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Accurate quantification of brain tissue is a fundamental and challenging task in neuroimaging. Over the past two decades, statistical
parametric mapping (SPM) and FMRIB’s Automated Segmentation Tool (FAST) have been widely used to estimate gray matter
(GM) and white matter (WM) volumes. However, they cannot reliably estimate cerebrospinal fluid (CSF) volumes. To address
this problem, we developed the TRIO algorithm (TRIOA), a new magnetic resonance (MR) multispectral classification method.
SPM8, SPM12, FAST, and the TRIOA were evaluated using the BrainWeb database and real magnetic resonance imaging (MRI)
data. In this paper, the MR brain images of 140 healthy volunteers (51:5 ± 15:8 y/o) were obtained using a whole-body 1.5 T
MRI system (Aera, Siemens, Erlangen, Germany). Before classification, several preprocessing steps were performed, including skull
stripping and motion and inhomogeneity correction. After extensive experimentation, the TRIOA was shown to be more effective
than SPM and FAST. For real data, all test methods revealed that the participants aged 20–83 years exhibited an age-associated
decline in GM and WM volume fractions. However, for CSF volume estimation, SPM8-s and SPM12-m both produced different
results, which were also different compared with those obtained by FAST and the TRIOA. Furthermore, the TRIOA performed
consistently better than both SPM and FAST for GM, WM, and CSF volume estimation. Compared with SPM and FAST, the
proposed TRIOA showed more advantages by providing more accurate MR brain tissue classification and volume measurements,
specifically in CSF volume estimation.
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1. Introduction

Multispectral analysis techniques have been applied to the
classification of brain magnetic resonance imaging (MRI) to
more accurately differentiate between normal and diseased
brain tissue [1–4]. In early publications, several methods
involving k-means, fuzzy c-means, and k-nearest neighbors
have been employed for the multispectral segmentation of
magnetic resonance (MR) images [5–8]. However, those
methods did not appear to be suitable for the robust segmen-
tation of brain MRI, due to a number of limitations, such as
uncertainty and vagueness of image data, requirement for
long computation times, and high error rates in cerebrospi-
nal fluid (CSF) segmentation [9, 10]. Recently, some software
packages widely used in the scientific community have suc-
cessfully implemented statistical and atlas-based techniques
for brain MRI segmentation. These software packages include
SPM, developed by the Wellcome Department of Imaging
Neuroscience at the University College London (United King-
dom), and FMRIB’s Automated Segmentation Tool (FAST),
which is part of the FMRIB Software Library (FSL) and was
implemented by the Analysis Group, FMRIB, Oxford (United
Kingdom). The segmentation tools incorporated in these soft-
ware packages are based on a mixture of the Gaussian mixture
model (GMM) and a priori tissue probability maps (TPMs)
with default parameters for yielding an accurate and consis-
tent segmentation of a single MR image [11, 12]. In the recent
versions of these software packages, multispectral segmenta-
tion has been extended to improve MRI segmentation. How-
ever, this method is highly dependent on knowledge of the
distribution of the different tissue classes; furthermore, the
quality of the implementation has not been tested, and much
work remains in the area of validation.

Multispectral analysis techniques used in satellite imaging
processing systems have been applied to tissue classification of
brain MRI for decades because of the similarity between satel-
lite and MR imaging data [13, 14]. However, these techniques
are not practical for medical use because of the intense
requirements on the relevant image-processing algorithms to
extract the available information across the MR images. We
previously developed a novel multispectral analysis method,
derived from remote sensing techniques, for the robust
classification of brain MRI. This method is implemented by
applying the TRIO algorithm (TRIOA), which consists of an
independent component analysis (ICA), a support vector
machine (SVM), and an iterative version of Fisher’s linear dis-
criminant analysis [15]. The method combines the strengths
of these three individual algorithms to facilitate the robust
classification of brain tissue with the benefits of operating over
a short computation time and in the native coordinate space,
which avoids the registration problems that occur from the
transformation to a standard coordinate space. With no
requirement for probability maps to initiate classifications,
the method proved effective for classifying gray matter
(GM), white matter (WM), and CSF in normal young adults,
healthy elderlies, and dementia patients [16].

In this paper, we investigated the accuracy of the TRIOA
and the latest software package versions of the other classifi-
cation tools of SPM and FAST by using a variety of synthetic

normal brain data. For clinical MRI data with no available
gold standard for in vivo experiment comparisons, the
robustness of the classification tools was analysed using a
quantitative volume assessment of GM, WM, and CSF in a
series of normal adults with different ages.

2. Materials and Methods

2.1. Materials

2.1.1. BrainWeb: Simulated Brain Database. This paper used
the BrainWeb simulated database from the McConnell Brain
Imaging Centre of the Montreal Neurological Institute,
McGill University (http://www.bic.mni.mcgill.ca/brainweb),
to assess the performance of the classification methods. The
simulated normal MR images (181 × 217 × 181 voxel resolu-
tion) comprised T1-weighted imaging (T1WI), T2-weighted
imaging (T2WI), and proton density imaging data with a
1mm isotropic voxel size. Seven data sets of the synthetic
image data were chosen with four noise levels of 0%, 1%,
3%, and 5%, and two intensity nonuniformity levels of 0%
and 20%.

2.1.2. Clinical Brain MRI. Clinical brain MRI data were
acquired using a whole-body 1.5 T MRI system (Aera, Sie-
mens, Erlangen, Germany) with a phase-array head coil.
Three study groups were used, consisting of 35 young sub-
jects (10 male, 25 female; 28:9 ± 5:9 years old), 54 middle-
aged subjects (23 male, 31 female; 51:5 ± 5:6 years old), and
51 elderly subjects (29 male, 22 female; 66:9 ± 6:0 years
old). The Institutional Review Board of Taichung Veterans
General Hospital reviewed and approved the experimental pro-
tocol and the consent procedure (IRB numbers CE12233,
CF14038, CG14039, and CE15021A). Written informed con-
sent was obtained from all volunteers and patients. The imag-
ing protocol involved three high-resolution 3-Dimensional
Fourier Transformation (3DFT) acquisition sequences: T1WI,
T2WI, and fast fluid-attenuated inversion-recovery (FLAIR).
Other imaging parameters were a voxel size of 1 × 1 × 1mm,
a matrix of 256 × 256 × 176, and a number of excitation of 1.

2.1.3. MR Data Preprocessing. The preprocessing of multi-
spectral MR data in this paper included motion correction
with rigid-body approach [17] to registering FLAIR and
T2WI with T1WI, intensity inhomogeneity correction using
N4ITK which was similar to the nonparametric nonunifor-
mity intensity normalization (N3) method and better perfor-
mance [18], and skull striping with FSL-brain extraction tool
(BET) [19]. The default BET parameters were used with
fractional intensity threshold was equal to 0.5 and threshold
gradient was 0.

2.2. Evaluated Methods

2.2.1. SPM. The “Unified Segment” version of SPM, or SPM8,
is based on a parametric statistical model of the intensity pat-
terns of MRI brain volume [11]. The theory of the parametric
statistical model is adopted from the GMM, in which each
tissue cluster is assumed to have a normal (Gaussian) distri-
bution. The GMM is one of the most widely used approaches

2 BioMed Research International

http://www.bic.mni.mcgill.ca/brainweb


to solving the classification problem of MR images of brain
tissue. This model includes only the intensity information,
with no spatial information being considered. In a simple
GMM, the probability function of the entire dataset y is
derived by assuming that all brain tissue is independent and
defined as follows:

P y μ, σ, γjð Þ = 〠
∀x∈L

γ · f y θxjð Þ, ð1Þ

where x is the random variable, and the model parameters
θx = fμx, σ2xg are the mean and variance of the Gaussian
function. The mixing parameters γ can be included among
the unknown parameters. A possible approach to solving
the parameter estimation problem is to determine the maxi-
mum of the log-likelihood function. One of the most used
methods of solving the maximization problem is to use the
expectation-maximum (EM) algorithm, which can be used
iteratively to update the mixture parameters. The TPMs are
used as a priori information of the tissue classes. SPM8 uses
four tissue classes, namely GM, WM, CSF, and nonbrain.
However, histograms in a previous study show that the
overlap between GM and WM is higher than 10% for a T1-
weighted MR image [17]. Therefore, a segmentation method
cannot satisfy the conditions of intensity distribution from
one modality. One method of solving this problem is com-
bining several modalities, such as T1-weighted, T2-weighted,
or FLAIR, with different intensity contrasts that increase the
reliability of tissue segmentation and reduce the reliance on
observer input.

SPM8New Segment is an extension of the default Unified
Segment. The algorithm in New Segment is essentially the
same as that described in [11], with two crucial changes.
First, the New Segment method provides the ability to use
multispectral MR image data to classify brain tissue. Second,
in the New Segment version of SPM8, six different TPMs are
used, namely GM, WM, CSF, bone, soft tissue, and back-
ground. The background class primarily includes air and
other nonbrain tissue. The other slight modifications from
the Unified Segment version of SPM8 are different registra-
tion and deformation parameters.

The latest version of SPM is SPM12, which was released
on October 1, 2014. The unified segmentation section of
SPM8 is replaced by a modified version of New Segment in
SPM12. The theory of segmentation in SPM12 is the same
as that in SPM8 New Segment. Its implementation, which
is based on the algorithm presented in [11], enables multi-
spectral classification and incorporates a more flexible image
registration component. The changes of SPM12 compared
with New Segment include different regularization for the
deformations, some different default settings, and the rein-
troduction of the rescaling of the TPMs.

In addition, the TPMs were regenerated using the T2-
weighted and proton density-weighted scans from the IXI
dataset [18]. Unless otherwise specified, the default parame-
ters of SPM8, SPM8 New Segment, and SPM12 in this paper
were used for multispectral classification. The probabilities of
classifying brain tissue in SPM were thresholded at 0.5 for

computing the similarity index [19], which is widely used
for evaluating classification algorithms.

2.2.2. FSL-FAST. FAST is based on a hidden Markov random
field (HMRF) model and an associated EM algorithm. The
principle of the HMRF model originates from the hidden
Markov model (HMM). The original HMM was designed
as a one-dimensional Markov model; however, it cannot
solve 2D or greater problems such as image segmentation.
Accordingly, FAST is used as a special case of an HMM in
which the underlying stochastic process is a Markov random
field instead of the HMRF model. Mathematically, a HMRF
model is characterized by the inclusion of a hidden random
field, observable random field, and conditional indepen-
dence. Accordingly, a HMRF model with a Gaussian emis-
sion distribution can be specified as

p yi xNi
, θ

�
�

� �
=〠

l∈L
f yi ; θlð Þp l xNi

�
�

� �
, ð2Þ

where f ðyi ; θlÞ is the emission probability function and the
parameter set θ = fθl, l ∈ Lg and xNi

is a neighborhood con-
figuration. Therefore, the parameter set θ = fθl, l ∈ Lg must
be solved. The FAST procedure for estimating the parameter
set θ = fθl, l ∈ Lg employs the EM algorithm. More specifi-
cally, the FAST method seeks an EM solution for three
dependent unknowns: the bias field, the image classification,
and the model parameters. A more detailed description of
FAST is provided in [12].

2.2.3. Our Purposed Method—TRIOA. We developed
TRIOA, a novel multispectral analysis method for the robust
classification of brain MRI [15, 16, 20, 21]. The TRIOA
method consists of an ICA, an SVM, and Fisher’s linear dis-
criminant analysis (FLDA). ICA uses data sphering to
remove data samples from the first and second statistics of
the MR image data to facilitate separating different brain tis-
sue structures in a set of statistically independent compo-
nents. The method has been proved effective for enhancing
the image contrasts of GM, WM, and CSF, which served as
a preprocessing method for further brain classification [22].
Specifically, the ICA substantially contributes to accurate
classification of SVM without employing optimal parameters
or specified kernels. The SVM, a classification-based discrim-
inant function, was originally developed to solve the classifi-
cation problem on the basis of statistical learning theory [23].
Its major strength is that the required training data samples
can be relatively small, which is beneficial in reducing the
large-scale learning task. Minimizing the training samples
can effectively reduce human intervention and the operating
burden for manually labelling the target tissues. FLDA is
widely used in statistics, pattern recognition, and machine
learning to determine a linear combination of features for
the characterization or classification of different subjects or
events [24]. However, as a powerful supervised classifier,
FLDA requires a sufficiently large pool of training samples
to reflect the global properties of the class distributions in
order to produce reliable classification. Generally, such a
method may suffer from large measurement variability and
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difficulty getting accurate class labels of many training data.
To resolve this problem, the SVM classifier is considered a
preprocessing technique for FLDA to provide a larger pool
of training data with enough brain tissue properties to initiate
an iterative version of FLDA that can yield a consistent
classification.

3. Results

3.1. Evaluation of BrainWeb Database. The CSF, GM, and
WM tissues displayed in the MR images were classified using
seven levels (n0rf0, n1rf0, n3rf0, n5rf0, n1rf20, n3rf20, and
n5rf20). Table 1 presents the similarity index (SI) [16] values
for the CSF, GM, and WM tissues displayed in the T1WI,
T2WI, and PDWI MR images that were estimated using the
multispectral imaging methods of TRIOA, SPM12, SPM8-
New Segment, and FAST (which were, respectively, defined
in this paper as “TRIOA,” “SPM12-m,” “SPM8-N-m,” and
“FAST-m”) to compare the classification results of these tis-
sues with their corresponding ground truth. Table 2 shows
the SI values for the CSF, GM, and WM tissues displayed in
the T1WI MR images that were estimated using the single-
image classification methods of SPM12, SPM8, SPM8-New
Segment, and FAST (which were, respectively, defined in this
paper as “SPM12-s,” “SPM8-s,” “SPM8-N-s,” and “FAST-s”).
Furthermore, a comparison of SI values derived using all the
multispectral imaging and single-image classification
methods revealed that TRIOA was the most effective at clas-
sifying GM and CSF tissues. FAST-m failed to accurately
detect GM, WM, and CSF tissues at the n0rf0 level; thus,
the SI values for those tissues were not obtained.

3.2. Evaluation of Clinical Brain MRI. The real brain MR
images of 140 subjects were also used to classify major tissues
and evaluate the performance of all the methods. Subse-
quently, the four multispectral imaging methods (TRIOA,
SPM12-m, SPM8-N-m, and FAST-m) were performed on
the T1, T2, and FLAIR MR images. Figure 1 shows the clas-
sification results for CSF, GM, and WM tissues obtained
using the methods on the brain images of subjects in three
age groups. The single-image classification methods of
SPM12-s, SPM8-s, SPM8-N-s, and FAST-s were also per-
formed to classify the CSF, GM, and WM tissues in the same
brain images (Figure 2).

Table 3 lists the average volume fractions of the CSF, GM,
and WM in the MR images of 140 subjects included in three
groups of young, middle-aged, and elderly adults. These vol-
ume fractions were estimated using the multispectral classifi-
cation methods of TRIOA, SPM8-N-m, SPM12-m, and
FAST-m on the images to classify the three brain major tis-
sues. Table 4 presents the average volume fractions of the
CSF, GM, and WM in the same MR images, which were
estimated using the single-image classification methods of
SPM12-s, SPM8-s, SPM8-N-s, and FAST-s on the images.

Figure 3 presents the relationships between age and the
average volume fractions of the CSF, GM, andWM displayed
in all MR images of 140 subjects. These relationships are pre-
sented in the form of curves plotted by estimating the
second-order polynomial regression equation. Figures 3(a),

3(c), and 3(e), respectively, show the average volume frac-
tions of CSF, GM, and WM estimated using TRIOA (red),
SPM12-m (dark blue), SPM8-N-m (dark green), and FAST-
m (dark yellow); whereas Figures 3(b), 3(d), and 3(f), respec-
tively, show the average volume fractions of CSF, GM, and
WM estimated using TRIOA (red), SPM8-s (light yellow),
SPM8-N-s (light green), SPM12-s (dark blue), and FAST-s
(light blue).

3.3. CSF. The CSF volume in the brain of an adult is approx-
imately 150mL [25]. CSF typically accounts for 7-12% of the
brain volume of an adult and increases to 16-25% in old age
[26]. As Tables 3 and 4 show, only the average CSF volume
fractions of young adults estimated using TRIOA and
SPM8-N-m confirmed the findings of [25, 26]; those esti-
mated using FAST-s, SPM8-N-s, and SPM12-s supported
the findings of the relevant literature; and those estimated
using FAST-m, SPM12-m, and SPM8-s were considerably
higher than values reported in past studies. Further, the
average CSF volume fractions estimated with all the classifi-
cation methods increased with subject age, as indicated by
Figures 3(a) and 3(b). Notably, the results in both figures
showed that the average CSF volume fractions estimated
using SPM8-s and SPM12-m differed markedly from those
estimated using the other classification methods. The average
CSF volume fractions estimated using both methods were
higher by over 140mL compared with those estimated using
the other methods, with the average CSF volume fraction in
elderly subjects being more than 28% higher (Tables 3 and 4).

Figure 1 (a) shows that CSF does not account for the
entire lateral ventricles of young adults in the T1WI, T2WI,
and FLAIR images. However, as the classification results of
Figures 1(d)–1(g) and Figures 2(a)–2(d) show, only TRIOA,
SPM8-N-m, SPM12-m, and FAST-m detected tissues other
than CSF. Notably, TRIOA detected the largest number of
non-CSF regions, whereas the other three single-image clas-
sification methods categorized lateral ventricle tissues as
CSF. In young, middle-aged, and elderly subjects, all the
single-image classification methods yielded higher CSF levels
near the cranium than did the multispectral imaging classifi-
cation methods.

3.4. GM. By using least-squares regression as a predictive
model, Ge et al. [27] determined a linear decline of 45%–
55% in the average GM volume fraction across the span of
early to late adulthood (the subjects in their study were aged
20–86 years). Courchesne et al. [26] showed that GM volume
grew by 13% between early (19–33 months old) to late (6–9
years old) childhood and, after 9 years of age, declined line-
arly at a rate of approximately 5% per decade throughout life.
In addition, they observed no substantial difference in the
average GM volume fraction between males and females
(F: 58:5% ± 0:08%; M: 59:9% ± 0:07%).

Consistent with the studies, the current study determined
that the average GM volume fractions estimated using all the
classification methods decreased with age, as indicated by
Tables 3 and 4 and Figures 3(c) and 3(d). Tables 3 and 4
reveal discrepancies in the average GM volume fraction
between young and elderly subjects: 64.8mL (5.0%) when
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determined using TRIOA, 16.0mL (1.6%) when determined
using SPM8-N-m, 78.9mL (6.4%) when determined using
SPM12-m, 66.2mL (5.6%) when determined using FAST-
m, 90.6mL (7.0%) when determined using SPM12-s,
94.4mL (6.6%) when determined using SPM8-s, 30.9mL
(2.4%) when determined using SPM8-N-s, and 72.9mL
(5.8%) when determined using FAST-s.

Based on the findings, SPM12-s and SPM8-s yielded an
age-related difference of over 6.6% for GM volume, whereas
SPM8-N-m produced the smallest difference (1.6%). How-
ever, only TRIOA supported the findings of [27, 28]. Lüders
et al. [28] estimated the ranges of GM volume in 50 young
male adults (49.4%–58.49%; mean: 54.51%) and 50 young
female adults (52.12%–59.62%; mean: 55.71%), whereas Ge
et al. [27] observed a 4.9% difference in the average GM vol-
ume fraction between young and elderly adults. The current
study also determined that GM volume decreased with sub-
ject age across all the eight classification methods, as observed
in Figures 3(c) and 3(d). Both figures show that the average
GM volume fractions estimated using SPM8-N-s and SPM8-
N-m trended steadily downward.

3.5. WM. WM volume typically grows by 74% between early
childhood and adolescence, after which it increases slowly
until the age of 40 years and decreases thereafter [26, 27].
Our findings showed that the WM volume fraction increased
with age across almost all the classification methods, peaked
at approximately the age of 45, and trended downward
thereafter (Tables 3 and 4; Figures 3(e) and 3(f)). However,
WM volume fractions estimated using FAST-m increased
slightly after the age of 45 (Figure 3(e)) and were higher than

GM volume fractions for middle-aged and elderly groups
(Table 3), which contradicted the findings of previous
studies.

4. Discussion

4.1. Influence of Different Classification Methods on CSF
Readings. Lüders et al. [28] estimated the average GM vol-
ume fractions for young male (n = 50; 25:1 ± 4:5 years old)
and female (n = 50; 24:2 ± 4:2 years old) adults; the average
GM volume fraction for males was 270mL (17.85%), whereas
that for females was 230mL (17.15%). Callaert et al. [29]
reported that the average CSF fraction was larger in their
elderly subjects (n = 18; 9 males and 9 females; 66:2 ± 3:4
years old) than in their young subjects (n = 21; 8 males and
13 females; 23 ± 1:7 years old), and the age effects were more
pronounced when estimated using SPM than with all of the
other methods (p < 0:0003), because the CSF estimate for
the elderly group (479 ± 78:0mL) determined by SPM was
far larger than those determined by the other methods.

Many of the previous studies on GM, CSF, and WM tis-
sue classification have provided limited discussion on the
classification results regarding CSF tissues, because such
results vary widely across different methods. In this investi-
gation, it was determined that, across different methods, the
average CSF volume fraction was 11.3%–22.2% for the young
group, 14.4%–24.4% for the middle-aged group, and 16.7%–
28.7% for the elderly group, with a difference of at least 11%
in the CSF volume fraction range for each group (Tables 3
and 4). Callaert et al. [29] also reported inconsistent CSF esti-
mates in the same groups obtained using different methods.

Table 1: SI values for CSF, GM, and WM tissues in T1WI, T2WI, and PDWMR images using TRIOA, SPM12-m, SPM8-N-m, and FAST-m
to compare the classification results of these tissues with the ground truth from BrainWeb.

Similarity index
TRIOA SPM12-m SPM8-N-m FAST-m

GM WM CSF GM WM CSF GM WM CSF GM WM CSF

n0rf0 0.977 0.986 0.961 0.460 0.610 0.423 0.738 0.869 0.398 — — —

n1rf0 0.971 0.979 0.958 0.769 0.895 0.628 0.865 0.923 0.646 0.329 0.694 0.551

n3rf0 0.951 0.958 0.952 0.892 0.956 0.753 0.935 0.958 0.814 0.899 0.967 0.716

n5rf0 0.932 0.939 0.948 0.906 0.950 0.797 0.929 0.948 0.823 0.844 0.921 0.693

n1rf20 0.963 0.972 0.954 0.796 0.921 0.630 0.865 0.923 0.641 0.890 0.976 0.708

n3rf20 0.950 0.957 0.951 0.894 0.957 0.755 0.925 0.957 0.776 0.898 0.968 0.716

n5rf20 0.931 0.938 0.947 0.908 0.950 0.798 0.930 0.950 0.817 0.768 0.869 0.693

Table 2: SI values for CSF, GM, and WM tissues in T1WI MR images using SPM12-s, SPM8-s, SPM8-N-s, and FAST-s to compare the
classification results of these tissues with the ground truth from BrainWeb.

Similarity index
SPM12-s SPM8-s SPM8-N-s FAST-s

GM WM CSF GM WM CSF GM WM CSF GM WM CSF

n0rf0 0.795 0.614 0.839 0.892 0.879 0.839 0.949 0.961 0.851 0.818 0.807 0.769

n1rf0 0.905 0.901 0.848 0.936 0.958 0.846 0.947 0.963 0.853 0.865 0.901 0.761

n3rf0 0.925 0.952 0.821 0.934 0.960 0.853 0.938 0.958 0.846 0.900 0.962 0.739

n5rf0 0.917 0.940 0.824 0.922 0.939 0.807 0.918 0.936 0.831 0.887 0.951 0.729

n1rf20 0.906 0.902 0.848 0.934 0.958 0.845 0.943 0.961 0.846 0.879 0.925 0.764

n3rf20 0.927 0.954 0.824 0.932 0.959 0.850 0.939 0.958 0.845 0.903 0.963 0.749

n5rf20 0.918 0.941 0.823 0.921 0.940 0.851 0.920 0.937 0.831 0.893 0.953 0.749
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The accuracy of CSF classification can affect not only
whole-brain volume estimation but also the estimation of
GM andWM volumes. For example, Valverde et al. [30] sug-
gested that considering the differences in sulcal cerebrospinal
fluid can directly affect the accuracy of GM tissue classifica-
tion. The main factor affecting the accuracy of CSF classifica-
tion pertains to the characteristics of SPM and FAST. Based
on voxel intensity histograms, both classification methods
are typically performed on T1 MPRAGE images, in which
the distribution of CSF gray-level intensity is similar to that
of other background noises, increasing the difficulty of using
the methods to accurately classify CSF tissues from the
images. However, newly developed versions of SPM (e.g.,
SPM8New Segment and SPM12), which are designed to clas-
sify T2-weighted and FLAIR images, have demonstrated
improved classification results. Such improvement is evi-
denced by the findings of [31], who obtained more accurate

estimates of intracranial volume (ICV) by using T2-
weighted images than by using T1-weighted images.

4.2. Effects of Spatial Normalization and Parameter
Adjustment on Classification Results. Brain tissue classifica-
tion methods are used to quantitatively measure changes in
the cerebral structure. We applied the proposed TRIOA, as
well as software tools (SPM8, SPM12, and FSL-FAST) that
are commonly used in neuroscientific research as multispec-
tral imaging and single-image classification methods, to
compare the classification results among different age
groups. Across all of the classification methods used in this
paper, higher CSF volume fractions and lower WM volume
fractions were observed in the elderly group than in the
young group, correlating strongly with the findings of previ-
ous studies [26, 27, 29, 32]. However, we determined that the
age-related increases in the GM volume fraction for all the

(a) Young (30y/o) (b) Middle (51y/o) (c) Elderly (66y/o)

T2WI FLAIRT1WIT2WI FLAIRT1WIT2WI FLAIRT1WI
(d) TRIOA

(e) SPM12-m

(f) SPM8-N-m

(g) FAST-m

Figure 1: Classification of the CSF, GM, andWM tissues by performing TRIOA, SPM8-N-m, SPM12-m, and FAST-m on the brain images of
three age groups. (a) T1WI, T2WI, and FLAIRMR images of young adults (30 years old); (b) T1WI, T2WI, and FLAIRMR images of middle-
aged adults (51 years old); (c) T1WI, T2WI, and FLAIR MR images of elderly adults (66 years old); (d) results obtained using TRIOA on the
original MR images presented in each group; (e) results obtained using SPM12-m on the original MR images presented in each group; (f)
results obtained using SPM8-N-m on the original MR images presented in each group; and (g) results obtained using FAST-m on the
original MR images presented in each group.

6 BioMed Research International



age groups when using SPM12-m differed the most from
those obtained using the other methods, because the GM
estimates determined by SPM12 were the lowest.

The aforementioned finding supports the results of [29],
who examined the effects of classification methods and spa-
tial normalization procedures on age-related GM reduction,

(a) SPM12-s

(b) SPMS-s

(c) SPM8-N-s

(d) FAST-s

Figure 2: Classification of CSF, GM, and WM tissues by performing SPM12-s, SPM8-s, SPM8-N-s, and FAST-s on the brain images of three
age groups. (a) Results obtained using SPM12-s on the original MR images presented in each group of Figure 1; (b) results obtained using
SPM8-s on the original MR images presented in each group of Figure 1; (c) results obtained using SPM8-N-s on the original MR images
presented in each group of Figure 1; and (d) results obtained using FAST-s on the original MR images presented in each group of Figure 1.

Table 3: Average volume fractions of the CSF, GM, and WM displayed in the 140 MR images of typical young, middle-aged, and elderly
adults that were estimated using TRIOA, SPM8-N-m, SPM12-m, and FAST-m.

Methods Tissues
Young (20-39 y) Middle-aged (40-59 y) Old (>60 y)

(mL) (%) (mL) (%) (mL) (%)

TRIOA

CSF 144:6 ± 41:6 11:3 ± 2:7 188:9 ± 46:0 14:4 ± 2:9 233:1 ± 54:9 18:2 ± 3:2
GM 630:7 ± 73:2 49:7 ± 1:8 596:5 ± 51:1 45:8 ± 2:0 565:9 ± 52:1 44:7 ± 2:5
WM 493:5 ± 62:0 38:9 ± 2:6 518:1 ± 56:4 39:7 ± 2:2 472:1 ± 61:4 37:1 ± 2:4

SPM8-N-m

CSF 177:7 ± 28:1 13:7 ± 1:2 199:1 ± 27:6 15:1 ± 1:5 219:0 ± 39:1 16:7 ± 1:8
GM 622:2 ± 71:5 48:2 ± 0:9 617:8 ± 52:3 46:8 ± 1:0 606:2 ± 59:2 46:6 ± 1:5
WM 491:6 ± 56:7 38:1 ± 1:2 504:0 ± 47:6 38:1 ± 1:2 476:7 ± 56:1 36:6 ± 1:5

SPM12-m

CSF 285:5 ± 52:5 22:2 ± 2:9 321:2 ± 45:1 24:4 ± 2:6 372:5 ± 62:0 28:7 ± 3:0
GM 566:7 ± 68:7 44:1 ± 2:2 532:5 ± 48:8 40:6 ± 2:2 487:8 ± 51:8 37:7 ± 2:4
WM 434:5 ± 55:3 33:8 ± 2:0 460:8 ± 50:2 35:0 ± 1:6 436:5 ± 57:6 33:6 ± 2:0

FAST-m

CSF 228:8 ± 53:5 17:8 ± 3:3 258:3 ± 44:8 19:7 ± 2:8 276:1 ± 56:5 21:3 ± 2:7
GM 539:7 ± 81:1 42:2 ± 3:8 511:1 ± 79:2 39:0 ± 4:7 473:5 ± 139:3 36:6 ± 9:6
WM 510:0 ± 73:2 40:0 ± 4:7 539:1 ± 77:7 41:2 ± 5:2 539:9 ± 133:4 42:1 ± 10:1
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and of [31], who proposed an SPM-based method to improve
the accuracy of ICV measurement. Callaert et al. [29]
observed that SPM tended to overestimate age-specific varia-
tions of GM volume, whereas DARTEL based on SPM8 New
Segment tended to underestimate these structural changes.
Hansen et al. [31] concluded that multispectral classification
can lead to a slight underestimation of ICV.

Two possible explanations for the differences of readings
across classification methods are proposed. First, newer clas-
sification methods use a larger number of tissue probability
maps (TPMs). Compared with the TPMs of SPM8 and older
versions, which detect only GM, WM, and CSF tissues, those
of SPM8 New Segment and the most recently released
SPM12 detect additional tissue categories including soft tis-
sues, skull, and out-of-brain regions. Thus, such newer
methods should theoretically be more accurate at assigning
voxels to appropriate tissue categories [29, 33, 34].

The second explanation involves parameter adjustment.
We applied the ICBM space template of East Asian brains
and the corresponding default parameters for MR image
classification. Table 5 tabulates the default parameters for
SPM8, SPM8 New Segment, and SPM12.

The number of terms for warping regularization of SPM
increased from one to five when the software was updated
from version 8 to 12. This algorithmic enhancement is dem-
onstrated in the Appendix of the article of [33], which consti-
tutes a more sophisticated regularization model of SPM12
that comprises five penalty terms (absolute displacement,
membrane energy, bending energy, linear elasticity, and
divergence). The purpose of this algorithmic enhancement
is to improve SPM classification accuracy, as confirmed by
[33], who used SPM8 New Segment, SPM12, and FreeSurfer
to estimate the ICV volume of the T1 MPRAGE images of
288 subjects and then compared the ICV measurement
results of the three automated methods with those of manual
(standard) classification. Subsequently, they observed a
strong correlation between SPM12 ICV and manual ICV

(R2 = 0:940%) and reported that the correlation with manual
measurements for SPM12 was significantly higher than for
SPM8 and FreeSurfer. However, in this study, we compared
the accuracy of the three methods only based on the total
ICV estimates, providing no comparison of the GM, WM,
and CSF classification results between these methods.

Peelle et al. [34] used voxel-based morphometry (VBM)
to adjust for global effects and measure age-related GM
reduction in healthy elderly adults. The authors also pro-
posed a research direction for studying how the selections
of TPMs, classification processes, and templates affect VBM
results. Callaert et al. [29] compared the methodological dif-
ferences in normalization between SPM5/SPM8 and DAR-
TEL and suggested that DARTEL yields more accurate
anatomical results, because it uses the SPM8 New Segment,
creates a custom template [35], and performs an iterative
process to progressively refine warping parameters for the
transformation from individual subject spaces to a common
space. Furthermore, the DARTEL procedure is more accu-
rate than the standard SPM5/SPM8 procedure, because the
latter uses a young-adult template and causes classification
inaccuracies involving age-related effects. Buckner et al.
[36] identified the construction and use of the target atlas
as a major limitation of atlas-based normalization; they used
a young-adult template to classify older-adult images, but
this approach resulted in multiple failures.

In contrast to the above methods, TRIOA has two
strengths. First, TRIOA classifies cerebral tissues within an
individual native space. Conversely, SPM8, SPM12, and
FAST classify using a template to warp image data from indi-
vidual native spaces to a common space and convert them
back to native spaces after classification; however, both con-
versions cause classification inaccuracies. Second, TRIOA
eliminates the requirement for parameter settings. Whereas
support vector machine (SVM) classification with the radial
basis function kernel requires the specification of the penalty
parameters C and γ, SVM with independent component

Table 4: Average volume fractions of the CSF, GM, and WM displayed in the 140 MR images of typical young, middle-aged, and elderly
adults that were estimated using SPM12-s, SPM8-s, SPM8-N-s, and FAST-s.

Methods Tissues
Young (20-39 y) Middle-aged (40-59 y) Old (>60 y)

(mL) (%) (mL) (%) (mL) (%)

SPM12-s

CSF 203:6 ± 58:1 15:5 ± 3:7 258:6 ± 57:9 19:2 ± 3:6 314:7 ± 63:7 23:8 ± 3:7
GM 661:0 ± 80:5 50:5 ± 2:5 613:8 ± 52:7 45:8 ± 2:7 570:4 ± 56:1 43:5 ± 2:7
WM 445:3 ± 56:9 34:0 ± 2:4 469:9 ± 52:6 35:0 ± 2:1 430:9 ± 57:1 32:7 ± 2:3

SPM8-s

CSF 272:3 ± 49:0 19:7 ± 2:7 336:7 ± 61:7 23:7 ± 3:4 387:3 ± 65:3 28:2 ± 3:6
GM 639:8 ± 72:7 46:4 ± 1:7 590:6 ± 51:4 41:8 ± 2:6 545:4 ± 58:4 39:8 ± 2:7
WM 467:6 ± 58:7 33:9 ± 2:2 487:4 ± 53:5 34:4 ± 1:9 441:3 ± 60:2 32:1 ± 2:3

SPM8-N-s

CSF 188:9 ± 30:7 14:4 ± 1:5 219:0 ± 31:7 16:3 ± 1:5 234:1 ± 35:4 17:8 ± 1:6
GM 636:3 ± 72:6 48:6 ± 0:9 624:1 ± 52:7 46:4 ± 1:2 605:4 ± 54:0 46:2 ± 1:4
WM 483:7 ± 57:2 37:0 ± 1:5 501:7 ± 50:4 37:3 ± 1:2 472:0 ± 53:5 36:0 ± 1:3

FAST-s

CSF 205:5 ± 45:3 16:0 ± 2:7 251:9 ± 46:2 19:1 ± 2:7 291:5 ± 52:7 22:7 ± 2:7
GM 590:1 ± 66:1 46:2 ± 1:8 562:9 ± 45:6 42:9 ± 1:8 517:2 ± 54:9 40:4 ± 2:3
WM 483:0 ± 59:8 37:8 ± 1:6 499:0 ± 53:4 38:0 ± 1:7 473:2 ± 52:5 36:9 ± 1:5
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Figure 3: Continued.
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analysis converts data attributes into the numerical form to
reduce the complexity of numerical estimation and the effects
of parameter optimization [16, 20, 37]. Thus, this method
can be applied to reduce the complexity of numerical estima-
tion and the effects of parameter optimization for MR image
classification, thereby improving the accuracy of the mea-
surement of brain tissue volume.

4.3. Potential Advantages of the TRIOA Method as an
Emerging Artificial Intelligence (AI) Technique. In recent
years, as the processing speed of computer hardware has
increased substantially, many artificial intelligence (AI) tech-
nologies have been realized. There are many literatures that
apply deep learning methods for brain tissue or brain tumor
segmentation on MR images [38, 39]. Havaei et al. [40] pro-
posed a deep neural network (DNN) for brain tumor seg-
mentation on MRI, mainly to improve the traditional
convolutional neural network (CNN) calculation method
and increase the computed speed by at least 30 times.
McClure et al. [41] proposed a Bayesian DNN method for
brain tissue segmentation, and the results also showed that
it can solve the current uncertainty problem of segmentation.
In addition, Yang et al. [42] also proposed the deep CNN

methods for neonatal brain tissue segmentation on MRI
and explored the versatility of the two architectures of Livia-
NET and HyperDense-Net. The experimental results found
that the performance of HyperDense-Net architecture for
neonatal brain tissue segmentation was better than Livia-
NET. However, these deep learning technologies will face a
very important challenging—that is, limited training and
ground truth data [38]. The ground truth data requires man-
ual operations by physicians, which is generally not feasible
in clinical applications. To address this issue, the TRIOA is
designed to be used as the labeling preprocessing of AI tech-
nology for brain tissue classification to reduce the manual
operation required for physicians and further improve the
feasibility of AI technologies in medical image-processing
application.

5. Conclusions

In this paper, we propose a multispectral MR image classifi-
cation method, TRIOA, which was applied in the analysis
of real brain MR images of 140 subjects, who were catego-
rized into three age groups: young, middle-aged, and elderly
adults. We also compared the classification results with those
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Figure 3: Relationships between age of subject and the average volume fractions of CSF, GM, andWMdisplayed in all the sampleMR images.
(a), (c), and (e), respectively, show the average volume fractions of CSF, GM, and WM estimated using TRIOA, SPM12-m, SPM8-N-m, and
FAST-m; whereas (b), (d), and (f), respectively, show the average volume fractions of CSF, GM, and WM estimated using TRIOA, SPM8-s,
SPM8-N-s, SPM12-s, and FAST-s.

Table 5: Default parameters for SPM8, SPM8 New Segment, and SPM12.

Parameter SPM8 SPM8 New Segment SPM12

MRF parameter — — 1

Clean up Do not do clean up — Light clean

Warping regularization 1 4 (0, 0.001, 0.5, 0.05, 0.2)

“–” denotes N/A.
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of SPM8, SPM8 New Segment, SPM12, and FAST. Age-
related differences in the GM and WM volumes ascertained
using TRIOA were the most like those reported in previous
studies; notably, the CSF volumes were relatively closer to
the reasonable range. In addition, a comparison of multispec-
tral imaging and single-image classification methods showed
that, whereas SPM and FAST entailed parameter adjustment
and the selection of spatially normalized templates, TRIOA
eliminated these two requirements, thereby facilitating the
accurate cross-sectional comparison of brain tissue volume
among different age groups.
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