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Introduction
Studying rare events, such as mutation or gene expression, in 
complex biological systems is challenging because large sam-
ples and costly analysis are often required to detect a sufficient 
number of events. Computational models can help address this 
challenge by simulating these biological systems. Such compu-
tational models can then be applied to more quickly and cost-
effectively explore large experimental design spaces. 
Nonetheless, detailed computational models often suffer from 
similar barriers as experimental systems; ie, large numbers of 
simulations are often required to observe these rare events, 
requiring significant computational time and resources to 
acquire sufficient data.1 In this work, we describe a means to 
circumvent some of these computational challenges, to facili-
tate efficient experimental design and data analysis. We develop 
and illustrate a multifidelity analysis approach, incorporating 
medium-fidelity (MF) analysis (Monte Carlo simulations) and 
low-fidelity (LF) analysis (Markov chain models) to analyze 
output from computationally intensive stochastic simulations 
(high-fidelity [HF] models). We focus on stochastic HF mod-
els due to their utility in capturing discrete events, a key feature 
when studying rare events.

High-fidelity, high-computational-cost models simulate 
systems with high levels of mechanistic detail. Lower-fidelity 
models (or surrogate models) of the same system can be used to 

approximate system dynamics, while eliminating some of the 
mechanistic details, thereby lowering the computational cost.2 
Various approaches have been employed to accelerate the sim-
ulation of rare events in HF computational models, including 
weighted ensemble simulations, partitioning, and tau-leaping.1,3 
Multifidelity models or surrogate models can also be used to 
simulate and approximate complex system dynamics.4,5 Tunable 
resolution uses data from fine-grained, mechanistically detailed 
models to strategically coarse-grain subsections of the fine-
grained models as appropriate for various analyses.6,7 These 
methods typically consist of HF models and LF models run-
ning independently, either for different areas of parameter 
space or for different regions of interest within a single 
simulation.2,4,7,8

Instead, our approach complements these established meth-
ods using lower-fidelity models to analyze output from indi-
vidual simulations of the HF model. Each HF model simulation 
produces a set of transitions (timing, type, and number of tran-
sitions). This set of transitions maps out a finite state space in 
the rare event coordinate. Our multifidelity analysis then 
approximates the state probabilities for this entire rare event 
state space over time based on the set of transitions. In other 
words, we assume that system transitions in all coordinates 
except the rare event coordinate are determined by the HF 
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model simulation. This approach expands on the rare event 
parameter ranges and types of analyses that can feasibly be 

explored using the HF model alone. For example, in stochastic 
models, it could be of interest to discern the influence of sto-
chasticity, which we cannot control, from the influence of 
parameters that we might be able to control through treatment 
or other interventions. We will first describe our multifidelity 
approach in light of a simple illustrative example and then 
show the application of multifidelity analysis to an HF model 
of drug-resistance emergence in tuberculosis (TB) disease.

Multifidelity Analysis
To illustrate our approach, we consider the example of rare 
genetic mutations in a population of bacteria that are dividing 
and dying over time. An HF model of this system could incor-
porate any number of mechanistic details driving bacterial divi-
sion and death, eg, available nutrients, influence of surrounding 
bacterial species, antibacterial chemicals, and host immune 
responses (Figure 1A).9–11 Each simulation of such an HF 
model would produce as output a population trajectory (in this 
example, the number of bacteria over time). Such a population 
trajectory is the combined result of 2 series of discrete events: 
number of bacterial divisions per time unit and number of bac-
terial deaths per time unit. Because we consider stochastic 
models, repeated simulations of the same model will result in 
different population trajectories.

When the HF model is used to study rare events, in this case 
genetic mutations, each simulation will also produce a rare event 
trajectory (in this example, number of mutated bacteria over 
time, Figure 1A). Rare event trajectories are the combined result 
of population trajectories and probability of rare events (in this 
example, the probability of mutation per bacterial division). 
However, given the low probability of the rare event, a large 
number of HF model simulations may be required to obtain a 
sufficient number of nonzero rare event trajectories. In some 
cases, a weighted ensemble strategy can distribute computa-
tional resources to difficult-to-sample areas of the state space.1 
However, the binary nature of systems such as the bacterial 
mutation example implies that there are no “adjacent” states in 
the rare part of the state space, which limits the utility of a 
weighted ensemble approach. Alternatively, Markovian or non-
Markovian models can be built to approximate the complex 
system behavior.12,13 However, these methods assume constant 
transition probabilities as well as regular transitions in each time 
interval. We aim to analyze a system where transition probabili-
ties as well as the frequency and timing of transitions are deter-
mined by the HF model. The goal of our multifidelity analysis 
is therefore to lower the computational cost of predicting rare 
event trajectories and probability distributions corresponding to 
each HF model population trajectory.

As mentioned above, the HF model provides population 
and rare event trajectories for individual simulations, as well as 
distributions of rare event trajectories over groups of simula-
tions. However, these predictions are limited to frequencies 
that can be reliably observed within a feasible number of HF 
model simulations. To circumvent this challenge, population 

Figure 1. (A) Hypothetical HF model describing bacterial growth and 

mutation. Model inputs include mechanistic details driving the population 

growth (eg, available nutrients). Model outputs include population 

trajectories (number of bacteria over time) and rare event trajectories 

(number of mutant bacteria over time). Hypothetical outcomes are shown 

for 2 replications of the stochastic HF model (labeled 1 and 2). 

Replication 1 had mutant bacteria for a short period and then those 

mutants died. The time between mutants appearing and disappearing is 

defined as the mutant period. Rare event trajectories from multiple 

simulations can be combined to obtain rare event probability distributions 

for a group of HF model simulations. (B) Flow of information from HF 

model through MF and LF analyses and the types of outputs possible 

from each analysis. Multifidelity analysis uses individual HF model 

population trajectories as inputs. For each population, trajectory MF and 

LF analyses estimate state probabilities for the entire rare event state 

space defined by the population trajectory. (C) Table summarizing the 

capabilities and computational costs associated with each method. 

*Although MF analysis is capable of simulations at lower frequencies than 

the HF model, there remain computational limitations on the feasible 

number replications. **Rare event probability distributions can be 

obtained from HF model simulations but only for groups of simulations 

and only at relatively high frequencies. Image components in Figures 1 to 

4 were created by New7ducks—Freepik.com.
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trajectories produced by the HF model is used as input into 
MF and LF analyses (Figure 1B). The MF analysis allows pre-
dictions at lower probabilities compared with the HF model as 
each replication in the MF analysis is typically faster to simu-
late than one replication of the HF model. However, MF anal-
ysis is also limited in the number of replications that can be 
performed with available computational resources (Figure 1C). 
The MF analysis can predict individual rare event trajectories 
as well as the rare event trajectory probability distributions for 
individual HF model simulations. In contrast, LF analysis can 
make predictions at any probability values, but is only able to 
predict the rare event trajectory probability distributions, and 
not individual resistance trajectories. The computational cost 
of the LF analysis is lower than MF analysis because no repli-
cations are required. The choice of using HF model simula-
tions alone or including multifidelity analysis therefore depends 
on the rare event frequency, available computational resources, 
and the types of outputs required to answer the biological 
question at hand. For example, if the rare event frequencies 
allow sufficient numbers of MF replications and the dynamics 
of individual rare event trajectories are of interest, MF analysis 
is appropriate. If rare event frequencies are low enough to pro-
hibit sufficient MF replications, and rare event probability dis-
tributions can provide the necessary insight into the biological 
question, LF analysis will suffice.

Multifidelity analysis of stochastic simulations can provide 
insight into expected rare event dynamics in computationally 
intensive simulations or experiments. The rare event trajecto-
ries and their probability distributions produced by MF and LF 
analyses could inform HF model simulation settings or experi-
mental decisions such as the number of replicates (HF model 
simulations or experiments) required to obtain a desired num-
ber of rare events, the amount of time to allow to observe 
desired dynamics, and parameter ranges or experimental con-
ditions that can produce these results with available time and 

resources. Furthermore, in situations where events are rare 
enough to prohibit experimental or HF model study, multifi-
delity analysis can be used to extrapolate predictions from 
computationally or experimentally feasible probabilities to bio-
logically relevant probabilities.

MF Analysis
Our MF analysis uses Monte Carlo simulations to sample the 
possible outcomes for a single population trajectory produced 
by the HF model (in our illustrative example, a series of bacte-
rial divisions and deaths). In other words, the MF analysis asks, 
“given the population trajectory of this particular HF model 
simulation, what are the possible rare event trajectories and 
their probabilities?”

To illustrate the MF analysis approach, we will continue our 
illustrative example of a growing population of bacteria with 
rare mutation events. Consider HF model simulations where 
bacteria can be either wild type (WT, ie, unmutated) or a 
mutant. For each bacterial division and death event, there are a 
fixed number of possible scenarios (Figure 2). If a mutant bac-
terium divides, it produces a new mutant bacterium (increasing 
the mutant population by one). If a WT bacterium divides, one 
of 2 things can happen: first, no mutation occurs and the divi-
sion produces a new WT bacterium, increasing the WT popu-
lation by one; or second, a mutation occurs and a new mutant 
bacterium is produced, increasing the mutant population by 
one. Similarly, for each bacterial death event produced during 
simulation of the HF model, it could be either a WT or mutant 
bacterium that dies, reducing the respective populations by one.

For each event in the series of bacterial divisions and deaths 
produced by the HF model, an MF simulation calculates the 
probability of each of these scenarios. We define the probability 
of a mutant bacterium division (pMB), the probability of a new 
mutation occurring (pM), and the probability of a mutant bac-
terium dying (pMD). The values of these probabilities can be 
based on the current state of the MF simulation or on a fixed 
parameter, depending on the system being studied. The MF 
simulations advance one event (division or death) at a time and 
for each event uses a random number generator to determine 
which scenario occurs in this instance of the MF analysis. That 
is, it determines whether a bacterial division increases the WT 
or mutant population and whether a bacterial death decreases 
the WT or mutant population (Figure 3). Therefore, each rep-
lication of the MF analysis represents one possible rare event 
trajectory for the population trajectory produced by the HF 
model. Multiple MF replications for each population trajectory 
then generate a rare event trajectory probability distribution 
over time. In this sense, the MF analysis provides additional 
information compared with the HF model results: where the 
HF model outcomes only produce one rare event trajectory for 
each population trajectory, the MF analysis can estimate the 
distribution of possible rare event trajectories for each popula-
tion trajectory.

Figure 2. Possible outcomes for bacterial division and death events 

produced by the HF model. Division can occur in mutant bacteria (blue) 

with probability pMB or WT bacteria (white) with probability (1 − pMB). 

Division of WT bacteria can produce new WT bacteria with probability 

(1 − pM) or mutant bacteria with probability pM. Mutant bacteria produce 

new mutant bacteria. In this example, we therefore assume that the 

probability of a mutant reverting to WT is negligible. Death can occur in 

mutant bacteria with probability pMD, or WT bacteria with probability 

(1 − pMD), reducing the respective population by one. HF indicates high 

fidelity; WT, wild type.
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LF Analysis
The LF analysis aims to determine rare event trajectory prob-
ability distributions for each HF model simulation over time. 
As in MF analysis, these distributions are based on the HF 
model–generated population trajectory (eg, a series of bacterial 
divisions and deaths). Unlike MF analysis, the LF analysis cal-
culates the probability distributions without simulating indi-
vidual rare event trajectories.

Our LF analysis considers each HF model simulation a 
Markov chain, where the possible states of the system are the 
number of rare events. Continuing our bacterial mutation exam-
ple, the possible states of the system are the number of mutant 
bacteria in the population. Therefore, if the HF model popula-
tion trajectory had N total bacteria, then the Markov chain has 
N + 1 possible states, it could have 0, 1, 2 . . . N mutant bacteria.

We use the same probabilities defined above for MF analysis: 
pMB, pM, and pMD representing mutant bacterium division, new 
mutation, and mutant bacterium death, respectively, to quantify 
the transition probabilities between states of the Markov chain.

We define the probability of the Markov chain being in 
state X, pX(i), as the probability of having X mutant bacteria 
after event i. We update pX(i) over the series of division and 
death events from HF model simulations as follows.

When event i is a bacterial division,

 
p i p i p p

p i p p p

X X M MB

X MB MB M

( ) ( )( )( )
( ) ( ) 

= − − − +

− + −−

1 1 1

1 11   (1)

This probability definition reflects all possible outcomes as 
illustrated in Figure 2. The first term in equation (1) repre-
sents the case where there were X mutant bacteria before event 
i, and no mutation or division of mutant bacteria occurred 
(Figure 4). The second term represents the case where there 
were X − 1 mutant bacteria before event i, and there was either a 
division of a mutant bacterium or a division of a WT bacterium 
and a mutation.

When event i is a bacterial death event,

 p i p i p p i pX X MD X MD( ) ( )( ) ( )= − − + −+1 1 11  (2)

The first term represents the case where there were X 
mutant bacteria before event i, and the death occurred in a WT 
bacterium. The second term represents the case where there 
were X + 1 mutant bacteria before event i, and the death 
occurred in a mutant bacterium. Iterative application of these 
transition probabilities for each bacterial division and death 

Figure 3. Illustration of MF analysis: multiple MF replications for a single HF model population trajectory. The HF model population trajectory is a result of 

a series of bacterial divisions (+) and deaths (−). This series of events is used to generate multiple possible rare event trajectories. These trajectories are 

combined to construct probability distributions over time. HF indicates high fidelity; MF, medium fidelity.

Figure 4. Low-fidelity analysis: Markov chain representing progression 

of mutant bacterial population. Each circle represents a state of the 

Markov chain and arrows indicate transition probabilities between states. 

These transition probabilities are used to construct equations (1) and (2). 

Note that pMB is 0 when X = 0.
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event produces an evolving probability distribution for the 
Markov chain.

These MF and LF approaches are easily adapted to ana-
lyze other stochastic HF models and rare events. MATLAB 
code implementing multifidelity analysis is available as sup-
plementary material and described in the supplementary 
text. Next, we describe the application of multifidelity analy-
sis in a test case. 

Test Case Definition: Rare Antibiotic Resistance–
Conferring Mutations in Mycobacterium tuberculosis
As a test case to validate multifidelity analysis and illustrate 
some of its applications, we consider the rare emergence of anti-
biotic resistance in the context of TB disease. Tuberculosis is 
caused by Mycobacterium tuberculosis and is characterized by the 
formation of granulomas in patient lungs. Granulomas are the 
site of infection for TB and contain bacteria, host cells, and dead 
cell debris. Mycobacterium tuberculosis can mutate to acquire 
resistance against various antibiotics, but these events are rela-
tively rare at the bacterial scale (~10–8 per cell division).14–17 
Nevertheless, drug-resistant TB is rising globally. Between 1% 
and 38% of new TB cases were drug resistant in 2016.18 It is 
vital to understand the emergence of drug-resistant bacteria in 
the context of granulomas if we are to minimize the emergence 
of resistance to new antibiotics and antibiotic regimens.19,20 
Although resistance is well-studied in bacterial cultures where 
population sizes easily reach 10,10 it is difficult to isolate and 
track-resistant bacteria within granulomas because animal 
models of TB disease are costly and every granuloma contains 
between 102 and 106 bacteria.21

An HF stochastic computational model, GranSim, describ-
ing single granuloma formation and function has been applied 
to study various immune, bacterial, and antibiotic mechanisms 
within granulomas.22–26 Although GranSim is more cost- and 
time-effective than animal studies of TB, it remains limited in 
its ability to evaluate rare resistance emergence at biologically 
relevant mutation rates. For example, if the probability of 
resistance per granuloma (based on mutation frequency and 
number of bacteria per granuloma) is 10−5, then it would require 
100 000 simulations to obtain one granuloma containing a 
resistant bacterium. The computational time required for one 
iteration of this model is ~2 CPU hours on a high-performance 
computing cluster.27 It would therefore require large computa-
tional resources to obtain a small number of representative 
granulomas containing resistant bacteria. Here, we apply mul-
tifidelity analysis to GranSim outputs to illustrate their utility 
in predicting low-frequency mutation events.

GranSim

GranSim is a hybrid, multiscale, agent-based model describing 
the spatial and temporal aspects of granuloma formation and 
function. The model tracks individual immune cells (mac-
rophages and T cells), and bacteria, as well as cytokines and 

chemokines, and is calibrated to data from M tuberculosis–
infected nonhuman primates. Biological mechanisms encom-
passed by GranSim are briefly reviewed here. A detailed model 
description along with parameter values, pseudocode, and a 
model executable are available online at http://malthus.micro.
med.umich.edu/GranSim/. The model environment is a 
2-dimensional grid representing a 4 mm × 4 mm section of lung 
tissue. Macrophage agents within GranSim can be in one of 3 
states: resting, activated, or infected. Resting macrophages 
become activated in response to bacteria and/or cytokine sig-
nals (TNF-α and IFN-γ). Resting and activated macrophages 
are able to phagocytose and/or kill bacteria. If a macrophage 
phagocytoses a bacterium without killing it, the macrophage’s 
state changes to infected. T-cell agents within GranSim are 
classified based on function as regulatory T cells, effector T 
cells, or cytotoxic T cells. These T-cell agents produce various 
cytokines and chemokines including TNF-α, IFN-γ, IL-10, 
CCL2, CCL5, and CXCL9/10/11 and thereby regulate mac-
rophage and T-cell responses to infection. Macrophage and 
T-cell agents move randomly on the simulation grid unless 
there are chemotactic signals in their environment in which 
case they migrate in the direction of the chemotactic molecule 
gradient. Bacterial agents grow and divide at a specified growth 
rate based on their location (intracellular, extracellular, or in 
caseum). These growth rates are based on in vitro experiments 
and calibrated to nonhuman primate data. On each division, 
bacteria are able to mutate to become drug resistant. Resistance 
in M tuberculosis is often associated with a fitness cost, which is 
incorporated in the model as a reduced growth rate.

Population trajectories obtained from GranSim, as in the 
illustrative example above, are the number of bacteria in a gran-
uloma over time. In this case, the population trajectories reflect 
detailed immunological and microbiological interactions 
throughout 200 days of M tuberculosis infection within a single 
granuloma. GranSim outputs include the series of bacterial 
divisions and deaths that gave rise to each population trajec-
tory. Furthermore, GranSim can produce rare event trajectories 
(in this case, the number of antibiotic-resistant bacteria over 
time) but would require an unrealistic number of simulations to 
analyze dynamics at biologically relevant mutation frequen-
cies.28 The GranSim data set used here was generated in previ-
ous work29 and includes population trajectories for 348 
simulated granulomas.

MF analysis of GranSim simulations

For MF analysis, we use the series of bacterial divisions and 
deaths from each simulation of GranSim as events in the 
Monte Carlo simulation. We calculate the probability of a 
mutant bacterium division (pMB), the probability of a new 
mutation occurring (pM), and the probability of a mutant bac-
terium dying (pMD) based on biological measurements as well 
as the current state of the MF analysis simulation at each time 
point.

http://malthus.micro.med.umich.edu/GranSim/
http://malthus.micro.med.umich.edu/GranSim/
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We define pMB to take into account the number of resistant 
bacteria currently in the simulation (X), the total number of 
bacteria in the population (N), as well as the replicative fitness 
(f) of resistant bacteria relative to WT bacteria. We define 
0 < f < 1, eg, f = 0.8 implies a fitness cost of 20% reduction in 
growth rate incurred for resistance acquisition. Therefore, we 
define pMB,X, the probability of a mutant bacterium division 
given X mutant bacteria currently in the simulation as follows:

 p X N fMB X, /= ( )  (3)

If the division was not a resistant bacterium, we define the 
probability of acquiring a new resistance-conferring mutation 
(pM) as the product of the per-generation mutation probability 
(pM), and the number of resistance-conferring mutations for 
the antibiotic of interest. When the event is a bacterial death, 
we define pMD,X as the probability of the bacterial death being 
a resistant bacterium, given X-resistant bacteria in the current 
simulation:

 p X NMD X, /=  (4)

For each population trajectory, we simulate 50 000 MF anal-
ysis replications. This allows the prediction of rare events at 
much lower frequencies than the HF model, but there remains 
a limit on how many MF analysis replications are feasible.

LF analysis of GranSim simulations

For LF analysis of GranSim, we define the probability for a given 
state of the Markov chain as described above (equations (1) and 
(2)), with pMB and pMD defined to depend on X and N, as for the 
MF analysis (equations (3) and (4)). This system is therefore a 
time-varying Markov chain as the transition probabilities 
between states vary over time as N changes. The LF analysis has 
no lower limit on the frequencies it can evaluate because indi-
vidual rare event trajectories are not being generated.

Multif idelity analysis assumptions

While some mechanistic details of the host-pathogen interac-
tions within granulomas are captured in multifidelity analysis 
parameters (eg, the relative fitness of resistant bacteria), others 
cannot be included. Multifidelity analysis implicitly makes the 
following simplifying assumptions.

The MF and LF analyses cannot track individual bacteria 
and their varying generation times based on their location 
within granulomas (eg, intracellular vs extracellular). The per-
generation mutation probability (pM) for M tuberculosis is 
known to increase with increasing generation time.28 Our mul-
tifidelity analysis therefore assumes an average generation time 
for all bacteria.

The current multifidelity analysis methods do not account 
for the delay between divisions of the same bacterium. That 
is, based on the probability definitions in equations (3) and 

(4), the same bacterium can divide twice in consecutive 
model time steps, which is not biologically accurate. Below, 
we compare HF model results with multifidelity analysis 
predictions to validate the method and to illustrate that these 
assumptions do not significantly affect our predictions in the 
TB test case.

Validation in Test Case: Multifidelity Analysis 
Recapitulates HF Model Rare Event Dynamics
To validate multifidelity analysis, we compare their rare event 
predictions with observed values in the HF model (GranSim) 
at high mutation frequency. The average population trajectory 
for GranSim is included in Figure 5A. First, we compare multi-
fidelity analysis–predicted probability of having at least one 
resistant bacterium with the observed fraction of HF model 
granulomas with at least one resistant bacterium (Figure 5B). 
Second, we compare the probability distributions for the num-
ber of resistant bacteria after 200 days of infection (Figure 5C). 
For both of these metrics, MF and LF predictions are nearly 
identical, and most of the observed HF model data fall within 
1 standard deviation of the MF and LF predictions. Comparing 
HF model–observed and MF analysis–predicted resistance tra-
jectories (rare event trajectories) for representative granulomas 
shows similar patterns of sporadic resistance emergence fol-
lowed by periods of no resistance (Figure 5D). The average 
period of resistance (time between emergence of new resistance 
and elimination of that resistant population) is 11.5 days for 
HF model and 11.7 days for MF analysis (Figure 5E). Figure 5 
illustrates that similar information can be obtained from MF 
or LF analysis (Figure 5B and C) and demonstrates the addi-
tional information available from MF analysis (Figure 5D and 
E). Taken together, these results illustrate that multifidelity 
analysis is able to predict both dynamics and probability distri-
butions of rare event trajectories in the HF model.

Table 1 shows computational times recorded for the HF 
model, MF, and LF analyses. While implementation of multi-
fidelity analysis in other models would have different computa-
tional times depending on the number of events being 
simulated, this test case illustrates the potential computational 
savings in studying rare events with multifidelity analysis. We 
next apply multifidelity analysis to illustrate how it can be lev-
eraged to analyze rare events with reduced computational cost.

Predictions in Test Case
MF and LF analyses enable sensitivity analysis at 
biologically relevant mutation frequencies

One challenge in using HF models is to quantify model sensi-
tivity to parameters when the model outputs of interest are rare 
events, eg, the emergence of resistance in TB granulomas. Here, 
we illustrate how multifidelity analysis can be used to perform 
sensitivity analysis (SA) in biologically relevant mutation fre-
quency ranges. For the TB test case, some model outputs of 
interest are the probability of resistance per granuloma, the 
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expected number of resistant bacteria per granuloma, and the 
average resistance period. The model parameters we vary in 
this SA are mutation frequency (pM) and relative fitness (f).

Both the probability of resistance per granuloma (Figure 6A) 
and the expected number of resistant bacteria (Figure 6B) 
appear to correlate more strongly with mutation frequency than 
relative fitness, where relative fitness has a stronger effect on the 

resistance period (Figure 6C). Indeed, partial correlations 
between parameters and each of the model outputs indicate that 
mutation frequency is the main driver of the expected number 
of resistant bacteria (Table 2). Although both mutation fre-
quency and relative fitness significantly contribute to the prob-
ability of resistance and the resistance period, relative fitness has 
a stronger correlation with the resistance period than with the 

Figure 5. Multifidelity analysis validation against HF model results. Each panel shows observed values from HF model simulation at high mutation 

frequencies (2 × 10−8 per 10-minute HF model time step), along with MF and LF predictions at these frequencies. (A) The average population trajectory 

produced by the HF model shows early increase in bacterial numbers, followed by a steep decline induced by adaptive immunity, and subsequent stable 

bacterial numbers. Solid lines show means, dotted lines show ±standard deviations. Note that the lower standard deviation dotted line cannot be 

displayed on log-scale for the entire simulation period. (B) Probability of resistance per granuloma. Note that curves for MF and LF analyses overlap. HF 

model curve shows the fraction of granulomas with at least one resistant bacterium. (C) Distribution of number of resistant bacteria per granuloma. In 

panels B and C, HF model results have a single value because the fraction is calculated out of the 348 granulomas studied. MF and LF results show 

mean and standard deviations because these analyses predict a resistance probability for each individual granuloma, which we average to compare with 

HF model results. (D) Number of resistant bacteria per granuloma over time for 10 illustrative examples of HF model and MF analysis (this information is 

not available from the LF analysis). (E) Distributions for the number of days that resistant bacteria remain within individual granulomas (resistance period) 

for all HF model granuloma simulations and for 10 illustrative replications of MF analysis for each granuloma. HF indicates high fidelity; LF, low fidelity; 

MF, medium fidelity.
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probability of resistance. This indicates that a higher relative fit-
ness of a resistant strain allows that strain to persist in the gran-
uloma for longer, whereas a higher mutation frequency will 
allow more new mutations to occur, both of which result in 
higher probability of resistance per granuloma. Multifidelity 
analysis predicts that similar parameter influences are at play at 
high and low mutation frequencies.

These parameter influences can be contextualized for TB 
in terms of different M tuberculosis lineages. Experimental 
work has found that lineage 2 strains of M tuberculosis have a 
4-fold higher mutation frequency than lineage 4 strains.33 
Furthermore, resistant bacteria of the Beijing strain (part of 
lineage 2) were found to have higher relative fitness compared 
with non-Beijing strains.34 Taken together with our predic-
tions, this would suggest that lineage 2 strains not only develop 
new resistance more often but that these resistant bacteria also 
remain within granulomas for longer, possibly allowing oppor-
tunity for further mutation to acquire multidrug resistance 
and compensatory mutations. Indeed, the Beijing strain has 
been associated with multidrug-resistant TB.35,36

Multif idelity analysis can discern influence of 
stochastic events and parameter fluctuations

If stochasticity in the system is strong enough to mask param-
eter effects, it could affect our ability to predict rare events in 
the system. In the TB test case, we know the mutation fre-
quency, but the timing of mutations is entirely random. Being 
able to predict the most dangerous times for mutations to occur 
could inform public health policy related to diagnosis and case-
finding strategies. We therefore apply multifidelity analysis to 
ask, “what is the influence of the timing of mutations (a sto-
chastic event) vs the influence of relative fitness or mutation 
frequency (model parameters)?”

We incorporate the timing of mutations into MF and LF 
analyses by manipulating the initial distribution of resistant 
bacteria and varying the starting time of the analyses. In other 
words, we assume that there is exactly 1 resistant bacterium at 
various times of each HF model simulation (5, 15, 30, 50, and 
100 days after infection) and then predict the rare event trajec-
tories and probability distributions over the rest of the infec-
tion (up to 200 days). Therefore, we ask whether there is one 
mutation at days 5, 15, 30, 50, or 100; what is the probability of 

Table 1. Simulation time for HF model, MF analysis, and LF 
analysis.

SIMULATION TIME

GranSim 107 ± 14 minutes (single replication)

MF analysis 81 ± 14 minutes (50 000 replications)

LF analysis 4 ± 1 seconds

Abbreviations: HF, high fidelity; LF, low fidelity; MF, medium fidelity.

Figure 6. MF analysis–predicted effect of relative fitness (x-axes) and 

mutation frequency (y-axes) on (A) the probability of resistance per 

granuloma after 200 days of infection, (B) expected number of resistant 

bacteria per granuloma after 200 days of infection, and (C) average 

length of resistance periods (days). Note that probability of resistance 

per granuloma and the expected number of resistant bacteria per 

granuloma, but not the resistance period, are outputs that can also be 

assessed with LF analysis (Supplement Figure S1). Coefficients of 

variation corresponding to Figure 6 and Figure S1 panels are included 

in Figure S2. The ranges used for relative fitness and mutation 

frequency values are informed by experimental measurements in vitro 

and in nonhuman primates infected with Mycobacterium tuberculosis 

and chosen to be able to illustrate the application of the multifidelity 

analysis. Mutation frequency is varied between 2 × 10−12 and 2 × 10−8 per 

10-minute HF model time step, spanning the values between the 

experimentally measured frequency (2 × 10−12)28 and the frequency used 

in the HF simulations used for validation above (2 × 10−8). Relative 

fitness is varied between 0 and 1 to capture the breadth of possible 

fitness cost influences. Relative fitness estimates for key anti-TB drugs 

are 0.8 to 0.9.30-32 HF indicates high fidelity; MF, medium fidelity; TB, 

tuberculosis.
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resistance after 200 days of infection; and how does the timing 
of the initial mutation affect this probability.

For low relative fitness values, the timing of the first muta-
tion has little influence because the presence of resistant bacte-
ria after 200 days will almost entirely depend on new mutations 
(Figure 7A and C). In contrast, at high relative fitness, a non-
monotonic relationship emerges between the timing of the first 
mutation and the probability of resistance after 200 days of 
infection (Figure 7B and D). Although the nonmonotonic 
relationship is evident for both high and low mutation fre-
quencies, the relative influence of timing is larger at lower 
mutation frequencies. At low mutation frequencies, the prob-
ability of resistance after 200 days decreases by 99% (from .13 
to 6 × 10−4) if the first mutation occurs at 5 days compared with 

30 days after infection, respectively. At high mutation frequen-
cies, the probability of resistance decreases by 33% (from .3 to 
.2). The influence of timing in this case relates to the popula-
tion trajectories of the HF model (Figure 5A). A mutation at 
30 days after infection would occur immediately prior to a large 
contraction in the bacterial population, making it unlikely that 
this mutant bacterium will survive. Taken together, these results 
illustrate how MF and LF analyses can be applied to extrapo-
late HF model predictions to lower frequencies.

Discussion
Rare events can be challenging to study in complex biological 
systems, either experimentally or computationally. We outline a 
multifidelity analysis approach that can be applied to compute 

Table 2. Sensitivity analysis results.

MODEL OUTPUTS

PROBABILITy OF RESISTANCE EXPECTED NO. OF 
RESISTANT BACTERIA

RESISTANCE 
PERIOD

Parameters Mutation frequency .86 (6 × 10−8) .46 (.02) .88 (2 × 10−8)

 Relative fitness .43 (.03) .36 (.08) .96 (3 × 10−13)

Partial correlation coefficients (P values) are shown for combinations of model parameters and outputs.

Figure 7. Effect of relative fitness, mutation frequency, and timing (in days) of the first mutation on the probability of resistance after 200 days of infection. 

Mutation frequencies of 2 × 10−8 (A, B) and 2 × 10−12 (C, D) per 10-minute HF model time step are considered along with relative fitness values of 0.25 (A, 

C) and 1 (B, D). Results are shown for MF analysis predictions, but LF analysis predictions are nearly identical (Supplement Figure S3). Bars represent 

mean probabilities more than 348 simulations and error bars represent standard error of the mean. Stars indicate statistically significant differences 

(P < .0005) as determined through 1-way ANOVA and Scheffé’s multiple comparison procedure. ANOVA indicates analysis of variance; HF, high fidelity; 

MF, medium fidelity.
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probability distributions of rare events over time. Our analysis 
method takes as input a series of discrete population-level 
events generated by an HF computational model of the bio-
logical system. This series of events provides input for MF and 
LF analyses to predict the probability and dynamics of rare 
events for each series of events (ie, each simulation of the HF 
model). We show that MF and LF analyses can accurately pre-
dict HF model results at high frequencies and illustrate how 
they can be applied to analyze results obtained from HF model 
simulations.

Multifidelity analysis could be applied as an intermediate 
step toward more sophisticated approaches such as accelerating 
HF model simulation or construction of multifidelity mod-
els.2,4,8 For example, MF and LF predictions could be used to 
identify specific time frames to focus on during weighted 
ensemble simulations or to isolate certain model mechanisms 
that are important to maintain when constructing multifidelity 
models.

The multifidelity analysis presented here was performed 
separately from the HF model, using data from previous sim-
ulations of the HF model. However, it should be noted that 
both MF and LF analyses can be integrated with the HF 
model so that the rare event trajectories and probability dis-
tributions are updated in real time following each discrete 
event as the HF model simulation is running. Integrating MF 
analysis with the HF model simulation would be costlier than 
LF analysis as multiple replications would be performed for 
each update. Such an integrated approach would be valuable 
if large amounts of high time resolution data need to be stored 
in order for multifidelity analysis to be performed separately 
and if multifidelity analysis parameter values do not need to 
be varied.

Multifidelity analysis could also be applied to experimental 
data. As the tools for single-cell analysis become more sophis-
ticated and accessible, experimentally obtained single-cell data 
could be used to generate the series of discrete events required 
for multifidelity analysis. For example, bacterial growth in 
microfluidic devices has been used to carefully monitor bacte-
rial division and death at the single-cell level.37,38 These data 
could be used as input for multifidelity analysis, thereby pre-
dicting possible rare event trajectories for experimental data. 
Transition probabilities could be based on other measurements 
in the system at the same time (eg, gene expression data39) or 
from other experimental systems (eg, mutation frequency in 
animal models28). In this way, multifidelity analysis could 
inform iterative experimental design (eg, time points, number 
of replications) without the construction of an HF model or 
could bridge single-cell and batch culture results (eg, how does 
a certain mutation frequency drives resistance at the single-cell 
level over time?).

In summary, as the sophistication of computational and 
experimental models advances, strategic and stepwise analysis 
of the vast amounts of data they produce will become important 

to maximize the amount of knowledge extracted from these 
data. We believe that multifidelity analysis could provide one 
such approach.
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