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Under heat stress, a decrease of the central venous pressure (CVP) was regularly observed,
raising the question of whether this reaction is a limiting factor for the circulation.

In animal experiments it could be shown, however, that despite a lowered CVP, which
depended on the elevated body temperatures, a high cardiac output (CO), as well as an elevated
stroke volume could be maintained. A low CVP went hand in hand with a low total peripheral
resistance. It was argued that under these circumstances the low CVP was not limiting because
the intrinsic factors of the heart (sympathetic stimulation) were capable of maintaining a high
CO.

In human experiments the lowered CVP had to be seen in relation to the degree of dehydration.
Regardless of whether the plasma volume remained constant, as in exercise, or declined, as in
thermal stress (sauna), the CVP followed the volume depletion of the vascular and extravascular
space, and it might well be that under these circumstances CVP is limiting. In this case, however,
the altered CVP must be seen first as a monitor for the fluid deficit and not as a factor controlling
cardiac function.

INTRODUCTION

Under thermal load, blood flow and blood volume divert from the body core to the
skin, favoring heat loss [24,26,27,28,29,32]. The translocation of blood from the
intrathoracic compartment toward the periphery is necessarily followed by a lowered
cardiac filling pressure, raising the question of whether this lowered filling pressure is a
limiting factor in adjusting to heat stress. The question as it stands tacitly implies that
cardiac function under these circumstances is strictly dependent on the Frank-Starling
mechanism, with cardiac output (CO) going up when central venous pressure (CVP)
goes up and vice versa. Conversely, it is known that under heat stress in healthy
subjects, a high CO can be maintained despite a lowered CVP [2,12,23,29]. Obviously
the question raised cannot be answered simply with “yes” or “no.” Before an answer
can be given, the term “cardiac filling pressure”” must be defined more precisely.

THE NATURE OF THE CARDIAC FILLING PRESSURE

The term “cardiac filling pressure” usually means the pressure measured in the
right atrium or close to it. Pressures measured in this location are also referred to as
CVP. In this paper, both terms will be used synonymously.

The right atrium is a part of the so-called “low pressure system” (LPS) of the
circulation, comprising post-capillary vessels, lung circulation, the right atrium and
ventricle, the left atrium, and the left ventricle in diastole. All these parts normally
form a functional unit, because pressure changes occurring in one part are transmitted
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to other parts of the system [7]. Gauer, Henry, and associates have worked out this
concept of the LPS and validated it in many experiments [4,5,6,7].

The term “cardiac filling pressure” is preferentially used looking downstream
toward the heart. Guyton and his school have shown that under their experimental
conditions the level of the CVP determines cardiac function, and, conversely, atrial
pressure is dependent on cardiac function [8,9]. Within this frame of thinking, Rothe
has recently outlined this very useful concept in several review articles [21,22]. The
right atrial pressure is a function of the amount of blood returned to the heart and the
pumping ability of the heart [8].

If, however, one turns around and looks upstream one becomes aware that the right
atrium sits in a key position of the circulation. From this point one can look outside to
the extrathoracic parts of the LPS, and get information about the filling state of the
circulation, including both the intra- and extravascular parts [7,15,16,17]. Further-
more, the level of the CVP reflects peripheral characteristics of the vascular bed such
as vascular tone, which is particularly important under heat stress [3,6,11,25].

The double-faced nature of this parameter becomes obvious if the dimensions are
compared. The information about the volume is given in cm®, while the information
about the cardiac function, like the CO, is given in cm® per time. Since under heat
stress volume changes of both the intra- and extravascular bed as well as changes of the
cardiac function can occur [1,2,17,18,30,31,33], we must define the dimensions.

Results will be reported from two kinds of studies. In the first series of experiments,
CVP changes were viewed looking downstream toward the central circulation, after
raising the body temperature in dogs. In the second series, CVP was observed in
healthy young men after changing the hydration level by thermal stress or exercise; in
these experiments we looked upstream.

METHODS

The experiments were performed in five adult female dogs weighing between 13 and
20 kg. The animals were splenectomized and a right carotid loop was made. After a
wound healing period of at least three weeks the experiments began. The animals were
run on a motor-driven horizontal treadmill for 30 minutes. The exercise was continued
until the body weight (BW) had decreased by at least 3 percent. The running speed was
adjusted to the animal’s individual ability, varying between 8 and 15 km/hour. The
animals ran for two hours, covering distances between 15 and 40 km. The environ-
mental temperature was 16°C, because it was estimated from the work of Hammel et
al. [10] that this was close to the neutral zone of dogs during exercise. The animals had
no access to water during exercise and afterward during the measurements.

The control measurements and the after-exercise measurements were repeated at
weekly intervals so that two experiments from each animal were obtained.

During the measurements the animals lay conscious, quiet, and relaxed on their left
sides. No sedatives were given. The carotid loop was punctured with a cannula through
which a catheter for arterial blood pressure (ABP) measurements or a thermistor
probe for CO measurements was introduced into the carotid arch. The left jugular vein
was punctured and a catheter placed close to the right atrium to measure CVP.

The thermodilution method was used for the measurement of CO. The surface area
of the animals was calculated and CO and stroke volume (SV) values were given in
liters x min~' x m~? (cardiac index) and ml x m~? (stroke index), respectively. ABP
and CVP were sensed with Statham strain gauges (P 23 AA, P 23 BB) and recorded on
a Beckman Dynograph (Type RM) [17].
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HUMAN EXPERIMENTS

Two series of experiments were done.

A. Eight experienced long-distance runners and ten well-trained cyclists partici-
pated in one study. The long-distance runners covered a distance of 5 km within 25
minutes (temperature 23-28°C, ABW —1.3 percent). The cyclists performed a race
for 2-3 hours, five of them without fluid intake (temperature 24-28°C, ABW —4.1
percent), while the other five were given fluid amounting up to 1.5 percent of their BW
(ABW —2.5 percent). The data of both studies were pooled in Fig. 5, which contains
the values taken 90 minutes after exercise when rectal temperatures had returned
toward control levels.

Before exercise CVP was measured with the help of the “arm down” method [5] and
plasma volume (PV) was measured using I'*' or I'*® labeled human serum albumin.
After exercise the measurements were taken as early as possible and repeated at
90-minute intervals. PV was determined 90 minutes after exercise [16].

B. Eight volunteers were dehydrated over a period of 24 hours by intermittent
sauna (55 to 60°C) bath and fluid restriction, achieving a dehydration level between 3
and S percent of BW. One hour after the end of the dehydration period, they were
allowed to drink fluid ad libitum.

In the control period and after the dehydration, CVP and PV were measured as
reported above, namely 90 minutes after the dehydration experiments, when the rectal
temperatures had returned toward control levels. It should be pointed out here that the
changes in CVP shown in Fig. 5 were viewed solely with respect to the degree of
dehydration, regardless of which model was applied to achieve the water deficit. This
approach seemed justified because after 90 minutes following the dehydration
procedures there had been adequate time for fluid equilibration between the body
compartments, and the specific physiological differences between the dehydration
models could be neglected.

RESULTS

Figure 1 contains the results of a typical single experiment in one dog showing
parameters from top to bottom: ABP, heart rate (HR), CO, SV, total peripheral
resistance (TPR), CVP, and the temperature in the aortic arch (T,,). The control
values on the left side of Fig. 1 continue to the right side as dashed lines. The
experiment started ten minutes after the end of exercise and extended over the next 180
minutes. Most important for our consideration are the elevated HR and CO, and the
lowered CVP and TPR in the face of an elevated body temperature. This situation
prevailed for about 60 minutes until body temperature returned to the control level.
Mean ABP did not show dramatic changes, however. In this case, it is remarkable that
the SV remained considerably above normal for a long time despite a low filling
pressure. This pattern was consistent in all the animals.

Combining these parameters for all the dogs (Fig. 2) shows that after the end of
exercise HR and CO exceeded control values by 40 percent, whereas TPR is 30 percent
below the control. At the beginning, the high CO after exercise is entirely due to the
high HR; later it is due to an elevated SV.

As can be seen from Fig. 3, a high CO is maintained as long as body temperature is
elevated. There is a linear relationship between these variables. CVP remains low as
long as body temperature is high. This inverse relationship is strictly linear for each
animal.
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FIG. 1. Typical cardiovascular pat-
85— e : Tart tern in one dog in the after-exercise
1 e T e period. Note the elevated stroke volume
01530 60 90 120 150 180/[min] as compared to the control despite the

CONTROL EXERCISE AFTER EXERCISE lowered central venous pressure.

Plotting the CVP against TPR also shows a linear relationship. A low TPR is
accompanied by a low CVP and vice versa (Fig. 4). This means that under heat stress a
low pre-load is accompanied by a low after-load whereby a high CO is warranted
despite low filling pressures. Other authors have shown similar results applying
different experimental models over wider temperature ranges [12,26,29,30,31].

DIFFERENCE

[./o] 050 - z Eg

+ 40— o—ao §Y

30— o—a TPR
+20 — FIG. 2. Changes in cardiovascular
+10 — pattern during the 180 minutes follow-
100 —4- a ing exercise. The ordinate depicts the
10— /}\,: percentage deviations from the controls
(100 percent left side). The parameters
20— are derived from mean values from ten
-30 experiments in five animals. Initially,
1T 1 17T 1T 1T | high cardiac output is maintained by

01530 60 9 120 150 180[min] elevated heart rate, and later by
CONTROL EXERCISE AFTER EXERCISE increased stroke volume.



CIRCULATORY LIMITATIONS IN HEAT STRESS 261

co
[I.'min'l'm'z]

1— '
CTTTTTTTTTTTTTTTTT
380 385 390 s [*]
Tart.
Tart.
380 35 30 us [
NN

FIG. 3. Cardiac output and central
venous pressures in five animals are
plotted in relation to the body tempera-
ture after exercise. The inter-individual
differences between the animals were
rather high, but for each animal a
linear relationship existed between the
variables. The slopes were almost iden-
tical. In all cases, a high cardiac output
was compatible with a lowered central
venous pressure.

In the human experiments, the attempt was always to relate the changes of the fluid
volume measured as changes of BW with the concomitant changes of CVP. As can be
seen in Fig. 5, changes in BW induced by exercise dehydration in athletes were always
accompanied by changes of the CVP. The body apparently monitors the fluid loss
whether or not the PV has decreased. It was found, for instance, that the PV remained
almost unchanged as long as the dehydration level did not exceed 2.5 percent of BW. In
the situation shown here, the extravascular volume was apparently depleted to keep the
PV as high as possible.

PV decreased immediately under thermal stress, as can be seen in the next
illustration (Fig. 6). Under those conditions CVP is closely correlated with changes of
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PV. Several authors have seen, in their experiments applying similar dehydration
models, a reduced cardiac function [2,12,30,31]. Under those conditions the reduced
cardiac function cannot simply be related to the lowered cardiac filling pressure. Here
the low filling state of the extracellular fluid compartment, especially the reduced PV,
seems to be a causative mechanism.

CONCLUSION

In the after-exercise period in dogs a lowered filling pressure was very compatible
with a high CO and an elevated SV. It was the impression throughout these
experiments that, as long as the need for heat dissipation prevailed, the concomitant
low CVP was not a critical factor for cardiac function (Figs. 1, 2, and 3). The low
pre-load went hand in hand with a low after-load (Fig. 4). Therefore, looking
downstream under these conditions, the CVP is not a limiting factor.

At this point we need to be reminded that under these conditions the heart is working
in the low range of the Frank-Starling curve, where small increments of the filling
pressure can induce large increments of CO. It seems doubtful, however, that these
mechanical considerations are of significance as long as the sympathetic outflow is
changed in the manner seen under thermal stress [13,14]. The increased sympathetic
drive to the heart seems to be more important than the fluctuations of the CVP because
intrinsic factors determine the function of the heart rather than mechanical ones such
as the filling pressure.
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This point of view is more or less in accordance with other authors [26,28,29]. The
overall cardiovascular pattern seen under heat stress described above is, among others,
brought about by an increased sympathetic outflow from the hypothalamus and spinal
cord into the sympathetic nerve fibers supplying the heart, intestines, and kidneys. At
the same time, the activity of the cutaneous branch is decreased [13].

This pattern is responsible for the diversion of the blood flow toward the superficial
tissues of the body. Furthermore, we must take into consideration the heat-induced
increased distensibility of the peripheral veins, which allows the pooling of greater
amounts of blood in the skin [24,25,28,29].

We must therefore accept that the body has to live with a lowered CVP under heat
stress, which leads to the question of what the lowered CVP means for the circulation.

The pressure gradient from the capillaries to the right ventricle is a critical
determinant for the filling of the heart. The lowered CVP widens the gradient,
especially from the splanchnic bed toward the right ventricle, and the emptying of the
extrathoracic blood stores is improved. As long as enough volume is available in the
intravascular bed of the extrathoracic compartment, which can be mobilized by the
activation of the muscle pump and venoconstriction, the lowering of the CVP creates
no critical situation for the mechanics of the circulation. Under the increased
sympathetic drive the heart can generate a higher CO. In the Guytonian view, the
heart is shifted toward a curve where even with lowered filling pressures higher outputs
can be obtained [9,21,22].

Within this frame of cardiovascular activity, the lowered filling pressure of the heart
under heat stress cannot be regarded as a limiting factor, but rather as a necessary
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adaptive factor for the recruitment of volume from the extrathoracic parts of the
circulation.

The question at this point is whether this view can be transferred to situations where
dehydration is superimposed on heat stress. Does the fluid loss change the cardiovascu-
lar pattern from the one described above? To answer this question, we have to look
upstream.

In general we have to take into consideration a depletion of intra- and extravascular
fluid compartments [1,18,20,33]. It seems as if thermal stress particularly affects the
intravascular compartment [18] whereas under exercise dehydration the intravascular
compartment remains preserved until the dehydration exceeds a certain degree
[18,20]. Dehydration invariably leads to a lowering of the CVP as seen by ourselves
(Figs. 5, 6) and other authors [2,28,29]. This result was independent of whether
exercise or heat stress dehydration was applied. The lowered CVP was seen even when
plasma volume was elevated or at control level (Fig. 5).

It seems very likely that, under these circumstances, the sympathetic outflow is
modified in such a manner that a relocation of volume into the central parts of the
circulation is improved. Generally we saw in these subjects indications of an increased
venous vascular tone [16]. Furthermore, the heart rate was elevated from five to ten
beats per minute even during rest. Nadel and his group reported similar observations
[3,19].

Under heat stress combined with dehydration, CVP apparently monitors the
lowered filling volume of the extracellular space, initiating refill mechanisms [7].
Therefore, the idea that CVP is a limiting factor cannot be excluded, especially when
the dehydration exceeds 2—3 percent of body weight. However, it is not the pressure per
se which is limiting, but the lack of volume. Therefore, we still maintain that the CVP
is not a limiting factor.
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