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A microscopic empirical model of bulk modulus based on atomic-scale parameters is proposed. These
parameters include the bond length, the effective bonded valence electron (EBVE) number, and the
coordination number product of two bonded atoms, etc. The estimated bulk moduli from our model are in
good agreement with experimental values for various polar covalent crystals including ionic crystals. Our
current work sheds lights on the nature of bulk modulus, provides useful clues for design of crystals with low
compressibility, and is applicable to complex crystals such as minerals of geophysical importance.

I
n the past several decades, great efforts have been made to establish direct correlations between the mac-
roscopic mechanical properties and the microscopic parameters of solid. Such correlations can reveal the
crucial factors that determine materials mechanical properties. More importantly, they can be used to estimate

mechanical properties of designed crystals and provide insightful information before experimental trials. Up to
now, some important progresses have been achieved. For example, microscopic hardness models have been
constructed in terms of atomic-scale parameters and used extensively experimentally as well as in superhard
materials design1. However, microscopic models for other mechanical properties, such as bulk modulus2–4, are
still in the primary stage.

Bulk modulus measures material’s resistance to uniform compression, and is highly related to the chemical
composition and crystal structure. Materials with high bulk modulus are potentially superhard materials accord-
ing to the rough correlation between bulk modulus and hardness5. Moreover, bulk modulus is relevant to
geophysics since it is involved in the interpretation of earth’s seismic properties. Numerous experimental and
theoretical efforts on bulk modulus have thus been undertaken. However, the measurements of the bulk moduli
are nontrivial and values for many materials are still unavailable or unreliable. Concurrently, theoretical calcula-
tions of bulk moduli are performed mainly with two approaches. The first is based on ab initio techniques. Unlike
hardness, bulk modulus is a strictly defined thermodynamic quantity (B 5 2VdP/dV), and can thus be obtained
theoretically by either using the stain–stress method6, or fitting the calculated total energy with Murnaghan
equation of state7 and Birch–Murnaghan equation of state8. These ab initio calculations, relying on computational
facilities, can also provide details of the bonding, structural, and electronic properties of solids9. The second is
empirical approaches based on readily accessible parameters, e.g. chemical bond length, valence, and ionicity. The
empirical models can estimate bulk moduli of crystals with the advantage of simplicity and comparable accuracy
as ab initio ones, but usually different quantification schemes are being used for different class of crystals.

To put present work in context, a brief review of empirical approaches for bulk modulus estimation is
necessary. In 1923, Bridgman proposed an empirical relationship between bulk modulus and molar volume
for metals10. Sequentially, researchers revealed the bulk moduli of minerals are controlled primarily by the specific
volume per ion pair11–13. Jayaraman correlated the bulk modulus with the unit cell volume and the effective
covalence product for rocksalt-structured rare-earth compounds14. It was established that, for a given class of
materials with identical crystal structure and similar bonding properties, the bulk modulus would scale with the
unit cell volume according to B~B0V{p

0 , where B0 and p, constants characteristic of selected materials family, are
mainly determined by the type of chemical bond (e.g. bond ionicity) and the dependence of the interatomic
potential on the interatomic distance, respectively15. Hazen and Finger proposed a more general bulk modulus–
volume relationship for cation coordination polyhedral in a variety of structure types including oxides, silicates,

halides, sulfides, phosphides, and carbides: B~7:5S2ZaZc

.
d

3
, where B, S2, d, Za and Zc are the polyhedral bulk

modulus, an empirical ionicity, the mean cation–anion separation, cation and anion formal charge, respectively16.
However, application of this model to rutile-type oxides showed large deviations from experimental values as
pointed out by the same authors17.

In his seminal work for zincblende semiconductors, Cohen assumed the bulk modulus of covalent crystals
should obey the scaling relation between covalent bond energy and the bond volume change, and proposed a bulk
modulus model using bond length and an ionicity parameter2. The different power-law dependent of bulk
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modulus on the bond length for semiconductors (B / d23.5) and
ionic crystals (B / d23) were also pointed out2. Most recently,
Cohen’s work was developed by Kamran3 and Verma18 for dia-
mond-like and zincblende covalent crystals. In both cases, the d23.5

dependence of B is retained with different descriptions of the ionicity.
Other empirical bulk modulus models have also been proposed

based on different considerations, such as the electronegativity4,
transition pressure19, Debye temperature20, plasmon energy21, parti-
tioning of the elastic constants with the atomic basin concept22, etc.
Details of these models are less relevant to present work. It should be
noted that some of the key variables used in these models are unde-
ducible from the crystal structural information and have to be pro-
vided otherwise, which limit these models’ applicability.

The bulk modulus of a crystal microscopically depends on the
nature of its chemical bonds such as bond length and type, as corro-
borated in the empirical relationships between bulk modulus and
specific volume (or bond length). Also, a crystal structure depend-
ence of bulk modulus was revealed4,23,24. To formulate a microscopic
bulk modulus model with easy accessibility and broad applicability,
input variables should be directly deducible for selected crystals.
Parameterizing of the influences of bond type and crystal structure
is thus prerequisite. Recently, we suggested a universal quantification
of the bond strength in covalent and ionic crystals by using the
proposed effectively bonded valence electron (EBVE) number, nAB,
of a chemical bond25,26, which can be used as a parameter to char-
acterize bond type (See Method section for the details). For single-
bond crystals, Levine pointed out the normalized bond volume, n 5

nbd3/V, can be used as a measure of crystal geometry, where nb, d, and
V are the bond number in the unit cell, bond length, and unit cell
volume, respectively27. Further analysis shows n is proportional to the
product of coordination numbers for two bonded atoms, and distin-
guishes zincblende, wurtzite, rocksalt, CsCl, cuprite, fluorite, rutile,
and corundum structures (Figure 1). This product can thus be used
to characterize the crystal structure. We emphasize that both EBVE
number and coordination number product can easily be calculated
for a designated crystal and applied to multi-bond crystals.

Thus far, three main parameters affecting the bulk modulus, i.e.
the bond length (d), EBVE number (nAB) and coordination number
product (p 5 NANB), are determined. Previous studies revealed the
power-law behavior of the bond length (or unit cell volume) on bulk
modulus2,15. Also, the exponential dependence of the bond strength
on EBVE number is emphasized25. These studies highlighted the

roles of the bond length and valance electrons on bulk modulus,
which can be quantified tentatively in terms of fundamental variables
with the formalism,

B GPað Þ~Cpldm exp knABð Þ, ð1Þ

where C, l, m, and k are the fitting constants. In the following, we
deduce the empirical expression of bulk modulus for simple ANB8-N

type covalent crystals with one coordination number. The general-
izations to covalent crystals with diverse coordination numbers and
to ionic crystals are presented sequentially, followed by generaliza-
tion to multi-bond crystals. The application of our model to geo-
physics interesting minerals is also demonstrated.

Results
ANB8-N type covalent crystals. We first consider single-bond ANB8-N

type covalent crystals with zincblende, wurtzite, and rocksalt
structures where only one type of chemical bond and one
coordination number are presented. With the aid of available
experimental bulk modulus data (shown in Table 1), our approach
is to decompose the bulk modulus into parameters associated with
individual chemical bonds, i.e. d, nAB, and p, by using Eqn. 1. The
constants, C, l, m, and k, can be extrapolated from the experimental
bulk modulus data for these covalent crystals with the Levenberg-
Marquardt method28,29, giving

B GPað Þ~54:7p0:914d{3:46 exp 1:485nABð Þ: ð2Þ

The key variables, experimental bulk moduli3,4,16,30–36, and calculated
bulk moduli from our model and from other models3,4 are listed in
Table 1 for selected ANB8-N type covalent crystals. The comparison
between calculated bulk moduli and experimental values is
emphasized in Figure 2. The overall accuracy of our model is
comparable with the electronegativity model4 and better than that
of Kamran et al3. Unlike the other two models, where either
electronegativity or ionicity has to be determined through other
way, all the input parameters in our model can be directly deduced
from the designated crystal with simple arithmetic calculations,
providing a unique advantage for its application. To further check
the performance of Eqn. 2 for other similar crystals not included in
Table 1, we list the results for zincblende-structured BAs37 and BSb38,
rocksalt-structured PbS39, PbTe40, and AgCl41 in Table 2. The
consistence of bulk moduli from the experiments (ab initio
calculations for BSb) and our empirical model is satisfying.

AnBm type covalent crystals. For selected AnBm (n=m) type crystals
(Table 3), bulk moduli calculated from Eqn. 2 are systematically
smaller than experimental values13,17,22,42,43. It should be noted that
an average bond length was used for rutile and corundum structures
in Table 2. Previously we chose p 5 NANB as a characteristic of crystal
geometry, which did not explicitly reveal the diversity of the
coordination numbers as presented in AnBm crystals. Here we
define Nmax 5 max[NA, NB] and Nmin 5 min[NA, NB]. We choose
two schemes to address this issue. The first one is to use NA and NB

individually as input parameters, with the power-law indexes
determined by fitting the experimental data. The second one is to
introduce an asymmetry parameter, L 5 Nmax/Nmin, for two bonded
atoms with different coordination numbers. The bulk modulus
formulae are B GPað Þ~CNs

maxNt
mindm exp knABð Þ and B(GPa) 5

CplLtdmexp(knAB), respectively. To keep the consistency with Eqn.
2, only the power-law indexes to Nmax, Nmin, and L are adjusted
during data fitting, and determined to be 1.201, 0.672, and 0.370,
respectively. These two schemes give similar results (Bcal,1 and Bcal,2

in Table 3). Here we choose the second scheme,

B GPað Þ~54:7p0:914L0:37d{3:46 exp 1:485nABð Þ: ð3Þ

Figure 1 | Plot of n against the product of coordination numbers of two
bonded atoms.
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Thus far, a uniform empirical bulk modulus model for both ANB8-N

type and AnBm type covalent crystals is formulated.

Ionic crystals. In examining the bulk moduli for I-VII rocksalt
ionic crystals, Cohen gave an approximate scaling, B 5 550d23,
which differs from that for diamond- and zincblende-structured
covalent crystals in the prefactor and power-law index2. We use
Eqn. 1 to fit the experimental bulk moduli of rocksalt ionic
crystals23, using fixed l (0.914) and k (1.485). The power-law
index m determined here (23.43) is very close to the previous
value (23.46). For simplicity, an identical value of 23.46 is
used, and the empirical bulk modulus formula for rocksalt-
structured ionic crystals is deduced as

B GPað Þ~25:4p0:914d{3:46 exp 1:485nABð Þ: ð4Þ

We apply Eqn. 4 to cesium halides with CsCl-structure and
produce bulk moduli in great consistent with experimental
ones23, as listed in Table 4.

Now we consider ionic crystals, such as Li2O, CaF2, SrF2, and BaF2,
which possess one type of chemical bond and two distinct coordina-
tion numbers. At first glance, the bulk modulus for these crystals
should be calculated in the same way as for AnBm type covalent

crystals by introducing L0.37 term into Eqn. 4. However, the calcu-
lated bulk moduli are systematically smaller than experimental
values except for Li2O22,44. The ratios of Bcal to Bexp for CaF2, SrF2,
and BaF2 are approximately the same, indicating a common factor
we may miss in the bulk modulus formula for ionic crystals. We note
an obvious difference in cationic charge state of Li (11) and alkali-
earth metal atoms (12) in these crystals. The valence electrons in
ionic crystals, unlike those in covalent crystals distributed on the
bond, are transferred from cations to anions, which weakens the
resistance to compression and results in smaller bulk modulus. It is
plausible that cations with higher charge state have a stronger tend-
ency to pull the valence electrons back to the bond region, thus
improve the resistibility of chemical bonds to compression and
increase the bulk modulus. Therefore, we introduce an additional
term, Q9, to Eqn. 4 to account for such effect, where Q is the cationic
charge state and r is the power-law index determined to be 0.58 from
CaF2, SrF2, and BaF2 data. The bulk modulus formula for ionic
crystals can be defined as

B GPað Þ~25:4p0:914d{3:46L0:37Q0:58 exp 1:485nABð Þ: ð5Þ

The key parameters, experimental and calculated bulk moduli are
listed in Table 4 for selected ionic crystals. Again, a great consistency
is achieved between the calculated bulk moduli and the experimental
ones.

Multi-bond crystals. Up to now, we have formulated the bulk
modulus for simple polar covalent crystals with parameters
deduced from the crystal structure. The generalization of our bulk
modulus model to complex multi-bond crystals is straightforward,
since all the parameters used in our model are directly correlated to
the chemical bond and can easily be applied to complex multi-bond
crystals. The only issue is how to weight the contributions to bulk
modulus from individual constitutional chemical bonds. Bulk
modulus for a multicomponent material can be attributed to the
contributions from individual components. From the definition of
bulk modulus, B 5 2VdP/dV, we get

1
B
~{

dV
VdP

~{

P
m

dVm

VdP
~

P
m

Vm {dVm

�
VmdP

� �
V

~

P
m

Vm

�
Bm

V
~
X

m

vm

�
Bm,

ð6Þ

where Bm and vm 5 Vm/V are the bulk modulus and volume fraction of
the m component, respectively. For a multi-bond crystal, Bm can be
determined by using previous equations, and the volume fraction of

distinct chemical bond can be calculated as vm~Nmd3
m

,P
m

Nmd3
m,

where dm and Nm are the bond length and bond multiplicity of the m-
type bond in the unit cell, respectively. Bulk modulus for a multi-
bond crystal can then be calculated with Eqn. 6.

Key variables and bulk moduli are listed in Table 5 for represent-
ative multi-bond crystals13,22,45–48. The global consistency between
calculated bulk modulus and experimentally determined value are
remarkably good considering the very simple assessment method
and the relatively complex structure in multi-bond crystals. Here
we calculate the bulk modulus of spinel Fe3O4 to show how our
model works for multi-bond systems. In Fe3O4, all oxygen atoms
are 4-coordinated, while one third of Fe atoms, Fe1, are 4-coordi-
nated and the other two thirds of Fe atoms, Fe2, are 6-coordinated.
The bond multiplicities of O-Fe1 and O-Fe2 bonds are 4 and 12,
respectively. Bm for O-Fe1 and O-Fe2 components determined from
Eqn. 3 are 144 and 188 GPa, respectively. Using Eqn. 6, the bulk
modulus of spinel Fe3O4 is calculated to be 177 GPa, in good con-
sistent with the experimental value of 187 GPa13. Also shown in

Table 1 | Parameters related to the calculation of bulk modulus as
well as experimental and calculated bulk moduli for simple ANB8-N

covalent crystals

Crystal Stucture d nAB p BExp BCal BCal
a BCal

d

C A4 1.55 0.707 16 442a 433 418.2 442.1
Si A4 2.35 0.707 16 100a 103 97.4 95.6
Ge A4 2.45 0.707 16 78a 89 84.2 81.3
Sn A4 2.81 0.707 16 55b 55 52.1 52.6
SiC B3 2.81 0.707 16 211a 222 202.9 203.6
BN B3 1.57 0.643 16 369a 377 373 398.9
BP B3 1.97 0.643 16 173a 172 180.4 170.8
AlN B4 1.9 0.643 16 201a 195 180.9 196.6
AlP B3 2.36 0.643 16 86a 92 88.3 89.9
AlAs B3 2.43 0.643 16 77a 83 80.5 79.1
AlSb B3 2.66 0.643 16 59a 61 56.1 61.3
GaN B4 1.97 0.643 16 190a 172 164 193.8
GaP B3 2.36 0.643 16 89a 92 86.6 88.8
GaAs B3 2.45 0.643 16 76a 81 77.4 78.6
GaSb B3 2.65 0.643 16 57a 62 59.6 62.1
InN B4 2.16 0.643 16 137a 125 111.1 129.4
InP B3 2.54 0.643 16 73a 71 66.1 69.3
InAs B3 2.61 0.643 16 60a 65 61.2 62.8
InSb B3 2.81 0.643 16 47a 50 47.7 51.4
BeO B4 1.64 0.474 16 244c 252
BeS B3 2.1 0.474 16 105d 107 132.7 112.9
BeSe B3 2.2 0.474 16 92d 91 113.2 95.1
BeTe B3 2.4 0.474 16 67d 68 86.5 72.2
MgO B1 2.1 0.316 36 163e 178 154.8
MgS B1 2.6 0.316 36 80f 85 72.2 76.6
CaO B1 2.4 0.316 36 114g 112 98.8
SrO B1 2.58 0.316 36 88g 87 78.7
BaO B1 2.77 0.316 36 69h 68 62.5
ZnO B4 1.97 0.474 16 139d 134 141
ZnS B3 2.34 0.474 16 75i 74 82.8 76.6
ZnSe B3 2.45 0.474 16 62d 63 69.3 66.0
ZnTe B3 2.64 0.474 16 51d 49 55.6 53.4
CdS B4 2.52 0.474 16 62d 57 62.6 60.7
CdSe B4 2.62 0.474 16 56d 50 54.4 53.7
CdTe B3 2.81 0.474 16 42d 39 42.9 44.0
HeSe B3 2.63 0.474 16 49d 49 55.1 53.0
HgTe B3 2.78 0.474 16 44d 41 46.1 44.6
MnO B1 2.22 0.316 36 147j 147
FeO B1 2.17 0.316 36 174j 159
aRef. 3, b Ref. 30, c Ref. 31, d Ref. 4, e Ref. 32, f Ref. 33, g Ref. 34, h Ref. 16, i Ref. 35, j Ref. 36.
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Table 5 are the theoretically proposed b-C3N4
46 and z-BC2N47 struc-

tures. The calculated bulk moduli for these structures with Eqn. 3 and
6 are consistent with the values from first-principles calculations,
indicating the prediction power of our simple semi-empirical model.

Discussion
We can rewrite Eqn. 5 as

B GPað Þ~54:7p0:914d{3:46L0:37Qionic exp 1:485nABð Þ, ð7Þ

where Qionic 5 0.464Q0.58 (Q is the cationic charge state) is an ionic
term which need to be considered for ionic crystals. We thus for-
mulate our empirical bulk modulus for polar crystals with Eqn. 7 and
6. In Figure 3, bulk moduli from first principles calculations and our
empirical model are compared with respect to the experimental
values for some ANB8-N type covalent crystals. Obviously, the accu-
racy of our model is comparable to LDA-U results and better than
LDA-N, GGA-U, and GGA-N results. The advantage of our empir-
ical model is obvious for saving a lot of calculation endeavor com-
pared with these first-principles calculation methods.

It is interesting to further test our model to some geophysical
interested materials. These materials usually have complex crystal
structures and demonstrate polymorphism, which are difficult to be

treated even with state of the art calculation methods. In Table 6 we
list results for polymorphous Mg2SiO4, i.e. forsterite (a)49, wadsleyite
(b)50, and ringwoodite (c) Mg2SiO4

51, based on our model. These
materials are the main constituents of the middle and lower crust
as well as upper mantle of the earth. The knowledge of the elastic
properties of them is of great importance to understand earth’s seis-
mic properties. Our bulk modulus estimations, as listed in Table 6,
clearly reflex the relative values of different phases of Mg2SiO4 with
an acceptable accuracy. We compare the bulk moduli ofa-, b-, and c-
Mg2SiO4 from first principles calculations and our empirical model
with respect to the experimental values (See the inset to Figure 3).
Although the empirical model estimates bulk modulus with accuracy
inferior to those from first principles calculations, the divergence is in
the range of experimental error. Considering the simple formula of
our model, it can thus be used to quickly estimate bulk modulus for
complex crystals.

Some cautions must be exercised during applying our bulk modu-
lus model. First, three dimensional bond network with clearly
defined bonds are needed since our model is based on the partition-
ing of bulk modulus into individual bonds. Our empirical model thus

Figure 2 | Calculated bulk moduli from different models versus the experimental values for simple ANB8-N type covalent crystals. The inset shows

magnified image between 30 and 135 GPa.

Table 2 | Bulk moduli determined from experiments (ab initio cal-
culations for BSb) and Eqn. 2 for zincblende-structured BAs and
BSb, rocksalt-structured PbS, PbTe, and AgCl

Crystal Stucture d nAB p BExp BCal

BAs B3 2.07 0.643 16 148a 145
BSb B3 2.22 0.643 16 116b 114
PbS B1 2.97 0.316 36 50c 54
PbTe B1 3.23 0.316 36 38d 40
AgCl B1 2.89 0.165 36 47e 47
aRef. 37, b Ref. 38, c Ref. 39, d Ref. 40, e Ref. 41.

Table 3 | Parameters as well as experimental and calculated bulk
moduli for AnBm covalent crystals

Crystal Stucture d nAB p L BExp BCal, 1 BCal, 2

Ag2O C3 2.044 0.474 8 2 84a 79 81
Cu2O C3 1.85 0.474 8 2 112a 111 114
ZrO2 C1 2.195 0.474 32 2 235b 223 222
TiO2 C4 1.96 0.596 18 2 224c 233 235
SnO2 C4 2.05 0.596 18 2 205d 200 201
GeO2 C4 1.878 0.596 18 2 258e 269 271
Al2O3 D51 1.915 0.474 24 1.5 252c 253 246
Fe2O3 D51 2.025 0.474 24 1.5 207c 209 203
aRef. 22, b Ref. 42, c Ref. 13, d Ref. 43, e Ref. 17.
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does not work for transition metal (TM) borides where the chemical
bonds between TM atoms and boron atoms are not well defined.
Second, our model cannot be applied to crystals such as a-SiO2 and
anatase TiO2 with an open-packed crystal structure. In these struc-
tures, bonds may not deform iso-structurally under compression:
bond bending and/or non-centrosymmetric forces play important

roles13. These structures can be discriminated by the normalized
bond volume (n). As shown in Figure 1, n for a-SiO2 and anatase
TiO2 are obviously shifted away from the fitting straight line, indi-
cating an open-packed crystal structure. Third, we note substantial
deviations between the calculated bulk moduli from our model and
experimental values for TM carbides and nitrides. Unlike TM oxides
which are dominated with ionic character, TM carbides and nitrides
are characterized with covalent bonds. The difficulty to make an
effective assessment for TM carbides and nitrides mainly arises from
this covalent character, with additional complexity from the diverse
experimental values reported even for the same material. It is well
known that the bond strength of s-p-d hybridized chemical bond is
greater than that of s-p hybridized chemical bond52. In addition, f-
electrons would push out the spatial extent of the valence d-orbitals,
allow d-electrons to make stronger directional bonds, and enhance
bulk modulus53. Both effects are not easy to quantify within our
simple model. Finally, it should be noted that our microscopic model
is deduced based on the experimental bulk modulus data obtained at
room temperature. Accordingly, our model works at room temper-
ature and the temperature effect on bulk modulus is out of the scope
of current work54,55.

To end this paper, we emphasize that our model only need input
variables which can be directly deduced from the crystal structure,
providing us a general yet powerful tool for bulk modulus evaluation.
Pivotal parameters determining bulk modulus are clearly revealed
from our model: Short bond length, high EBVE number, and large
coordination number are preferred for achieving high bulk modulus.
Moreover, the contributions from individual chemical bonds to bulk
modulus can readily be partitioned in our model, which is important
for design of materials with low compressibility.

Methods
During compression, it is the disturbed valence electrons that determine the bulk
modulus. To establish an effective quantification model, we must find a practical way
to estimate the population of these electrons. Considering two atoms, A and B,
forming a bond in a crystal, the valence electrons are ZA and ZB with coordination
numbers of NA and NB, respectively. The EBVE number, nAB, of A-B bond in terms of
nA and nB as

Table 4 | Parameters as well as experimental and calculated bulk
moduli for ionic crystals

Crystal Stucture d nAB p BExp BCal

LiF B1 2.01 0.165 36 76.4a 76.7
LiCl B1 2.57 0.165 36 32.9a 32.8
LiBr B1 2.75 0.165 36 26.0a 25.9
LiI B1 3.01 0.165 36 19.3a 19.0
NaF B1 2.31 0.165 36 47.1a 47.4
NaCl B1 2.82 0.165 36 23.9a 23.8
NaBr B1 2.99 0.165 36 19.6a 19.4
NaI B1 3.24 0.165 36 14.9a 14.7
KF B1 2.67 0.165 36 28.7a 28.7
KCl B1 3.15 0.165 36 16.5a 16.2
KBr B1 3.3 0.165 36 13.9a 13.8
KI B1 3.53 0.165 36 11.1a 10.9
RbF B1 2.83 0.165 36 24.1a 23.5
RbCl B1 3.29 0.165 36 14.0a 13.9
RbBr B1 3.44 0.165 36 12.0a 12.0
RbI B1 3.67 0.165 36 9.6a 9.6
CsF B1 3.00 0.165 36 19.3a 19.2
CsCl B2 3.57 0.123 64 17.6a 16.7
CsBr B2 3.72 0.123 64 15.4a 14.5
CsI B2 3.96 0.123 64 12.5a 11.7
Li2O C1 2.01 0.237 32 88b 100
CaF2 C1 2.365 0.247 32 84.0c 85.6
SrF2 C1 2.5 0.247 32 71.3c 70.7
BaF2 C1 2.683 0.247 32 55.5c 55.3
aRef 23, b Ref. 22, c Ref. 44.

Table 5 | Parameters as well as experimental and calculated bulk moduli for multi-bond crystals

Crystal Bond Nm d nAB p L Bm BCal BExp

Fe3O4 Fe-O 4 1.927 0.474 16 1 144 178 187a

Fe-O 12 2.073 0.474 24 1.5 188
SrTiO3 Ti-O 6 1.95 0.555 36 1 327 147 174b

Sr-O 12 2.76 0.165 72 2 134
MgAl2O4 Mg-O 4 1.88 0.474 16 1 157 210 202a

Al-O 12 1.95 0.474 24 1.5 233
b-Si3N4 Si-N 6 1.73 0.707 12 1.333 252.9 251 250c

Si-N 6 1.728 0.707 12 1.333 253.9
Si-N 6 1.704 0.707 12 1.333 266.5
Si-N 6 1.767 0.707 12 1.333 235

c-Si3N4 Si-N 1 1.78 0.781 16 1 298 308 300c

Si-N 3 1.88 0.588 24 1.5 311
b-C3N4 C-N 6 1.457 0.707 12 1.333 458 466 451d

C-N 6 1.447 0.707 12 1.333 469
C-N 6 1.449 0.707 12 1.333 467
C-N 6 1.447 0.707 12 1.333 469

z-BC2N B-C 4 1.559 0.6 16 1 361 411 403e

C-C 4 1.527 0.707 16 1 456
C-C 8 1.537 0.707 16 1 445
B-N 8 1.546 0.643 16 1 397
B-N 4 1.579 0.643 16 1 369
C-N 4 1.542 0.781 16 1 491

SiO2 Si-O 4 1.76 0.596 18 2 340 329 314f

Si-O 2 1.808 0.596 18 2 310
aRef. 13, b Ref. 22, c Ref. 45, d Ref. 46, e Ref. 47, f Ref. 48.
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nAB~
nAnBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

Azn2
B

p ,

where nA 5 ZA/NA and nB 5 ZB/NB are the nominal valence electrons contributed to
A-B bond. The EBVE numbers of diamond (0.707) and NaCl (0.163) are in good
consistent with the Mulliken overlap population from first-principles calculations. It
should be pointed out that lone pair electrons must be excluded during calculations of
the nominal valence electrons contributed to A-B bond. For example, in rutile TiO2,
oxygen atom is 3-coordinated with two electrons forming a lone pair (not particip-
ating bonding). no is thus 4/3 instead of 2.

For the first-principles calculations, crystal structural relaxations and prop-
erty calculations were performed using density functional theory within both

generalized gradient approximation (GGA) and local density approximation
(LDA) as implemented in the CASTEP code56. Both ultrasoft (U) and norm-
conserving (N) pseudopotentials were employed in the calculations. k-point
samplings in the Brillouin zone were chosen by using the Monkhorst-Pack
scheme with a resolution of 2p 3 0.04 Å. The elastic constants, Cij, were
calculated theoretically based on the stress and strain relation (Hooke’s law),
then the bulk moduli for polycrystals were estimated using the Voigt-Reuss-Hill
approximation which is the arithmetic average of the upper (Voigt) and lower
(Reuss) bounds for the actual macroscopic effective elastic constants6. The
calculated bulk moduli are labeled with GGA-U, GGA-N, LDA-U, and LDA-N
according to the selected electron-electron exchange functional and pseudo-
potential.

Table 6 | Parameters, experimental and calculated bulk modulus for different Mg2SiO4 phases

Crystal Bond Nm d nAB p L Bm BCal BExp

a-Mg2SiO4 Mg-O 16 2.131 0.325 24 1.5 137 153 129a

Mg-O 16 2.084 0.325 24 1.5 148
Mg-O 16 2.068 0.325 24 1.5 152
Mg-O 16 2.065 0.325 24 1.5 152
Mg-O 16 2.21 0.325 24 1.5 121
Mg-O 8 2.177 0.325 24 1.5 127
Mg-O 8 2.045 0.325 24 1.5 158
Si-O 16 1.637 0.832 16 1 431
Si-O 8 1.613 0.832 16 1 453
Si-O 8 1.655 0.832 16 1 415

b-Mg2SiO4 Mg-O 16 2.046 0.325 24 1.5 158 163 172b

Mg-O 8 2.115 0.325 24 1.5 141
Mg-O 16 2.093 0.325 24 1.5 146
Mg-O 4 2.095 0.325 24 1.5 146
Mg-O 4 2.035 0.325 24 1.5 161
Mg-O 16 2.123 0.325 24 1.5 139
Mg-O 16 2.128 0.325 24 1.5 138
Mg-O 16 2.016 0.325 24 1.5 166
Si-O 8 1.638 0.832 16 1 430
Si-O 16 1.632 0.832 16 1 436
Si-O 8 1.701 0.832 16 1 378

c-Mg2SiO4 Mg-O 96 2.066 0.325 24 1.5 153 168 185b

Si-O 32 1.665 0.832 16 1 407
aRef. 49, b Ref. 50, c Ref. 51.

Figure 3 | Comparison of bulk moduli deduced from first-principles calculations and our empirical models with respect to the experimental values.
The inset shows the corresponding results of a-, b-, and c-Mg2SiO4.
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