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Asymptotic Gaussian law for 
noninteracting indistinguishable 
particles in random networks
Valery S. Shchesnovich   

For N indistinguishable bosons or fermions impinged on a M-port Haar-random unitary network the 
average probability to count n1, … nr particles in a small number r ≪ N of binned-together output ports 
takes a Gaussian form as N ≫ 1. The discovered Gaussian asymptotic law is the well-known asymptotic 
law for distinguishable particles, governed by a multinomial distribution, modified by the quantum 
statistics with stronger effect for greater particle density N/M. Furthermore, it is shown that the same 
Gaussian law is the asymptotic form of the probability to count particles at the output bins of a fixed 
multiport with the averaging performed over all possible configurations of the particles in the input 
ports. In the limit N → ∞, the average counting probability for indistinguishable bosons, fermions, 
and distinguishable particles differs only at a non-vanishing particle density N/M and only for a singular 
binning K/M → 1, where K output ports belong to a single bin.

Indistinguishable identical particles show correlated behavior due to their quantum statistics even in the absence 
of interactions: indistinguishable bosons show bunching, e.g., leave the balanced beam splitter in the same port, 
as demonstrated in the famous experiment with single photons1 and recently also with massive bosons2, while 
indistinguishable fermions show anti-bunching3. Fermionic (bosonic) behavior can also be emulated with bosons 
(fermions) by using entangled particles4, 5. Scaling up from two indistinguishable particles on a beam splitter to 
many particles in large-size multiports significantly increases complexity of behavior, as shown theoretically6–11 
and demonstrated in a series of spectacular experiments11–16. Calculating the probabilities or reproducing the 
statistics of output configurations of noninteracting indistinguishable bosons in a large optical multiport requires 
exponential resources in the number of particles, which is the essence of the Boson Sampling idea17 (and its 
generalizations18, 19), where with a few dozens of indistinguishable photons one could have the computational 
supremacy over the best of current digital computers17. The proof-of-principle experiments of several groups 
open a way to build such a device20–27.

The behavior of identical particles in multiports is an interplay between the quantum statistics and interfer-
ence. On the one hand, indistinguishable particles in multi-port networks show correlated behavior beyond the 
quantum statistics, e.g., in the symmetric (Bell type) multiports complex multi-particle interference results in 
common forbidden output configurations both for bosons and fermions10, confirmed recently with photons16. 
On the other hand, the quantum statistics shows up as the two-particle correlations at the Anderson localization 
in propagation through a disordered media28–30, induces the “photon clouding” in a unitary optical multiport24, 
defines the moments of the output distribution in the scattering of identical particles in chaotic cavities31, and is 
responsible for the generalized boson bunching and fermion anti-bunching32.

A natural question arises: Is there a universal statistics-dependent law in behavior of noninteracting indis-
tinguishable identical bosons (fermions) in multi-port networks? It is shown below that indeed the probability 
of counting indistinguishable particles in binned-together output ports of a unitary M-port, averaged over the 
Haar-random unitary matrix representing the multiport, has a statistics-dependent asymptotic Gaussian form as 
N ≫ 1, where the quantum statistics enters through the particle density N/M. (Our main interest is the bosonic 
case, since indistinguishable bosons and distinguishable particles can share the same port in a multiport, whereas 
we also consider fermions to identify the contribution of the quantum statistics). This quantum asymptotic law is 
reminiscent of the well-known asymptotic law for a multinomial distribution (the de Moivre-Lagrange-Laplace 
theorem33 below), which governs an analogous setup with distinguishable (or classical) particles. In the ther-
modynamic limit N → ∞, the average probabilities of counting indistinguishable bosons, fermions, and 
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distinguishable particles differ only for a finite particle density α = N/M and a singular binning, i.e., K/M → 1 
with K output ports belonging to a single bin.

Results
Asymptotic Gaussian law for distinguishable particles in a random network.  Consider a unitary 
M-port network U Fig. 1, whose output ports are partitioned into r bins having K ≡ (K1, …, Kr) ports, with N 
noninteracting identical particles at the input. Let us begin with the case of distinguishable particles impinging on 
a multiport. Here by the term “distinguishable particles” we mean the identical particles in different states with 
respect to the degrees of freedom not affected by a multiport1, 8, 34, such as the arrival time in the case of photons 
(e.g., particles sent one at a time through the multiport). The probability for a single particle from input port k to 
land into bin i reads = ∑ | = ∑ | |∈ ∈p p l k U( )i l K l K k l,

2
i i

, where p(l|k) = |Uk,l|2 is the probability of the transition 
k → l. Below we will be interested in the average probability in a random unitary multiport (except where stated 
otherwise, here and below the term “average” and the notation 〈…〉 means the average over the Haar-random 
unitary matrix U). A random unitary optical multiport can be experimentally realized with a very high fidelity25 
and without explicit matrix calculations35. We have 〈pi〉 = qi ≡ Ki/M, since 〈|Ukl|2〉 = 1/M (see Supplementary 
Information). For identical particles sent one at a time through a random multiport, the average probability to 
count n ≡ (n1, …, nr) particles in the output bins becomes a multinomial distribution
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Eq. (1) turns out to be also a good approximation to the average counting probability for N distinguishable 
bosons or fermions at the input (as the numerical results presented below show), e.g., as in propagation of dis-
tinguishable particles in the disordered media28–30 or chaotic cavities31. However, Eq. (1) cannot give the exact 
average probability for these cases, since for N simultaneous distinguishable particles at the input there is an extra 
factor (see Supplementary Information) due to the correlations between the matrix elements |Ukl|2.

The classic result in the probability theory, below referred to as the de Moivre-Lagrange-Laplace theorem33, 
states that given q1, …, qr, such that qi ≠ 0 and ∑iqi = 1, the probability of Eq. (1) takes asymptotically the follow-
ing multivariate Gaussian form as N → ∞ (more details in Methods)
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In other words, for N ≫ 1 and r ≪ N, the numbers n1, …, nr decompose as follows = +n q N N yi
D

i i
( ) , where 

y = (y1, …, yr) is a vector of random variables, constrained by ∑ == y 0i
r

i1
, with the joint probability density ρ(y) 

of a Gaussian form36 (see also Methods):

Figure 1.  Unitary network with the output ports grouped into bins. A quantum network, having a unitary 
matrix U, with N indistinguishable identical particles at its input and binned-together output ports (three bins 
in this case). We are interested in the probability of counting n = (n1, n2, n3) particles in the output bins. (Two or 
more bosons as well as classical particles may share the same input port).
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One important note. For a fixed unitary multiport U, averaging the transition probability over the input port 
gives ∑≡ = ==p l k U M U M p l k U( ; ) 1/ 1/ ( ; )k k

M
kl U1

2  (the averaging over the input port k and over the 
Haar-random unitary matrix U give the same result). Hence Eqs (1) and (2) apply also for any unitary multiport 
with the averaging performed over all possible configurations of distinguishable particles in the input ports (i.e., 
over k = (k1, …, kN), 1 ≤ ki ≤ M).

An intriguing question is: What is the quantum version of the above asymptotic result, i.e., what form the 
analogous asymptotic average probability has if N indistinguishable identical particles are at the input? Since the 
averaging over the random multiport matrix is performed, one would expect that the multiport-specific quantum 
interference effects do not show up in the result, whereas the difference in counting the classical (distinguishable) 
and quantum (indistinguishable) particles in the output bins is solely due to the quantum statistics. It turns out 
that in the quantum case the asymptotic form of the counting probability is the Gaussian law of Eq. (2) modified 
by the quantum statistics through the particle density α ≡ N/M.

Asymptotic Gaussian law for indistinguishable particles in a random network.  Let us consider 
bosons and fermions simultaneously (for fermions only up to one particle can be found per network port, as in 
Fig. 1). For indistinguishable bosons (fermions), the unitary invariance of the Haar measure makes the average 
probability uniform over the input/output configurations (see Supplementary Information), i.e., for an input 
k = (k1, …, kN) and an output l = (l1, …, lN) configurations the average probability of the transition k → l is just the 
inverse of the number of Fock states of N bosons (fermions) in M ports: =
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. Summing up the number of the transitions corresponding to a given counting 

result n of N bosons (fermions) in r bins, we get the following quantum equivalent of Eq. (1) (with the upper signs 
for bosons and the lower ones for fermions)
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where the classical 〈P(D)(n)〉 and quantum factors are separated. It turns out that the quantum factor in Eq. (4) can 
be approximated as N → ∞ in the same way as the classical probability in Eq. (1), i.e., there is also an asymptotic 
Gaussian law for Eq. (4). Namely, for any partition of the output ports into r bins, the probability 〈P(B,F)(n)〉 has 
the following asymptotic form as N → ∞ (see Methods for the derivation)

∑

∏π α
=






−





±

α
=

−

±

−

=
N q

n( )
exp

(2 [1 ] )
(5)

B F i

r n Nq

Nq

r

i

r

i

( , ) 1

( )

2[1 ]

1
2

1

i i

i

2



with α = N/M. For the Gaussian law (5) to be a good approximation to the probability (4) for N ≫ 1 the number 
of bins must satisfy r ≪ N, min(Ki) (see Methods).

It follows from Eq. (5) that for N ≫ 1 the ith bin occupation number ni admits the following decomposition 
α= + ±n q N N y[1 ]i

B F
i i

( , ) , where (y1, …, yr) is the same set of Gaussian random variables as in Eq. (3). 
Therefore, as N → ∞ we get xi ≡ ni/N → qi, i = 1, …, r for indistinguishable bosons (for a finite density α < ∞), 
fermions, and distinguishable particles. For bosons there is also the asymptotically infinite density case, N → ∞ 
for a fixed M ≫ 1, resulting in a qualitatively different (non-deterministic) limit → +x q y M/i i i . It is known37 
that in this case the output probabilities p(D)(l|k; U) and p(B)(l|k; U) of the transition k → l for distinguishable 
particles and indistinguishable bosons, respectively, differ even asymptotically as N → ∞ (except for the trivial 
cases, such as U being a permutation matrix).

The asymptotic Gaussian laws (2) and (5) apply for an arbitrary assignment of output ports to bins, while 
keeping the total number of ports in each bin fixed. Since the average probability 〈P(B,F)(n)〉 (4) depends only on 
the number of Fock states corresponding to the particle counts n, the asymptotic Gaussian law (5) is valid also for 
an arbitrary assignment of output configurations l = (l1, …, lN), allowed by statistics, to + −

−
N r
r N

( 1)!
( 1)! !

 bins of configura-
tions enumerated by a vector index n = (n1, …, nr) (replacing the vector of particle counts in the bins of the output 
ports), if the total number of configurations l in bin n converges as N → ∞ to the number of configurations cor-
responding to counting n particles in r bins of the output ports.

Similarly as in the classical case, the probability formula (4) and the asymptotic Gaussian law (5) apply 
also to any given unitary multiport with the averaging performed over the input configurations allowed by the 
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quantum statistics. Indeed, the quantum transition probability, k → l, satisfies the time-inversion relation p(B,F)(l|k; 
U) = p(B,F)(k|l; U†), thus averaging it over the allowed input configurations k produces a result uniform in l and 
equal to that obtained by averaging over the Haar-random unitary U (see Methods).

Comparison of the asymptotic Gaussian laws with the corresponding probabilities.  To compare 
the asymptotic Gaussian law with the corresponding probability of particle counting let us first give the formula 
for the respective probability P(n; U) in an arbitrary multiport U. Suppose for the moment that the particles are 
distinguishable (one can trace the path of each particle through a network by the distinct values of some internal 
degree(s) of freedom of the particles). Introduce for each output bin a N-dimensional positive semi-definite 
Hermitian matrix ⁎≡ ∑ ∈H U Ua b

i
l K k l k l,

( )
, ,i a b

, with k = (k1, …, kN) being the vector of the input ports of the particles, 
and assume that a1, …, ar is a partition of (1, …, N) into r subsets, such that vector ai contains ni indices identify-
ing the particles which end up in the ith bin. Then the probability of counting n = (n1, …, nr) particles in the 
output bins becomes
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In the quantum case, the fact that it is impossible to trace the individual paths of indistinguishable particles 
through a network results in the cross-particle interference terms, weighted by a function J(σ) acting on the group 
N  of permutations σ of N objects32, 34 (see Supplementary Information): J(B)(σ) = 1 for indistinguishable bosons 
and J(F)(σ) = sgn(σ) for fermions. For an input configuration k with sj particles (0 ≤ sj ≤ N for bosons and 0 ≤ sj ≤ 1 
for fermions) in input port j, j = 1, …, M, we obtain (see Methods)
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Let us first test the convergence of the average probability 〈P(n)〉 to the corresponding asymptotic Gaussian 
law as N → ∞. Taking the three bin partition, see Fig. 1, as an illustrative example we numerically compare Eq. (1) 
to Eq. (2) and Eq. (4) to Eq. (5) (separately for bosons and fermions) by computing the maximum of the absolute 
value of the difference  − Pn n( ) ( )  as a function of n = (n1, n2, N − n1 − n2) divided by the maximum value of 
〈P(n)〉 (both the maximum of the Gaussian approximation  n( ) in Eqs (2) and (5) and the maximum of the aver-
age probability 〈P(n)〉 in Eqs (1) and (4) decrease with N for fixed α and q1, …, qr). The results are presented in 
Table 1, where we start with N = 12 and M = 36 (i.e., α = 1/3), increase N by factor 2 and compute the respective 
M and the partition (K1, K2, K3) for fixed q1 = q3 = 1/4 and q2 = 1/2 (these values are chosen to have integer parti-
tions for all M).

To see how well the average probabilities (1) and (4) and the asymptotic Gaussian laws (2) and (5) compare 
with the corresponding particle counting probabilities for a randomly selected multiport matrix U, we numeri-
cally estimate the standard deviation employing the following formula

∑∆ = −
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P U Pn n1 [ ( ; ) ( ) ]
(8)

P
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with a large number   of randomly selected networks (the error controlled by comparing the results for inde-
pendent data sets). Figure 2(a,b) gives the comparison of the Gaussian laws with the corresponding average 
counting probabilities of N = 8 particles in two equal-size bins q1 = q2 = 1/2 of the Haar-random multiports with 
M = 24. The filled regions in Fig. 2(b) give the standard deviation ΔP numerically estimated using Eq. (8). Both 
the standard deviation ΔP and also its relative value ΔP/〈P(n)〉 decrease with N at the peak ni = qiN of the 
Gaussian law (5), see Fig. 2(c,d), moreover, the standard deviation for bosons rapidly settles on that of distin-
guishable particles with increase of N.
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36 9 18 12 0.096443 0.148050 0.075394

72 18 36 24 0.065787 0.102118 0.037101

144 36 72 48 0.045826 0.068456 0.025218

288 72 144 96 0.031497 0.047765 0.015706

576 144 288 192 0.022142 0.032836 0.010365

1152 288 576 384 0.015580 0.023029 0.006918

Table 1.  The numerically computed  − P
P

n n
n

max ( ) ( )
max ( )

 for the distinguishable particles, bosons, and fermions for 

the three bin partition with q1 = q3 = 1/4 and q2 = 1/2. The maximum is taken over all distributions n = (n1, n2, 
n3) of N particles over the output bins.
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Symmetries in the multiport matrix and a large deviation from the average probability.  A multiport matrix U with 
symmetries may result in the counting probability P(n; U) having a large deviation (as compared with the stand-
ard deviation) from the respective average probability for particular input configurations. Let us consider as an 
example the Fourier multiport = π{ }kl Mexpkl

i
M
2 6, 38. In this case most of the output configurations l are for-

bidden for a cyclicly symmetric input configuration k10, 16. For instance, with the help of numerical simulations it 
is found that for M = N2 and an input satisfying the cyclic symmetry kj+1 = kj + N (mod M), the equipartition of 
output ports into two bins (q = 1/2) produces the actual quantum distribution satisfying  =P Pn n( ; ) ( )B F D( , ) ( ) , 
i.e., equal to that of Eq. (1). Nevertheless, averaging over all allowed input configurations reproduces 〈P(B,F)(n)〉, 
as it should be. In general, there are unitary matrices having symmetries and possessing many continuous param-
eters, e.g., the block-Hadamard unitary

†= − =( )U V V
V V

VV I1
2

, ,
(9)

where V is an arbitrary unitary matrix. The unitary in Eq. (9) has forbidden laws for any V. For instance, for 
N = M/2 particles at the input and the equipartition of the output ports into two bins by the order of their indices, 
the N-dimensional Hermitian matrices which define the counting probability (7) are drawn from the following 
2N-dimensional Hadamard ones

= ±
±( )H I I

I I
1
2

,
(10)

(1,2)

depending on the indices of the occupied input ports. As the result, some of the bin configurations (n1, n2) are 
forbidden for certain input configurations (e.g., for an even number of particles N, only even number of bosons 
n1,2 can be detected in either bin, whereas fermions are always divided into two halves n1 = n2 = N/2).

The Haar measure for the M-port unitary matrices has M2 independent real parameters, where 2M − 1 of 
them are due to the invariance by multiplication with a diagonal unitary matrix39. The example in Eq. (10) shows 

Figure 2.  The Gaussian laws vs. the probabilities of particle counting in two output bins. Panel (a) shows 
the average probability (4) (filled circles) vs. the Gaussian law (5) (open circles), where bosons (fermions) 
correspond to the solid (dashed) line, and the classical average probability (1) (filled squares) vs. the Gaussian 
law (2) (open squares). Panel (b) shows the average probabilities (filled markers) and the Gaussian laws 
(open markers) together with the standard deviations; for a fixed n, the height of each filled region is twice 
the respective ΔP of Eq. (8). Panel (c) shows the standard deviation ΔP (8) at n = N/2 for bosons (the solid 
line), fermions (the dashed line), and distinguishable particles (the dash-dot line). Panel (d) shows the relative 
standard deviation ΔP/〈P〉 with 〈P〉 ≡ 〈P(N/2, N/2)〉. Here q1,2 = 1/2 and α = 1/3. In panels (a) and (b) N = 8, 
M = 24, and 0 ≤ n ≤ 8 corresponds to one of the bins.
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that there exist continuous subsets of the unitary matrices which result in large deviations of the counting proba-
bility P(n; U) from the respective average. In general, for a fixed U we have in total (using Eqs (19) and (33) from 
Methods)
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values of P(n; U), whereas at most  α= − = −M N( 1) (1/ 1)ind
2 2 2 of the values could be independent (for 

fermions, when Ki ≥ N is not satisfied for all i = 1, …, r, some of the values of P(F)(n; U) are zero by the Pauli exclu-
sion principle). We get the upper bound   = −O N/ ( )ind total

r3  as N → ∞, with r and α being fixed. Hence, the 
relative dimension of the subset of the unitary matrices with prescribed independent values of P(n; U) decreases 
with N at least for r ≥ 4 bins.

Quantum to classical transition in the thermodynamic limit N → ∞.  Quantum Statistical 
Mechanics predicts that, in the thermodynamic limit, for a system of weakly interacting identical particles the 
classical behavior appears at the vanishing density40 (α → 0 in our notations). Is there an analog of this rule for 
noninteracting indistinguishable particles in a random multiport? Let us call the boundary scaling M vs. N the 
largest scaling leading to the average probabilities in Eqs (1) and (4) being different in the limit N → ∞. Since the 
average transition probability 〈p(l|k)〉 decreases exponentially with N17 (see Supplementary Information), to have 
a finite average probability 〈P(n)〉 one has to sum an exponential in N number of such transition probabilities. 
This observation together the fact that Eq. (5) applies to an arbitrary assignment of output configurations to the 
bins of configurations seem to lead to the conclusion that as N → ∞ the difference between the quantum (4) and 
classical (1) average probabilities vanishes (for a bounded particle density α). However, Eq. (5) and the above 
conclusion do not hold for a singular binning, the simplest of such is obtained by assigning K < M ports to bin 1 
and the rest to bin 2 (or any number of bins), with K/M → 1 as M → ∞ (since qi ≠ 1 is the applicability condition). 
In this case, setting ⁎= ∑ =H U Ui j l

K
k l k l, 1 , ,i j

 for the occupied input ports k1, …, kN, we obtain from Eq. (7) the proba-
bility to detect all N input particles in K output ports as follows32
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where per(…) stands for the matrix permanent41. The probability in Eq. (12) satisfies32 P(F) ≤ P(D) ≤ P(B) for any 
multiport and any K < M (this order of the probabilities is reflected also in Fig. 2(a,b) at the end-points n = 0 and 
n = N). The average values of the probabilities in Eq. (12) were reported before32. We have (we use Eq. (1) for 
distinguishable particles, which is a good approximation, Fig. 2)
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Figure 3.  The survival probability in a lossy network. Panel (a): an equivalent representation of a lossy M-port 
linear network A = UDV with a unitary 2M-port network, where U and V are some unitary M-ports and the 
diagonal matrix η η= …D diag( , , )M1  corresponds to M beamsplitters (with the transmission coefficients 
η1, …, ηM) placed between them. Panel (b): the average survival probability of N indistinguishable bosons 
(above the middle dash-dot line) and fermions (below the middle dash-dot line) in a random 4N-port network 
with m = 3 lossy channels having the loss rates η1,2,3 = 0.1 (dots on the solid lines) and η1,2,3 = 0.3 (open circles on 
the dashed lines). The dash-dot lines give the analytical average survival probability of Eq. (13) for m = 3 
completely lossy channels η1,2,3 = 0, where from top the to bottom we have bosons, distinguishable particles, and 
fermions, respectively. The averages are computed over 9000 random unitary matrices U.
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where the upper (lower) sign stands for bosons (fermions). Let us assign K output ports to a single bin, such that 
m ≡ M − K is fixed as K, M → ∞ and assume that the input configuration contains up to one particle per input 
port. We get in the limit N → ∞ for N/M → α ≠ 0 (see Methods):

α → ±  → .α

→∞ →∞

−P P e(1 ) , (14)
B F

N
m D

N
m( , ) ( )

The result of Eq. (14) implies different survival probability of non-interacting identical particles in some lossy 
networks: even as N → ∞ the probability to detect N indistinguishable bosons (fermions) and distinguishable 
particles at the output of a “crowded” M-port network with M = O(N) can be different. Indeed, an arbitrary lossy 
linear network A (AA† ≠ I) can be equivalently represented by three consecutive multiports according to the 
singular-value decomposition A =  UDV42, where U and V are two unitary multiports, whereas 

η η= …( )D diag , , M1  corresponds to M beam splitters having the transmission coefficients η1, …, ηM con-
necting the multiports U and V, see Fig. 3(a). The commutation rules for the creation and annihilation operators 
require that 0 ≤ ηk ≤ 1 for a lossy multiport (see the Supplement to ref. 32). For a network with m strongly lossy 
channels η1 = … = ηm = 0 and K = M − m transparent ones (ηm+1 = … = ηM = 1), by averaging over the 
Haar-random U, i.e., the path-dependence of the loss of particles (whereas V has no effect on the survival proba-
bility) we arrive at the survival probability given by Eq. (13) with the asymptotic results in Eq. (14). The conclu-
sion extends to the networks having some of the loss rates satisfying η ≪ 1, while the others 1 − η ≪ 1, Fig. 3(b).

Discussion
The existence of forbidden events common for bosons and fermions in the symmetric Bell multiports10 could be 
viewed as a manifestation of the primary role of the quantum interference over the quantum statistics. Now this 
view is complemented by the existence of the asymptotic statistics-dependent Gaussian law for indistinguishable 
particles in multiports for the counting probability in the binned-together output ports averaged either over the 
Haar-random multiports, or, for a fixed multiport, over the allowed input configurations of the particles (a quan-
tum analog of the de Moivre-Lagrange-Laplace theorem33 for the multinomial distribution describing classical 
particles at the input). The asymptotic Gaussian law can have direct applications for noninteracting indistinguish-
able bosons or fermions in the setups where randomness plays a key role, such as the multiphoton propagation 
through disordered media28–30 and the multi-particle scattering in chaotic cavities31.

The rapid advance of the quantum technology has scaled up the number of identical particles and the size of 
employed networks in current experiments11–16, where a wealth of complex behavior is reported. A lot of atten-
tion is devoted to indistinguishable photons in multiports19–27 due to the Boson Sampling idea17 as a near-future 
feasible “sampling computer”, an alternative to the universal quantum computer43 for the demonstration of the 
quantum supremacy over the digital computers. Recently it was suggested44 that there might be also some deci-
sion problems easily solvable on a Boson Sampling device but not on the digital computers, where binning of the 
output configurations in a random multiport was proposed for devising such classically hard decision problems. 
While the complexity of behavior in the linear bosonic networks asymptotically challenges the digital computers, 
the search for simple asymptotic laws, such as the asymptotic Gaussian law of the present work, brings the divi-
dends of understanding such a complex behavior.

Methods
Derivation of the quantum asymptotic Gaussian law.  Derivation of the de Moivre-Lagrange-Laplace 
theorem can be based on the Stirling’s formula π θ= +n n n e! 2 ( ) ( / )n

n, where θ< < .1 77n
1
6

 for n ≥ 145 and 
θ0 = 1/(2π). It allows one to approximate the multinomial distribution of Eq. (1) as follows (here for ni ≠ 0)
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with xi ≡ ni/N. Employing a meticulous error estimate36 as N → ∞ one can then derive the asymptotic result of Eq. 
(2) .  The  main  s teps  are  the  fol lowing .  Obser ve  that  the  Kul lback-L eibler  d ivergence 

∑≡ ≥=D x x qx q( ) ln( / ) 0KL i
r

i i i1
 in the exponent in Eq. (15) has a simple expansion for xi close to qi (its mean 

value)
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For N ≫ 1 and for small |xi − qi| the first term on the right-hand side in Eq. (16) is a sufficient approximation 
for DKL(x||q) when the former is multiplied by a large negative factor (−N) and placed in the exponent in Eq. (15). 
In its turn, the factor xi in the denominator on the right-hand-side of Eq. (15) can be replaced by qi within the 
same approximation. The result is the stated Gaussian law
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The above steps, besides clarifying a basic idea behind the proof of the classical asymptotic result, allow one to 
justify the analogous quantum asymptotic result by application of exactly the same approximations to the quan-
tum average probability (4). Indeed, in the quantum case, additionally to the classical multinomial distribution of 
Eq. (15), there is the quantum factor
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To estimate the latter, let us use the following result
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valid for all n ≥ 0 for the positive sign and for 0 ≤ n < m for the negative sign. Eq. (19) follows from the 
second-order Euler-Maclaurin summation formula46
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6

 and {x} is the fractional part of x. Setting f(x) = ln(1 ± x/m) and using Eq. (20) one can 
derive Eq. (19). With the use of Eq. (19) the quantum factor is approximated uniformly over n as follows (for 
fermions N/M ≤ δ < 1)
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Using simple algebraic manipulations one can expose in the logarithm of the right-hand-side of Eq. (21) a 
Kullback-Leibler divergence multiplied by a large negative factor, similar as in Eq. (15). Setting α = N/M, intro-
ducing ≡

α
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 (an analog of xi in Eqs (15)–(16)) we have
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Expanding the Kullback-Leibler divergence (the third term) on the right-hand-side of Eq. (22) as in Eq. (16), 
using that − = ± −α

α±
X q x q( )i i i i1

 and replacing Xi by qi in the second term (for similar reasons as in the clas-
sical case) one arrives at the following Gaussian approximation for the quantum factor
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Multiplying the two factors in Eqs (17) and (23) we arrive at the asymptotic Gaussian of Eq. (5).

The counting probability in the output bins of a given multiport.  Let us recall that the probability 
to detect N identical particles in the output ports l = (l1, …, lN), corresponding to occupations m = (m1, …, mM), 
for an input k = (k1, …, kN), corresponding to occupations s = (s1, …, sM), reads32, 34

ˆ ⁎


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p p J U Ul k m s
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1
! !
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1
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where a unitary matrix U expands the input ports of a multiport over the output ones ∑= =k U lin
l
M

kl
out( )

1
( )  and 

≡ ∏ = mm! !l
M

l1 . In Eq. (24) the function J(σ) of the permutation σ of N objects, describing the state of partial 
distinguishability of the particles, is given as follows
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a1 1 ( )1  is an operator representation of σ in the Hilbert space of the internal 
states of N particles and ρ(int) is their internal state32, 34 (more details in Supplementary Information). Consider 
now a partition of the output ports of a M-port unitary network U into r bins with K = (K1, …, Kr) ports. 
Summing up the probabilities of Eq. (24) with the occupations m = (m(1), …, m(r)) corresponding to counting of 
n = (n1, …, nr) particles in r output bins gives
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where we have introduced for output bin i a N-dimensional positive semi-definite Hermitian matrix
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and a partition a1, …, ar of the indices (1, …, N) into r subsets, such that vector ai contains ni indices. The partition 
represents the permutations of port indices complementary to the group Gs of symmetries of the input configu-
ration s (with s! elements) in the group N  of permutations of N objects. In the case of distinguishable particles we 
have34
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which allows to further simplify the expression in Eq. (26) by computing the sum over σ. We get the factor s! 
(which cancels the same factor in the denominator) resulting in
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For bosons, in computation of the probability by Eq. (26) one cannot avoid an exponential in N number of 
the floating point operations. The numerical computation can be carried out using Ryser-Glynn’s formula for the 
matrix permanent47, by first computing the sum over σ for a fixed partition a (i.e., a product of the matrix perma-
nents41) and then the sum over all possible partitions.

Averaging the probability over the input configurations allowed by the statistics.  Unitarity of 
the multiport matrix U results in equivalence of the averaging the probability p(l|k; U) of the transition k → l over 
the Haar-random unitary U to the averaging over all the input configurations k, allowed by the statistics, for an 
arbitrary (fixed) unitary U. Indeed, denoting the respective occupations by s and m, from Eq. (24) we have (see 
also ref. 48)

= | | = =
| |ˆp U U p U p U

U
l k k l l k m s

s m
m s

( ; ) det( ( )) , ( ; ) ( ; )
per( [ ])

! ! (30)
F B B( ) 2 ( ) ( )

2

where U(k|l) is a N-dimensional submatrix of U on the rows k and columns l, per(…) stands for the matrix per-
manent41 and the N-dimensional matrix U[s|m] is built by selecting rows and columns of U with the repetitions s 
and m, respectively. In both cases, the invariance properties of the matrix determinant and permanent imply the 
following time-inversion symmetry p(B,F)(l|k; U) = p(B,F)(k|l; U†). On the other hand due to unitarity we must have
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where in the case of bosons we sum over all m satisfying ≡ ∑ == m Nm l
M

l1  and in the case of fermions over the 
sets of distinct indices l = (l1, …, lN). Using the time-invariance symmetry together with Eq. (31) in the definition 
of the average over all the (allowed) input configurations, we conclude, for instance, that
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where we have counted the number of Fock states of N bosons in M ports. Since = −
+ −

p̂ Um s( ; )B
U

M N
M N

( ) ( 1)! !
( 1)!

 
(see Supplementary Information) we obtain the announced result. Similar for fermions.

The asymptotic average counting probability for a singular binning.  Let us prove the asymptotic 
results in Eq. (14). For N → ∞ and N/M → α we obtain (by expanding the logarithm of the left-hand side)
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On the other hand, by applying Eq. (19) to the product in the quantum average in Eq. (13) we get
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The first factor on the right-hand side of Eq. (34) can be estimated similar as in Eq. (33)
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Using Eqs (33)–(35) into Eq. (13) we arrive at the asymptotic result stated in Eq. (14).
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