured under the same growth con-
ditions) would be potentially informative of transcriptional
programs that mediate tumor initiation and potential cells of
origin.

Targeted therapies have transformed the therapeutic land-
scape of several cancers, but many cancer types fail to respond to
molecularly guided precision medicine approaches that are
based solely on tumor genetics or transcriptional signatures.
Prominently, GBM ranks among the most deeply characterized
cancers, yet current therapies focus on generalized treatment
paradigms. Here, we demonstrated that the epigenetic land-
scapes of GSCs and extension to GBM tumors yields novel in-
sights into cellular dependencies and core transcriptional
regulation. While TFs represent essential factors in cellular
transformation and tumor maintenance, they have been noto-
riously challenging to target. We find that core TF circuits are
associated with the presence of SEs that identify essential genes
that are amenable to therapeutic targeting and may provide the
basis of developing novel therapeutic paradigms. These findings
are in keeping with growing literature that supports that SEs
and associated TF circuitries represent important nonmutated
cancer dependencies (Durbin et al., 2018; Mack et al., 2018; Ott
et al., 2018). Such vulnerabilities may be identified from SEs
shared across GSCs and those that occur in a GSC subtype–
specific fashion. It is important to note that, although our
approach points to a novel set of target genes, single-agent
approaches are unlikely to be effective against this highly
genetically and phenotypically heterogeneous disease. As a key
example, EGFR inhibition used in EGFR SE-containing GSC tu-
mor models, although effective in vitro, showed limited efficacy
as a single agent in vivo. Combinatorial approaches against
multiple SE genes in addition to mutated drivers may represent
a potential approach that may prove efficacious. Potential
translation of targets (and combinations of targets) will require
comprehensive in vitro and in vivo functional validation to
prioritize and screen candidates for further drug testing. To this
end, we recently developed an in vivo screening method to
evaluate a prioritized set of candidate genes using inducible

loss-of-function technology in mouse orthotopic GBM xeno-
grafts (Miller et al., 2017). This approach could be used to
systematically evaluate the targets we identified in this study
with expansion to multiple GSC group-specific tumor models.
In sum, our data support that targeting of transcriptional
identity has the potential for a large therapeutic index as we
find elements of core TF circuits and their associated pathways
to be not only highly GBM specific but also related to the
presence of distinct GSC populations defined by specific
chromatin signatures.

Materials and methods
Derivation of GSC models and maintenance of xenografts
GBM tissues were acquired from excess surgical resection tis-
sues from patients at the Case Western Reserve University. All
specimens were reviewed by a neuropathologist, and appro-
priate informed consent was obtained from patients in accor-
dancewith a Cleveland Clinic Institutional ReviewBoard–approved
protocol (090401). All studies involving human patients were
conducted in accordance with the Declaration of Helsinki. To limit
cell culture–based artifacts, patient-derived xenografts were
generated and dissociated as needed to serve as a renewable source
of tumor cells for study. Short tandem repeat analyses were per-
formed to authenticate the identity of each tumor model used in
this article every 6 mo. Cells were stored at −160°C when not being
actively cultured. All cells were thawed within 1 mo of these ex-
perimental procedures. All experiments conformed to the relevant
regulatory standards.

In vivo tumorigenesis
50,000 human-derived GSCs were implanted into the right ce-
rebral cortex of NSG mice (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ;
The Jackson Laboratory) at a depth of 3.5 mm to establish in-
tracranial xenograft models. All murine experiments were
performed under an animal protocol approved by the Cleveland
Clinic and University of California, San Diego, Institutional
Animal Care and Use Committee. Healthy, wild-type female
mice of NSG background, 4–6 wk old, were randomly selected
and used in this study for intracranial injection. None of the
mice had experienced any treatment or procedures before the
experiments described. Mice were housed together in a con-
trolled environment with 14 h of light and 10 h of dark per day.
Animal husbandry staff at the Cleveland Clinic and University of
California, San Diego, regularly observed all animals, and no
more than five mice were housed in each cage. Animals were
monitored until neurological signs were observed, at which
point they were sacrificed. Hunched posture, gait changes,
lethargy, and weight loss served as neurological signs or signs of
morbidity, which indicated an endpoint condition. Brains were
harvested and fixed in 4% formaldehyde, cryopreserved in 30%

1 and group 2 GSC samples (left) and the similarity of NSCs within themselves (right). Similarity measure was obtained by consensus clustering of the 10%most
variable regions by H3K27ac signal (n = 16,817). (e)Median H3K27ac signal (rpm/bp) at SEs of group 1–specific TFs (top) in group 1–like NSCs and group 1 GSCs
(top). Median H3K27ac signal (rpm/bp) at SEs of group 2–specific TFs (bottom) in group 2–like NSCs and group 2 GSCs. (f) Row-normalized gene expression
levels (log2FPKM) of the group-specific TFs for group 1 and group 2 GSCs along with NSCs.
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Figure 7. Core- and group-specific GSC SE genes pinpoint small-molecule inhibitors effective against GBM. (a) Integration of core GSC SE genes with
the Washington University Drug Gene Interaction Database (Cotto et al., 2018) annotating 718 targets with small-molecule interactions (left) that could be
classified into several drug classification categories (right). (b) In vitro treatment of GSC models harboring SEs regulating CDK6 with the CDK6 inhibitor
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sucrose, and then cryosectioned. H&E staining was performed on
sections for histological analysis. In parallel survival experiments,
mice were observed until the development of neurological signs
as described above. Healthy 4–6-wk-old female NSG mice were
randomly selected and used in this study for intracranial injec-
tion. For inhibitor treatments, mice were treated with control
DMSO vehicle, palbociclib (50 mg/kg every day), lapatinib
(50 mg/kg every day), or respective combinations until endpoint
criteria were reached. Mice were sacrificed when neurological
signs were observed, and tissues were collected for further
analysis. Brains were harvested and fixed in 4% formaldehyde,
cryopreserved in 30% sucrose, and cryosectioned. H&E staining
was performed on brain sections for histological analysis.

Tumor dissociation and GSC culture
Dissociation of xenografted tumors was performed using a pa-
pain dissociation system according to the manufacturer’s in-
structions. Cells were then cultured in Neurobasal medium
supplemented with 2% B27, 1% L-glutamine, 1% sodium pyru-
vate, 1% penicillin/streptomycin, 10 ng/ml basic fibroblast
growth factor, and 10 ng/ml epidermal growth factor (EGF) for
≥6 h to recover expression of surface antigens. Because no
single-cell surface marker is uniformly informative for marking
GSCs, we used functional criteria to define and validate the
presence of GSCs. GSCs were isolated immediately following
dissociation or following transient xenograft passage in immu-
nocompromised NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice
using prospective sorting followed by assays to confirm stem cell
marker expression, sphere formation, and secondary tumor
initiation. When experiments were performed, we isolated
AC133 marker–positive populations using CD133/1 antibody-
conjugated magnetic beads. Neurobasal medium was used to
wash specimens, which were then acutely dissociated to remove
nontumor tissue and subjected to enzymatic dissociation using
the Papain dissociation system (Worthington Biomedical Corp;
LK003150). The isolated tumor cells were briefly placed in
Neurobasal medium with B27 supplement (Life Technologies;
12587010) to permit recovery following enzymatic dissociation.
Cells were labeled with CD133/2(293C)-allophycocyanin anti-
body kit (Miltenyi Biotec; 130098826), and the CD133+ cells were
sorted and analyzed by flow cytometry. The sorted CD133+ cells
were cultured in NBM-B27 medium containing 20 ng/ml of both
EGF (R&D Systems; 236-EG-01M) and recombinant human basic
fibroblast growth factor (R&D Systems; 4114-TC-01M) for a short
period before treatment and analysis (Bao et al., 2006; Flavahan
et al., 2013). Expression of stem cell markers (SOX2 and OLIG2),
functional assays of self-renewal (serial neurosphere passage),
and tumor propagation by using in vivo limiting dilution assays
were used to validate GSC phenotypes.

Proliferation and neurosphere formation assay
Cell proliferation experiments were conducted by plating cells of
interest at a density of 1,000 cells/well in a 96-well plate with six
replicates. CellTiter-Glo (Promega) was used to measure cell
proliferation. All data were normalized to day 0 and presented
as mean ± SD. In vitro limiting dilution assays were used to
assess neurosphere formation capacity as previously reported
(Flavahan et al., 2013). Briefly, decreasing numbers of cells were
plated into each well of a 96-well plate. The presence and
number of neurospheres in each well were recorded 7 d after
plating. All tumorsphere and proliferation experiments were
performed at least six times.

Chromatin immunoprecipitation
Chromatin immunoprecipitation (ChIP) of 5–10 mg of flash-
frozen primary GBM tumors was performed by using 5 μg
H3K27ac antibody per ChIP experiment (Active Motif; 39133). In
the case of cells, 5 million cells were used for ChIP studies. ChIPs
were performed as described previously (Wang et al., 2018b).
Enriched DNA was quantified by using PicoGreen (Invitrogen)
and ChIP libraries were amplified and barcoded by using the
Thruplex DNA-seq library preparation kit (Rubicon Genomics)
according to the manufacturer’s recommendations. Following
library amplification, DNA fragments were agarose gel (1.0%)
size selected (<1 kb), assessed by using a Bioanalyzer (Agilent
Technologies), and sequenced at The Centre for Applied Ge-
nomics (The Hospital for Sick Children) by using Illumina Hi-
Seq 2500 150-bp single-end reads (GeneWiz).

RNA-seq library preparation
Total RNA was extracted from cell pellets or liquid nitrogen–
pulverized tissue using the miRNeasy mini kit (Qiagen) ac-
cording to instructions from the manufacturer. Stranded RNA
library preparation was performed with ribosomal RNA deple-
tion according to instructions from themanufacturer (Epicentre)
to achieve greater coverage of mRNA and other long noncoding
transcripts. Paired-end sequencing was performed on the Illu-
mina HiSeq 2500 with 2 × 150-bp paired-end read configuration.

Quantitative RT-PCR
Trizol reagent (Sigma-Aldrich) was used to isolate total cellular
RNA from cell pellets. The qScript cDNA Synthesis Kit (Quanta
BioSciences) was used for reverse transcription into cDNA.
Quantitative real-time PCR was performed by using Applied
Biosystems 7900HT cycler using SYBR-Green PCR Master Mix
(Thermo Fisher Scientific). Quantitative PCR (qPCR) primers
used in this study were human ASCL1 forward 59-CCCAAGCAA
GTCAAGCGACA-39and reverse 59-AAGCCGCTGAAGTTGAGCC-39;
human BCAN forward 59-TGGAAGGAGACAGCTCAGAGG-39 and

palbociclib. (c) In vitro treatment of GSC models harboring SEs regulating EGFR with the EGFR inhibitor lapatinib. (d) In vivo drug treatment of the CW738
orthotopic xenograft GBM model with single or combinatorial agents palbociclib and lapatinib. (e) List and heatmap of drugs predicted to be GSC-group
selective through integration with the Washington University Drug Gene Interaction Database (Cotto et al., 2018). (f) Depiction of theMAP3K1 locus harboring
group 1 specific enhancer activity (left) and group 1–specific gene expression (right, two-sided Wilcoxon rank-sum test, P < 0.029). (g) Percentage of cell
viability of group 1 and group 2 cells treated with the MAP3K1 inhibitor, AZD8330 at 0.78 μM. Cell proliferation experiments were performed in biological
replicates with more than four technical replicates per time point. Error bars indicated as standard deviation of four technical replicates.
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reverse 59-CGGGACAGGAAAGTCCACTTG-39; human C1ORF61
forward 59-CTTTTCCAGCTTTGGGAGTCA-39 and reverse 59-
GTGGCTCTATCGTCCACACG-39; human CDK6 forward 59-GCT
GACCAGCAGTACGAATG-39 and reverse 59-GCACACATCAAA
CAACCTGACC-39; human CXCL8 forward 59-TTTTGCCAAGGA
GTGCTAAAGA-39 and reverse 59-AACCCTCTGCACCCAGTT
TTC-39; human CXXC5 forward 59-CCGAGCGTCGGAACAAG-
AG39 and reverse 59-CCACTGCTGCCAAAAGAAGAG-39; human
EGFR forward 59-AGGCACGAGTAACAAGCTCAC-39 and reverse
59-ATGAGGACATAACCAGCCACC-39; human HMGA2 forward
59-ACCCAGGGGAAGACCCAAA-39 and reverse 59-CCTCTTGGC
CGTTTTTCTCCA-39; human MSRB3 forward 59-CGGTTCAGG
TTGGCCTTCATT-39 and reverse 59-GTGCATCCCATAGGAAAA
GTCA-39; human RUNX2 forward 59-TGGTTACTGTCATGGCGG
GTA-39 and reverse 59-TCTCAGATCGTTGAACCTTGCTA-39;
human SALL3 forward 59-CCAATGTGTCGGTGTTCGAG-39 and
reverse 59-CCGGGTAAGGGTTCATCTGG-39; human SEPT9 for-
ward 59-TTCGGCTACGTGGGGATTG-39 and reverse 59-CTGCCC
GACCACCATGATG-39; human SOX2 forward 59-GCCGAGTGG
AAACTTTTGTCG-39 and reverse 59-GGCAGCGTGTACTTATCC
TTCT-39; and 18S RNA forward 59-ACCCGTTGAACCCCATT-39
and reverse 59-CCATCCAATCGGTAGTAGCG-39.

Plasmids and lentiviral transduction
Lentiviral clones expressing two nonoverlapping shRNAs directed
against human ASCL1 (TRCN0000235657, TRCN0000244309),
human BCAN (TRCN0000151872, TRCN0000371366), human
C1ORF61 (TRCN0000172451, TRCN0000167021), human CDK6
(TRCN0000196261, TRCN0000196337), human CXCL8
(TRCN0000058030, TRCN0000232050), human CXXC5
(TRCN0000139498, TRCN0000142729), EGFR (TRCN0000121329,
TRCN0000121068), HMGA2 (TRCN0000342671, TRCN0000021966),
MSRB3 (TRCN0000064761, TRCN0000064759), RUNX2
(TRCN0000013656, TRCN0000013655), SALL3 (TRCN0000418831,
TRCN0000019755), SEPT9 (TRCN0000119069, TRCN0000445092),
SOX2 (TRCN0000355694, TRCN0000231642), or a nontargeting
control shRNA that has no targets in the human genome were ob-
tained from Sigma-Aldrich. Nonoverlapping shRNAs were selected
based on knockdown efficiency and were then used for all following
experiments. 293FT cells were used to generate lentiviral particles
through cotransfection of the packaging vectors pCMV-dR8.2 dvpr
and pCI-VSVG by using a standard calcium phosphate transfection
method in Neurobasal complete medium.

Whole-exome sequencing variant discovery
BWA-MEM version 0.7.12 (Li and Durbin, 2010) was used to
align paired-end exome sequencing reads to the hg19 reference
genome, and SAMtools (Li et al., 2009a) was used for sorting.
PCR duplicates were removed with PicardTools (http://
broadinstitute.github.io/picard/). Single-nucleotide variants
and indels were identified with the Genome Analysis Toolkit
(McKenna et al., 2010) version 3.8 in accordance with the Ge-
nome Analysis Toolkit best practices with the principal steps of
base quality score recalibration, variant genotyping for single-
nucleotide variants and indels, and variant hard-filtering with
standard recommendations (DePristo et al., 2011; Van der
Auwera et al., 2013). Variants with predicted moderate or

high impact on gene function (primarily nonsynonymous
variants or those that directly affect splice donors or acceptors)
were annotated with SNPeff (Cingolani et al., 2012). Variants
were further annotated with allelic frequencies from the
Exome Aggregation Consortium release 1 (Lek et al., 2016) or
the 1000 Genomes Project (Auton et al., 2015). Potential path-
ogenic variants were identified in a group of commonly mu-
tated PI3K pathway genes (John Lin et al., 2017) and GBM genes
(Brennan et al., 2013) with an allelic frequency of <1/10,000 in
both Exome Aggregation Consortium and the 1000 Genomes
Project. CopywriteR (Kuilman et al., 2015) was used to identify
CNVs. Focal CNVs of commonly altered GBM and PI3K genes
were identified with a log2 (copy number ratio) of >2 or >1 and
focal (i.e., <10 megabases and clearly delimited) for amplifica-
tions with a threshold of <−2 or <−1 and focal for deletions. A
small minority of focal CNVs were also excluded manually
based on small size and having limited support in the BAM file.

H3K27ac ChIP-seq processing
The H3K27ac ChIP-seq was processed following the guidelines of
ENCODE (phase-3) by using the AQUAS pipeline (https://github.
com/kundajelab/chipseq_pipeline). This ChIP-seq processing
pipeline (1) mapped the sequenced reads to the human reference
genome hg19/GRCh37 using the Burrows-Wheeler Aligner (Li and
Durbin, 2009), (2) filtered low-quality, duplicate, multimapping,
unmapped reads along with reads mapping to the mitochondrial
genome, and (3) performed peak calling using MACS2 with a P
value threshold of 10−5. The quality control measures such
as mapping statistics, library complexity (PCR bottlenecking
coefficients, PBC1, and PBC2), cross-correlation scores (normal-
ized strand cross-correlation coefficient and relative strand cross-
correlation coefficient) and fraction of reads in the peaks as de-
fined by ENCODE data standards (https://www.encodeproject.
org/chip-seq/histone/) were also determined using the pipeline.
Additionally, we also determined the fraction of reads mapping
within 2-kb of an annotated promoter as a quality control mea-
sure. The H3K27ac ChIP-seq experiments with PBC1 >0.8 with
total mapped reads >10 million and MACS2 peaks (P < 10−05)
>5,000 were used for further analysis. Experiments detected as
outliers based on acetylation signal and potential impurity (n = 4)
were further removed to provide a robust set of experiments of
GSCs (n = 30), primary tumors (n = 7), and NSCs (n = 7).

RNA-seq processing
The sequenced reads of RNA-seq experiments were aligned to
human reference genome hg19/GRCh37 using STAR aligner (Dobin
et al., 2013). The expression of the genes was determined as frag-
ments per kilobase million (FPKM) by counting the number of
uniquely mapping fragments and normalizing it by the length
coding sequence and the library size.

Gene annotation was based on UCSC RefSeq. Genes expressed
with >1 FPKM in ≥50% of the samples of each group were con-
sidered to be expressed genes.

Defining GSCs groups
Unsupervised consensus clustering using the ConsensusClusterPlus
package from Bioconductor was performed on the top 10% most
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variable regions by acetylation signal (n = 14,621). This was
done by calculating the median absolute deviation of tags per
base per million of all the peaks with an acetylation signal.
Unsupervised clustering was based on the Euclidean distance
between the experiments with maximum clusters k = 6 using
80% of samples and 80% of features for every k. The con-
sensus clustering results showed that GSCs optimally fell into
four clusters, group 1 (n = 15), group 2 (n = 9), group 3 (n = 2),
and group 4 (n = 4).

Defining NSCs groups
NSC samples were clustered with the GSC samples using the
consensus clustering approach as described above with maxi-
mum clusters k = 7 for on top 10% most variable regions by
acetylation signal (n = 16,817).

Mapping SEs using H3K27ac enhancer definitions
H3K27ac SEs and typical enhancers in samples were mapped
using the ROSE2 software package (Lovén et al., 2013; Whyte
et al., 2013; and available at https://github.com/BradnerLab/
pipeline). Genes were assigned to SEs by proximity.

Identifying group-specific SEs
The SEs that were present in at least two samples of each of the
two GSC groups were compared for differential occupancy (n =
2,445). SEs with significantly differential H3K27ac occupancy
(false discovery rate [FDR]–adjusted P < 0.01) were identified by
modeling H3K27ac read counts as negative binomial distribution
using a generalized linear model (Anders and Huber, 2010).
Bioconductor package DESeq2 was used for this purpose.

Identifying differentially expressed genes between the
GSC groups
Differentially expressed genes (FDR-adjusted P < 0.1) between
the two GSC groups were identified using the generalized linear
model as described above from the RNA-seq gene counts. Genes
expressed in either of the GSC groups were used for this.

Occupancy heatmap of SEs
The occupancy heatmap of significantly differential SEs was
generated using the Bioconductor package genomation. The
heatmap is centered at the center of the differential SEs with
total width as the 75th quartile width of all the differential SEs.
The H3K27ac density in the heatmaps is shown in reads per
million (rpm).

Identifying group-specific TFs
SE-associated genes have been shown to be critical for estab-
lishing cell identity. Thus, we wanted to identify group-specific
SE-associated TFs that are key regulators of SE-associated target
genes. We predicted TF binding to SEs by motif and used
proximity to assign SEs to genes. The H3K27ac valleys were used
as the nucleosome-free regions where the TFs could potentially
bind. TF binding sites were obtained from TRANSFAC (Matys
et al., 2006) and detected at nucleosome-free regions by using
FIMO (Grant et al., 2011). For each group of GSCs, we identified
the SE-associated target genes and TFs.We used ridge regression

to predict the target gene activity from the binding TF activity
and then used a permutation test to assign significance to ridge
regression coefficients. The regularizer in the ridge regression
was chosen by 10-fold cross-validation. The target gene activity
was randomly permuted followed by model fitting by ridge re-
gression. We performed 10,000 permutations to obtain a null
distribution of the regression coefficients. This null distribution
was used to assign the significance to the true model co-
efficients. TFs with P < 0.05 were considered the potential key
regulators of the target genes. TFs with significant correlation to
>2% of target genes in both the groups were considered as
consensus TFs (n = 24) while the ones that were significantly
correlatedwith >1% target genes in the specific groups only were
the potential group-specific TFs (group 1 TFs = 14 and group
2 TFs = 18).

High-confidence group-specific target genes
Genes with group-specific SEs with predicted binding sites for
TFs along with significantly different gene expression between
the two groups were categorized as group-specific target genes
(common target genes = 111, group 1 target genes = 125, and
group 2 target genes = 171).

Gene ontology enrichment analysis
Functional annotation enrichment done for group-specific TFs,
common TFs, and target genes was performed by using DAVID
with the expressed genes as the background.

Primary GBM classification
A gene-signature set was created for group 1 by combining the
group 1–specific TFs and group 1 target genes. Similarly, the
group 2 gene signature was defined by combining group 2–
specific TFs and group 2 target genes. k-means (k = 2) was used
to classify the GSC samples and primary GBMs into two groups
by using the quantile normalized log2(rpm/bp) acetylation sig-
nal at the SEs of these genes with 10,000 iterations with 100
different starting points. This created two clusters, cluster
1 corresponding to group 1 GSCs (GSCs = 15, primary GBMs = 6)
and cluster 2 corresponding to group 2 GSCs (GSCs = 9, primary
GBM = 1). Primary GBMs that clustered with group 1 GSCs were
assigned to be group 1–like GSCs, and the one that clustered with
group 2 GSC was assigned to be group 2–like GSC. This metho-
dology was repeated on the gene expression (log2 RPKM) of
group 1 and group 2 gene signatures yielding consistent as-
signments of primary GBMs to be like group 1 GSC and group
2 GSC. This created two clusters, cluster 1 corresponding to
group 1 GSCs (GSCs = 14/15 and primary GBMs = 38) and cluster
2 corresponding to group 2 GSCs (GSCs = 9/9 and primary
GBM = 5).

Group representation at single-cell level in bulk tumors
Single-cell RNA-seq samples from Gene Expression Omnibus
dataset GSE57872 (Patel et al., 2014) were aligned and processed
as the other RNA-seq samples as described previously. This
study has single-cell RNA-seq from five bulk tumors. Only
single-cell samples and genes that had been described to have
robust expression in the study were used for further analysis
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(n = 468).We additionally filtered for single-cell samples that had
expression for at ≥30% of filtered genes (n = 5,516). These
overlapped with four group 1–specific TFs, four group 2–specific
TFs, 60 group 1 target genes, and 64 group 2 target genes. The
gene expression in tags per million of the single-cell samples and
RNA-seq of GSCs were log2 transformed and quantile normal-
ized together. Spearman rank correlation coefficient for the
group-specific target genes and TFs was determined for every
single-cell sample of each of the five tumor types with all the GSC
samples in group 1 or group 2. To assess the robustness of the
correlation, the gene expression values of the GSC sample were
randomized 5,000 times, and the correlation coefficient was
calculated. Only if the absolute correlation coefficient was >99%
of the random absolute correlation coefficients then the single-
cell sample was considered to have a correlation with the GSC
sample. For a group level similarity score, the median correlation
coefficient for every single-cell sample with all the samples in
the GSC group was determined. This was done only for cells that
had significant correlation with >75% samples of each group.

Compound drug screening assay
Compounds and DMSO vehicle controls were transferred to
black, clear-bottom 1,536-well plates (Greiner; 789092) using an
acoustic transfer system (ATS) Gen4+ instrument (EDC Bio-
systems). Cells were dispensed in a volume of 10 µl, and a
density of 1,000 cells per well by using aMultidrop Combi liquid
handler (Thermo Fisher Scientific; 5840300). Plates were in-
cubated at 37°C and 5% CO2 for 72 h, at which point CellTiter-Glo
reagent (Promega; G7572) was added to each well using the
Multidrop Combi instrument. Plates were shaken at 25°C for
30 min and then read for luminescence output by using an
EnVision plate reader (Perkin Elmer). Luminescence intensity of
compound wells was then expressed as a percentage of the av-
erage of the DMSO controls for the corresponding plate for each
cell line and plotted against the log of the concentration of
compound using GraphPad Prism 7 (GraphPad Software Version
7.04). Data were fit to a log10 (concentration) versus a normal-
ized response curve, and 50% cytotoxic concentration values
were obtained for each compound for individual cell lines.

Data accession statement and information
All raw data files are deposited in the Gene Expression Omnibus
repository under accession nos. GSE119834, GSE119776, GSE119755,
and GSE119774.

Online supplemental material
Fig. S1 shows a summary of study DNAmethylation, H3K27ac, DNA
exome, and copy number data. Fig. S2 shows validation of core GSC
SE genes. Fig. S3 shows functional validation of group-specific GSC
identity genes. Fig. S4 shows gene expression and pathway analysis
of group-specific GSC TFs. Fig. S5 shows examples of group-specific
GSC TF enhancer and gene expression profiles.
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W. Ho, M.M. Monasterio, et al. 2016. Epigenetic Activation of WNT5A
Drives Glioblastoma Stem Cell Differentiation and Invasive Growth.
Cell. 167:1281–1295.e18. https://doi.org/10.1016/j.cell.2016.10.039

Jin, X., L.J.Y. Kim, Q. Wu, L.C. Wallace, B.C. Prager, T. Sanvoranart, R.C.
Gimple, X. Wang, S.C. Mack, T.E. Miller, et al. 2017. Targeting glioma
stem cells through combined BMI1 and EZH2 inhibition. Nat. Med. 23:
1352–1361. https://doi.org/10.1038/nm.4415

John Lin, C.C., K. Yu, A. Hatcher, T.W. Huang, H.K. Lee, J. Carlson, M.C.
Weston, F. Chen, Y. Zhang, W. Zhu, et al. 2017. Identification of diverse
astrocyte populations and their malignant analogs. Nat. Neurosci. 20:
396–405. https://doi.org/10.1038/nn.4493

Kim, S.H., R. Ezhilarasan, E. Phillips, D. Gallego-Perez, A. Sparks, D. Taylor,
K. Ladner, T. Furuta, H. Sabit, R. Chhipa, et al. 2016. Serine/Threonine
Kinase MLK4 Determines Mesenchymal Identity in Glioma Stem Cells
in an NF-κB-dependent Manner. Cancer Cell. 29:201–213. https://doi
.org/10.1016/j.ccell.2016.01.005

Kuilman, T., A. Velds, K. Kemper, M. Ranzani, L. Bombardelli, M. Hoogstraat,
E. Nevedomskaya, G. Xu, J. de Ruiter, M.P. Lolkema, et al. 2015.
CopywriteR: DNA copy number detection from off-target sequence
data. Genome Biol. 16:49. https://doi.org/10.1186/s13059-015-0617-1

Kundaje, A., W. Meuleman, J. Ernst, M. Bilenky, A. Yen, A. Heravi-Moussavi,
P. Kheradpour, Z. Zhang, J. Wang, M.J. Ziller, et al.; Roadmap Epi-
genomics Consortium. 2015. Integrative analysis of 111 reference human
epigenomes. Nature. 518:317–330. https://doi.org/10.1038/nature14248

Lathia, J.D., S.C. Mack, E.E. Mulkearns-Hubert, C.L. Valentim, and J.N. Rich.
2015. Cancer stem cells in glioblastoma. Genes Dev. 29:1203–1217. https://
doi.org/10.1101/gad.261982.115

Lek, M., K.J. Karczewski, E.V. Minikel, K.E. Samocha, E. Banks, T. Fennell, A.
H. O’Donnell-Luria, J.S. Ware, A.J. Hill, B.B. Cummings, et al.; Exome
Aggregation Consortium. 2016. Analysis of protein-coding genetic
variation in 60,706 humans. Nature. 536:285–291. https://doi.org/10
.1038/nature19057

Li, H., and R. Durbin. 2009. Fast and accurate short read alignment with
Burrows-Wheeler transform. Bioinformatics. 25:1754–1760. https://doi
.org/10.1093/bioinformatics/btp324

Li, H., and R. Durbin. 2010. Fast and accurate long-read alignment with
Burrows-Wheeler transform. Bioinformatics. 26:589–595. https://doi
.org/10.1093/bioinformatics/btp698

Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G.
Abecasis, and R. Durbin. 1000 Genome Project Data Processing Subgroup.
2009a. The Sequence Alignment/Map format and SAMtools. Bio-
informatics. 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352

Li, Z., S. Bao, Q. Wu, H. Wang, C. Eyler, S. Sathornsumetee, Q. Shi, Y. Cao, J.
Lathia, R.E. McLendon, et al. 2009b. Hypoxia-inducible factors regulate
tumorigenic capacity of glioma stem cells. Cancer Cell. 15:501–513.
https://doi.org/10.1016/j.ccr.2009.03.018

Lin, C.Y., S. Erkek, Y. Tong, L. Yin, A.J. Federation, M. Zapatka, P. Haldipur,
D. Kawauchi, T. Risch, H.J. Warnatz, et al. 2016. Activemedulloblastoma
enhancers reveal subgroup-specific cellular origins. Nature. 530:57–62.
https://doi.org/10.1038/nature16546

Liu, F., G.C. Hon, G.R. Villa, K.M. Turner, S. Ikegami, H. Yang, Z. Ye, B. Li, S.
Kuan, A.Y. Lee, et al. 2015. EGFR Mutation Promotes Glioblastoma
through Epigenome and Transcription Factor Network Remodeling.
Mol. Cell. 60:307–318. https://doi.org/10.1016/j.molcel.2015.09.002

Lovén, J., H.A. Hoke, C.Y. Lin, A. Lau, D.A. Orlando, C.R. Vakoc, J.E. Bradner,
T.I. Lee, and R.A. Young. 2013. Selective inhibition of tumor oncogenes
by disruption of super-enhancers. Cell. 153:320–334. https://doi.org/10
.1016/j.cell.2013.03.036

Lu, Q.R., T. Sun, Z. Zhu, N. Ma, M. Garcia, C.D. Stiles, and D.H. Rowitch.
2002. Common developmental requirement for Olig function indicates

Mack et al. Journal of Experimental Medicine 1088

The human glioblastoma chromatin landscape https://doi.org/10.1084/jem.20190196

https://doi.org/10.1016/j.ccr.2013.08.001
https://doi.org/10.1016/j.ccr.2013.08.001
https://doi.org/10.1016/j.cell.2005.08.020
https://doi.org/10.1016/j.cell.2013.09.034
https://doi.org/10.1038/nature07385
https://doi.org/10.1038/nature26000
https://doi.org/10.1038/nature08712
https://doi.org/10.1038/nature11287
https://doi.org/10.1016/j.cell.2012.03.009
https://doi.org/10.1016/j.cell.2012.03.009
https://doi.org/10.1038/25779
https://doi.org/10.4161/fly.19695
https://doi.org/10.1093/nar/gkx1143
https://doi.org/10.1038/ng.806
https://doi.org/10.1038/ng.806
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1038/s41588-018-0191-z
https://doi.org/10.1016/j.cell.2011.06.006
https://doi.org/10.1016/j.cell.2011.06.006
https://doi.org/10.1038/nn.3510
https://doi.org/10.1038/ng.2734
https://doi.org/10.1038/ng.2734
https://doi.org/10.1016/j.ccell.2018.02.006
https://doi.org/10.1016/j.ccell.2018.02.006
https://doi.org/10.1056/NEJMoa1308573
https://doi.org/10.1038/nature08533
https://doi.org/10.1093/bioinformatics/btr064
https://doi.org/10.1093/bioinformatics/btr064
https://doi.org/10.1016/j.ccell.2018.03.020
https://doi.org/10.1016/j.ccell.2018.03.020
https://doi.org/10.1056/NEJMoa043331
https://doi.org/10.1016/j.cell.2016.10.039
https://doi.org/10.1038/nm.4415
https://doi.org/10.1038/nn.4493
https://doi.org/10.1016/j.ccell.2016.01.005
https://doi.org/10.1016/j.ccell.2016.01.005
https://doi.org/10.1186/s13059-015-0617-1
https://doi.org/10.1038/nature14248
https://doi.org/10.1101/gad.261982.115
https://doi.org/10.1101/gad.261982.115
https://doi.org/10.1038/nature19057
https://doi.org/10.1038/nature19057
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp698
https://doi.org/10.1093/bioinformatics/btp698
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1016/j.ccr.2009.03.018
https://doi.org/10.1038/nature16546
https://doi.org/10.1016/j.molcel.2015.09.002
https://doi.org/10.1016/j.cell.2013.03.036
https://doi.org/10.1016/j.cell.2013.03.036
https://doi.org/10.1084/jem.20190196


a motor neuron/oligodendrocyte connection. Cell. 109:75–86. https://
doi.org/10.1016/S0092-8674(02)00678-5

Mack, S.C., K.W. Pajtler, L. Chavez, K. Okonechnikov, K.C. Bertrand, X.
Wang, S. Erkek, A. Federation, A. Song, C. Lee, et al. 2018. Therapeutic
targeting of ependymoma as informed by oncogenic enhancer profiling.
Nature. 553:101–105. https://doi.org/10.1038/nature25169

Makova, K.D., and R.C. Hardison. 2015. The effects of chromatin organization
on variation in mutation rates in the genome. Nat. Rev. Genet. 16:
213–223. https://doi.org/10.1038/nrg3890

Mansour, M.R., B.J. Abraham, L. Anders, A. Berezovskaya, A. Gutierrez, A.D.
Durbin, J. Etchin, L. Lawton, S.E. Sallan, L.B. Silverman, et al. 2014.
Oncogene regulation. An oncogenic super-enhancer formed through
somatic mutation of a noncoding intergenic element. Science. 346:
1373–1377. https://doi.org/10.1126/science.1259037

Mao, P., K. Joshi, J. Li, S.H. Kim, P. Li, L. Santana-Santos, S. Luthra, U.R.
Chandran, P.V. Benos, L. Smith, et al. 2013. Mesenchymal glioma stem
cells are maintained by activated glycolytic metabolism involving al-
dehyde dehydrogenase 1A3. Proc. Natl. Acad. Sci. USA. 110:8644–8649.
https://doi.org/10.1073/pnas.1221478110

Matys, V., O.V. Kel-Margoulis, E. Fricke, I. Liebich, S. Land, A. Barre-Dirrie, I.
Reuter, D. Chekmenev, M. Krull, K. Hornischer, et al. 2006. TRANSFAC
and its module TRANSCompel: transcriptional gene regulation in eu-
karyotes. Nucleic Acids Res. 34:D108–D110. https://doi.org/10.1093/nar/
gkj143

McKenna, A., M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky,
K. Garimella, D. Altshuler, S. Gabriel, M. Daly, and M.A. DePristo. 2010.
The Genome Analysis Toolkit: a MapReduce framework for analyzing
next-generation DNA sequencing data. Genome Res. 20:1297–1303.
https://doi.org/10.1101/gr.107524.110

Miller, T.E., B.B. Liau, L.C. Wallace, A.R. Morton, Q. Xie, D. Dixit, D.C. Factor,
L.J.Y. Kim, J.J. Morrow, Q. Wu, et al. 2017. Transcription elongation
factors represent in vivo cancer dependencies in glioblastoma. Nature.
547:355–359. https://doi.org/10.1038/nature23000

Noushmehr, H., D.J. Weisenberger, K. Diefes, H.S. Phillips, K. Pujara, B.P.
Berman, F. Pan, C.E. Pelloski, E.P. Sulman, K.P. Bhat, et al.; Cancer
Genome Atlas Research Network. 2010. Identification of a CpG island
methylator phenotype that defines a distinct subgroup of glioma. Cancer
Cell. 17:510–522. https://doi.org/10.1016/j.ccr.2010.03.017

Ostrom, Q.T., H. Gittleman, P.M. de Blank, J.L. Finlay, J.G. Gurney, R.
McKean-Cowdin, D.S. Stearns, J.E. Wolff, M. Liu, Y. Wolinsky, et al.
2016. American Brain Tumor Association Adolescent and Young Adult
Primary Brain and Central Nervous System Tumors Diagnosed in the
United States in 2008-2012. Neuro-oncol. 18(Suppl 1):i1–i50. https://doi
.org/10.1093/neuonc/nov297

Ott, C.J., A.J. Federation, L.S. Schwartz, S. Kasar, J.L. Klitgaard, R. Lenci, Q. Li,
M. Lawlor, S.M. Fernandes, A. Souza, et al. 2018. Enhancer Architecture
and Essential Core Regulatory Circuitry of Chronic Lymphocytic Leu-
kemia. Cancer Cell. 34:982–995.e7. https://doi.org/10.1016/j.ccell.2018.11
.001

Parsons, D.W., S. Jones, X. Zhang, J.C. Lin, R.J. Leary, P. Angenendt, P.
Mankoo, H. Carter, I.M. Siu, G.L. Gallia, et al. 2008. An integrated ge-
nomic analysis of human glioblastoma multiforme. Science. 321:
1807–1812. https://doi.org/10.1126/science.1164382

Patel, A.P., I. Tirosh, J.J. Trombetta, A.K. Shalek, S.M. Gillespie, H. Wakimoto,
D.P. Cahill, B.V. Nahed, W.T. Curry, R.L. Martuza, et al. 2014. Single-cell
RNA-seq highlights intratumoral heterogeneity in primary glioblas-
toma. Science. 344:1396–1401. https://doi.org/10.1126/science.1254257

Phillips, H.S., S. Kharbanda, R. Chen, W.F. Forrest, R.H. Soriano, T.D. Wu, A.
Misra, J.M. Nigro, H. Colman, L. Soroceanu, et al. 2006. Molecular
subclasses of high-grade glioma predict prognosis, delineate a pattern of
disease progression, and resemble stages in neurogenesis. Cancer Cell. 9:
157–173. https://doi.org/10.1016/j.ccr.2006.02.019

Quail, D.F., and J.A. Joyce. 2017. The Microenvironmental Landscape of Brain
Tumors. Cancer Cell. 31:326–341. https://doi.org/10.1016/j.ccell.2017.02
.009

Quail, D.F., R.L. Bowman, L. Akkari, M.L. Quick, A.J. Schuhmacher, J.T. Huse,
E.C. Holland, J.C. Sutton, and J.A. Joyce. 2016. The tumor microenvi-
ronment underlies acquired resistance to CSF-1R inhibition in gliomas.
Science. 352:aad3018. https://doi.org/10.1126/science.aad3018

Segerman, A., M. Niklasson, C. Haglund, T. Bergström, M. Jarvius, Y. Xie, A.
Westermark, D. Sönmez, A. Hermansson, M. Kastemar, et al. 2016.
Clonal Variation in Drug and Radiation Response among Glioma-
Initiating Cells Is Linked to Proneural-Mesenchymal Transition. Cell
Reports. 17:2994–3009. https://doi.org/10.1016/j.celrep.2016.11.056

Singh, D.K., R.K. Kollipara, V. Vemireddy, X.L. Yang, Y. Sun, N. Regmi, S.
Klingler, K.J. Hatanpaa, J. Raisanen, S.K. Cho, et al. 2017. Oncogenes
Activate an Autonomous Transcriptional Regulatory Circuit That
Drives Glioblastoma. Cell Reports. 18:961–976. https://doi.org/10.1016/j
.celrep.2016.12.064

Singh, S.K., C. Hawkins, I.D. Clarke, J.A. Squire, J. Bayani, T. Hide, R.M.
Henkelman, M.D. Cusimano, and P.B. Dirks. 2004. Identification of
human brain tumour initiating cells. Nature. 432:396–401. https://doi
.org/10.1038/nature03128

Stupp, R., M.E. Hegi, W.P. Mason, M.J. van den Bent, M.J. Taphoorn, R.C.
Janzer, S.K. Ludwin, A. Allgeier, B. Fisher, K. Belanger, et al.; National
Cancer Institute of Canada Clinical Trials Group. 2009. Effects of ra-
diotherapy with concomitant and adjuvant temozolomide versus radi-
otherapy alone on survival in glioblastoma in a randomised phase III
study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 10:
459–466. https://doi.org/10.1016/S1470-2045(09)70025-7

Stupp, R., S. Taillibert, A. Kanner, W. Read, D. Steinberg, B. Lhermitte, S.
Toms, A. Idbaih, M.S. Ahluwalia, K. Fink, et al. 2017. Effect of Tumor-
Treating Fields Plus Maintenance Temozolomide vs Maintenance Te-
mozolomide Alone on Survival in Patients With Glioblastoma: A Ran-
domized Clinical Trial. JAMA. 318:2306–2316. https://doi.org/10.1001/
jama.2017.18718
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