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High-intensity eccentric exercise is known to induce muscle damage 
leading to inflammatory responses and extracellular matrix (ECM) deg-
radation. These degradation processes involve enzymes such as matrix 
metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases 
(TIMPs). MMPs are calcium and zinc-dependent proteolytic enzymes 
that play a role in ECM degradation and recruitment of inflammatory 
and myogenic cells into the damaged site. In contrast, TIMPs inhibit 
MMP-induced ECM degradation to maintain normal homeostasis in 

ECM. Recently, several studies have examined the process of muscle 
remodeling and the roles of ECM, MMPs, and TIMPs in exercise-in-
duced muscle damage. However, the results of these studies are not in-
consistent. In the present mini-review, we will discuss the responses of 
MMP and TIMP to eccentric exercise based on the literature review. 
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INTRODUCTION

High-intensity eccentric exercise is known to induce muscle 
damage (Clarkson and Hubal, 2002). Morphologically, muscle 
damage leads to cell membrane disruption (Nosaka et al., 2006), 
infiltration of inflammatory cells, such as neutrophils and macro-
phages, into the site of damage (Clarkson and Hubal, 2002; Tid-
ball, 2005), and degradation of the extracellular matrix (ECM) 
(Kjaer et al., 2006). Fragments resulting from ECM degradation 
facilitate the mobilization of cells related to the inflammatory re-
sponse and increase chemotactic activity and phagocytosis, ulti-
mately playing a role in the development of delayed onset muscle 
soreness (Stauber et al., 1990). Increased ECM degradation fol-
lowing muscle damage has also been reported to reduce force 
transmission (Gao et al., 2008). However, ECM degradation also 
facilitates the movement and regeneration of satellite cells (Chen 
and Li, 2009).

Several enzymes play important roles in ECM degradation; of 

these enzymes, matrix metalloproteinases (MMPs) and tissue in-
hibitor of metalloproteinases (TIMPs) have been extensively stud-
ied (Kieseier et al., 2001). MMPs have been reported to degrade 
ECM (Mu et al., 2010; Rullman et al., 2013), whereas TIMPs in-
hibit the enzymatic functions of MMPs (Alameddine, 2012). Ex-
cessive activation of MMPs increases tissue degradation, hindering 
myogenesis (Kieseier et al., 2001). Hence, the balance between 
MMPs and TIMPs must be well managed to optimize postdam-
age ECM remodeling. 

A few studies have examined MMP and TIMP responses follow-
ing eccentric exercise. Koskinen et al. (2002) reported that high-in-
tensity eccentric muscle contraction significantly increases MMP-2 
and MMP-9 expression. Similarly Mackey et al. (2004) reported 
that MMP-9 and TIMP-1 levels are significantly increased follow-
ing eccentric exercise. In contrast, Nascimento et al. (2016) report-
ed that MMP-2 and -9 levels actually decrease after eccentric exer-
cise, whereas Madden et al. (2011) reported that MMP-9 and 
TIMP-1 levels remain unchanged after eccentric exercise. 
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Although recent studies of exercise-induced muscle damage 
have focused on MMP and TIMP responses following eccentric 
exercise, the importance of ECM degradation regulated by MMP 
and TIMP during recovery from muscle damage is not well recog-
nized. In fact, MMP and TIMP responses have been documented 
in the field of cancer and chronic inflammatory diseases. There-
fore, this mini-review will discuss MMP and TIMP responses to 
muscle damage following eccentric exercise based on the previous 
literatures.

MATRIX METALLOPROTEINASE IN 
SKELETAL MUSCLE

Skeletal muscle comprises contractile myofibrils and ECM (Gao 
et al., 2008). ECM is involved in the maintenance of normal cell 
physiology, including structural integration, proliferation, differ-
entiation, and apoptosis (Gattazzo et al., 2014). Furthermore, 
ECM supports the structure of the skeletal muscle by enhancing 
mechanical stress and plays a critical role in force transmission 
(Koskinen et al., 2002). MMPs are calcium and zinc-dependent 
proteolytic enzymes, also known as matrixins (Nagase et al., 
2006). About 24 MMPs have been identified in humans (Klein 
and Bischoff, 2011); these 24 MMPs can be subdivided into 
membrane-type MMPs and soluble-type MMPs (Barnes et al., 
2009). MMP collagenases (MMP-1, -8, -13, and -18) break down 
interstitial collagen types I, II, and III and MMP gelatinases 
(MMP-2 and -9) degrade denatured collagen type IV, VII, and X 
(Monaco et al., 2006). Collagen type IV is a key component of 
basement membranes as well as cell arrangement in tissues (Car-
meli et al., 2004).

MMP can degrade ECM alone or in combination with the plas-
minogen/plasmin system to facilitate the migration of inflamma-
tory and myogenic cells, such as satellite cells, from ECM to the 
site of injury (Mann et al., 2011). During the process of ECM deg-
radation, several cytokines and growth factors are also released to 
regulate the proliferation and differentiation of the migrated cells 
(Lu et al., 2011). This process is required for the remodeling of the 
tissue and is crucial for maintaining skeletal muscles in a normal 
state. An in vitro study showed that the migration of satellite cells 
to the injury site is a key process in the regeneration of skeletal 
muscles and that ECM degradation can be a pivotal component of 
satellite cell migration and regeneration (Chen and Li, 2009). In 
particular, MMP-2 and -9 show biological activities mostly in 
skeletal muscles because their primary substrate is a key compo-
nent of ECM in skeletal muscles (Sternlicht and Werb, 2001). 

MMP-2 and -9 have been reported to be expressed in different 
stages; MMP-2 may be activated simultaneously with the regener-
ation of muscle fibers, whereas MMP-9 may be expressed in asso-
ciation with the early inflammatory response and activation of sat-
ellite cells (Agren, 1994; Carmeli et al., 2004; Kherif et al., 1999). 
Taken together, these findings suggest that MMP-2 and -9 are in-
volved in not only inflammatory responses but also ECM remodel-
ing and muscle regeneration. Clinical studies on pathophysiology 
have reported that hyperactivation of MMP facilitates the infiltra-
tion and metastasis of tumor cells, which may induce carcinogene-
sis, and may cause chronic diseases, such as fibrosis, rheumatoid 
arthritis, and Parkinson’s disease (Ramezani and Shamsara, 2015).

 

TISSUE INHIBITOR OF 
METALLOPROTEINASE IN SKELETAL 
MUSCLE

TIMPs reduce excessive MMP-induced ECM degradation (Ala-
meddine, 2012). A 1:1 ratio between MMPs and TIMPs prevents 
hyperactivation of MMPs (Visse and Nagase, 2003). There are 
four TIMP isoforms (i.e., TIMP-1, -2, -3, and -4), which show 
tissue-specific, constitutive, or inducible expression depending on 
the transcriptional level. TIMP-1 is widely expressed in many 
mammalian tissues induced by growth factors, phorbol esters, and 
cytokines. TIMP-2 is constitutively expressed in most tissues. 
TIMP-3 is expressed in the heart, kidneys, and thymus. Finally, 
TIMP-4 has tissue-specific functions, commonly expressed in the 
heart, kidneys, lungs, testes, and brain, but rarely expressed in 
muscles and ovaries (Murphy, 2011). Among the four TIMP iso-
forms, TIMP-1 and -2 have been reported to be significantly up-
regulated in eccentric exercise-induced muscle damage (Koskinen 
et al., 2002) or rotator cuff tears (Castagna et al., 2013).

MATRIX METALLOPROTEINASE AND 
TISSUE INHIBITOR OF 
METALLOPROTEINASE RESPONSES TO 
ECCENTRIC EXERCISE
 

Eccentric exercise induces muscle damage, increases mobiliza-
tion of inflammatory cells (Clarkson and Hubal, 2002). As shown 
in Fig. 1, ECM responds to forceful mechanical stress, such as 
high-intensity eccentric exercise (Gao et al., 2008; Kovanen, 
2002; Mackey et al., 2004), during which ECM is degraded as 
muscle fiber damage occurs (Stauber, 2004). Additionally, MMP 
and TIMP responses occur simultaneously (Mackey et al., 2004). 
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MMPs, specifically MMP-2, are downregulated during low-inten-
sity exercise, but upregulated in high-intensity exercise (Carmeli 
et al., 2005); some studies have reported that the expression and 
activation of MMP-2 or -9 are increased following high-intensity 
eccentric exercise (Koskinen et al., 2001a, 2002; Mackey et al., 
2004). Koskinen et al. (2001a) reported that eccentric exercise via 
downhill running results in acute increases in MMP-9, TIMP-1, 
and the MMP-2/TIMP-2 complex. In addition, Mackey et al. 
(2004) reported that high-intensity eccentric exercise on a knee 
extensor results in an increase in MMP-9 until eight days after ex-
ercise and an increase in TIMP-1 for four days after exercise and 
continued to increase up to 14 days. Similar results were found af-
ter eccentric muscle contractions via electrical stimulation. Heine-
meier et al. (2007) found that eccentrically biased electrical stim-
ulation increases MMP-2, TIMP-1, and TIMP-2 expression while 
Koskinen et al. (2002) suggested that the electrical stimulation in 
mice significantly increases the mRNA expression and activation 
of MMP-2 and -9 between 4 and 7 days following exercise. 

Muscle damage may lead to an increase in the number of leuko-
cytes and prostaglandin concentrations (Prisk and Huard, 2003). 
Leukocytes include inflammatory cells, such as neutrophils and 
macrophages (Tidball, 2005); prostaglandin facilitates inflamma-
tory responses and is released by high-intensity muscle contrac-
tions (Karamouzis et al., 2001). MMP-9 is synthesized by leuko-
cytes (Murphy et al., 1989), and prostaglandin stimulates the ex-

pression of MMP-2 and -9 in human T cells (Goetzl et al., 1996). 
In fact, Koskinen et al. (2002) have microscopically observed the 
infiltration of inflammatory cells in injured muscles with in-
creased MMP-9 levels following eccentric muscle contractions. In 
addition, some studies have reported that ECM degradation as-
sists the migration and invasion of immune cells into the injured 
muscle (Carmeli et al., 2004; Klein and Bischoff, 2011). Parks 
and Mecham (2011) suggested that MMP is a biological marker 
representing the inflammatory response. 

Koskinen et al. (2001a) reported that after downhill running, 
TIMP-1 is expressed in the early stages of muscle damage, where-
as TIMP-2 is expressed during the later stages of muscle damage. 
TIMP-1 is intimately related to MMP-9, and TIMP-2 binds 
strongly to MMP-2 (Goldberg et al., 1989). Some studies have 
shown that the activity levels of TIMPs correspond to changes in 
the activity of MMP-2 and -9 (Overall et al., 1991; Singh et al., 
2000). As previously described, MMP-2 is usually activated 
during the early stages of muscle regeneration, whereas MMP-9 is 
typically activated during the early stages of the inflammatory re-
sponse. Thus, MMP-9 and TIMP-1 may interact during the early 
stages of exercise-induced muscle damage, and MMP-2 and 
TIMP-2 may interact during the later stages of muscle damage 
(muscle regeneration). In essence, MMP-9/TIMP-1 and MMP-2/
TIMP-2 have antagonistic effects in the inflammatory response 
following eccentric exercise and regulate the degradation and re-

Fig. 1. MMP and TIMP responses after eccentric exercise. ECM, extracellular matrix; GH, growth hormone; MMP, matrix metalloproteinase; TIMP, tissue inhibitor of 
metalloproteinase.
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modeling of ECM. 
However, there is little evidence to support the relationship be-

tween posteccentric exercise MMP and TIMP responses and in-
flammatory cells. Most existing studies have produced limited re-
sults due to the use of animal models. Recently, Nascimento et al. 
(2016) reported that acute eccentric exercise reduces the levels of 
MMP-2 and -9 up to 48 hr following exercise and interleukin-6  
levels were also reduced. These data suggest that MMP-2 and -9 
levels may be altered in parallel to changes in the expression of in-
flammatory factors. However, Nascimento et al. (2016) studied 
obese women, whereas most previous studies of eccentric exercise 
have been conducted in healthy subjects. Obese people are known 
to have an imbalance in inflammatory factors (Jung and Choi, 
2014). Nascimento et al. (2016) also demonstrated that exercise 
may result in anti-inflammatory responses by reducing MMP-2 
and -9 levels because obese individuals maintain a high inflam-
matory response, even at rest, as compared with healthy subjects. 
Therefore, future studies should also examine changes in and the 
relationships among MMP-2, -9, and inflammatory factors fol-
lowing eccentric exercise in healthy subjects. 

Nonetheless, some studies have suggested that eccentric exer-
cise does not induce significant MMP or TIMP responses, and 
some researchers have argued that there is no association between 
the two. Welsh et al. (2014) reported that although MMP-9 is 
significantly increased after downhill running, the change is not 
substantial. Madden et al. (2011) reported that there were no 
changes in MMP-9 and TIMP-1 responses at all time points fol-
lowing eccentric exercise using an elbow flexor model. Unlike pri-
or studies, which mainly used the downhill running model, Mad-

den et al. (2011) examined MMP responses after exercise using an 
elbow flexor model. The elbow flexor model is known to induce 
greater muscle damage than the downhill running model (Jamur-
tas et al., 2005). Despite such differences in exercise models, there 
were no changes in MMP-9 after eccentric exercise using an elbow 
flexor model. This result may indicate that eccentric exercise us-
ing an elbow flexor model does not involve the muscles sufficient-
ly for MMP-9 response (Madden et al., 2011). Madden et al. 
(2011) suggested that differences in the exercise protocol may also 
explain these discrepancies. As shown in Table 1, many studies 
consistently found MMP and TIMP responses following downhill 
running and knee extensor models (Koskinen et al., 2001a; Mack-
ey et al., 2004). Likewise, MMP-9 levels seems to show greater 
increase during whole body exercise or exercise with large muscle 
groups involved, such as marathon and cycling compared to local 
exercise with small volume of muscles involved such as arm curls 
(Rullman et al., 2007; Saenz et al., 2006). This may be supported 
by differences in ECM composition, turnover, systemic vascula-
ture, and local clearance between upper and lower muscles (Mad-
den et al., 2011); however, it has yet to be scientifically verified. 
Since the study conducted by Madden et al. (2011) remains the 
only study using an elbow flexor model, additional studies using 
similar models are required to produce meaningful conclusions. 

CONCLUSIONS

Eccentric exercise induces muscle damage and increases ECM 
degradation, during which MMPs and TIMPs are also activated. 
These two enzymes maintain the homeostasis of ECM via antago-

Table 1. MMP and TIMP responses in eccentric exercise studies			 

Study Subjects Exercise protocol Main results 

Koskinen et al. (2001a) Human (n= 14) Downhill running (10˚ downhill, total 45 min) MMP-2= , MMP-9↑, TIMP-1↑, MMP-2/TIMP-2 
  complex↑

Koskinen et al. (2001b) Animal (n= 50) Downhill running (13.5˚ downhill, total 130 min ) MMP-2↑, TIMP-2↑
Koskinen et al. (2002) Animal (n= 24) Four sets of 60 eccentric muscle contractions of tibialis anterior using 

  electrical stimulation
MMP-2↑, MMP-9↑

Mackey et al. (2004) Human 100 Maximum eccentric muscle contractions of the knee extensor 
  using isokinetic dynamometer

MMP-9↑, TIMP-1↑, TIMP-2= , MMP-2/TIMP-2 
  complex =

Heinemeier et al. (2007) Animal Two sets of 10 eccentric muscle contractions of gastrocnemius using 
  electrical stimulation

MMP-2↑, TIMP-1↑, TIMP-2↑

Madden et al. (2011) Human Six sets of 10 maximum eccentric muscle contractions of the elbow 
  flexor using arm curl 

MMP-9 = , TIMP-1 =  

Welsh et al. (2014) Human Downhill running (10˚ downhill, total 30 min) MMP-9↑, TIMP-1=
Nascimento et al. (2016) Human Seven sets of 10 maximum eccentric muscle contractions of the knee 

  extensor using isoinertial machine
MMP-2↑, MMP-9↓

MMP, matrix metalloproteinase; TIMP, tissue inhibitor of metalloproteinase; = , no change; ↓, significantly decreased responses; ↑, significantly increased responses.	
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nistic effects in muscle degradation and remodeling. To date, 
MMP and TIMP responses have mostly been studied in animals 
or patients with chronic illnesses. Furthermore, studies on muscle 
damage have also been conducted by inducing damage by freeze 
exposure or drug injections rather than exercise. Although some 
studies have examined posteccentric exercise MMP and TIMP re-
sponses, only animal studies have produced clear MMP and TIMP 
responses following eccentric muscle contraction. Studies in hu-
man subjects have produced conflicting results. This may be due 
to differences in the subjects and exercise protocols. More studies 
on human subjects, particularly using elbow flexor models, should 
be conducted and posteccentric exercise inflammatory responses 
or factors related to muscle regeneration should be measured in 
addition to MMP and TIMP responses. In addition, because ECM 
degradation may reduce force transmission, studies should analyze 
the association between posteccentric exercise MMP or TIMP lev-
els and reduction of maximum voluntary muscle contraction.
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