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ABSTRACT

Background: Amylin is a pancreatic b-cell hormone that produces effects in several different organ systems. One of its best-characterized
effects is the reduction in eating and body weight seen in preclinical and clinical studies. Amylin activates specific receptors, a portion of
which it shares with calcitonin gene-related peptide (CGRP). Amylin’s role in the control of energy metabolism relates to its satiating effect, but
recent data indicate that amylin may also affect hedonic aspects in the control of eating, including a reduction of the rewarding value of food.
Recently, several amylin-based peptides have been characterized. Pramlintide (Symlin�) is currently the only one being used clinically to treat
type 1 and type 2 diabetes. However other amylin analogs with improved pharmacokinetic properties are being considered as anti-obesity
treatment strategies. Several other studies in obesity have shown that amylin agonists could also be useful for weight loss, especially in
combination with other agents.
Scope of review: This review will briefly summarize amylin physiology and pharmacology and then focus on amylin’s role in food reward and the
effects of amylin analogs in pre-clinical testing for anti-obesity drugs.
Conclusion: We propose here that the effects of amylin may be homeostatic and hedonic in nature.

� 2017 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. AMYLIN IN THE CONTROL OF ENERGY METABOLISM

The pancreatic hormone amylin is co-synthesized and co-released
with insulin from pancreatic beta-cells [1e3]. It has long been
thought that pancreas-derived amylin is the only relevant source of
amylin to control metabolism. However, recent evidence has shown
that amylin is also expressed in the central nervous system, in
particular in parts involved in metabolic control, such as the lateral
hypothalamus (LH) [4]. Globally, amylin controls nutrient fluxes by
reducing energy intake, modulating nutrient utilization and increasing
energy expenditure. The best-investigated function of amylin is its role
as satiation signal. Indeed, chronic administration of amylin reduces
total energy intake, which eventually results in the reduction of body
weight [5,6]. These findings were the basis for the development of
amylin analogs that may represent a new approach for the treatment of
overweight in obese individuals [7,8].
The caudal hindbrain area postrema (AP) and nucleus of the solitary
tract (NTS) are critically involved in mediating the effects of amylin on
eating [9]. However, recent data indicate that other areas of the brain,
including the hypothalamic arcuate (ARC) or ventromedial (VMN) nu-
cleus [10,11], ventral tegmental area (VTA) [12,13], and lateral dorsal
tegmental nucleus (LDTg) [14], may be directly or indirectly targeted by
amylin to influence hedonic aspects of eating such as reward-guided
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behaviors that may contribute to the food selection [15,16]. This review
will briefly summarize amylin physiology and pharmacology and then
focus on the amylin’s role in food reward and the effects of amylin
analogs in pre-clinical testing for anti-obesity drugs. We have also
included some previously unpublished, original data, because we
believe that these data are important to introduce and emphasize
certain aspects covered in this review article. These points are
important because they have not been covered in other, recently
published review articles on amylin. Experimental details in respect to
these unpublished data are provided in the Supplementary part of this
review.

2. AMYLIN RECEPTOR STRUCTURE AND FUNCTION

The amylin receptor consists of a heterodimer of the calcitonin receptor
(CTR) core protein combined with one or several receptor activity
modifying proteins (RAMPs) to yield specific amylin receptors [8,17e
19]. Two splice variants of the CTR and three RAMPs are known,
resulting in at least 6 different subtypes of amylin receptors. Recent
data from the caudal hindbrain indicate that individual neurons may in
fact express more than a single RAMP, theoretically increasing the
number of possible amylin receptor subtypes per cell [20]. Amylin
receptor components are widely distributed throughout the central
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nervous system, and a high density of both the CTR and RAMPs is
found in the AP of the caudal hindbrain, other circumventricular organs
(e.g., the subfornical organ), the hypothalamus (ARC, VMN) and other
brain areas (VTA, LDTg, nucleus accumbens [NAc]) [21e24]. So far,
the co-expression of the CTR and RAMPs in single neurons of native
tissue has only been shown in the AP of the caudal hindbrain [20], but
our work has also shown that non-neuronal cells, in particular
microglia, also seem to mediate amylin’s effects [10,25,26].
Study of amylin receptor function is complicated by the fact that an-
tagonists that specifically block certain subtypes of amylin receptors
are not available [8,27], and prototypical amylin receptors (in particular
the amylin-1 receptor resulting from the combination of CTR and
RAMP1) also seem to mediate the effects of the related peptide
calcitonin gene-related peptide (CGRP) [27,28]. Hence, we currently
have no clear picture of the role of specific amylin receptor subtypes
for certain amylin functions, or of the importance of the expression of
more than one RAMP in single cells.
Upon amylin receptor activation, various intracellular signaling systems
are activated. Specifically, amylin increases the expression of cyclic
GMP (cGMP) in activated AP neurons [29] and leads to a phosphory-
lation of ERK [30]. In both cases, there is evidence for a functional
relevance of these systems in amylin’s effect to reduce eating. On the
other hand, transfected cell system studies show that amylin signaling
also involves cAMP, intracellular Ca2þ, and beta-arrestin [17,22]. But
none of these has been linked to specific amylin actions as yet.

3. SITES OF AMYLIN ACTION

3.1. Amylin activation of the brainstem and neuroaxis
The AP is critically implicated in mediating amylin’s satiating effect.
Local AP administration of amylin decreases eating, while local AP
amylin antagonist injection increases it, and blocks the eating inhibi-
tory effect of peripheral amylin [31]. Further, surgical lesion [32] or a
specific deletion of noradrenergic AP neurons (see also below; [33])
block the effect of peripheral amylin on eating. In addition, a large array
of electrophysiological and imaging experiments provide confirmatory
evidence for an important and most likely direct effect of circulating
amylin on AP neurons (reviewed in [9,34]).
The amylin-induced activation of AP neurons occurred to a large extent
in neurons expressing the noradrenalin synthetizing enzyme,
dopamine-beta-hydroxylase (DBH), and presumably the subsequent
enhanced release of noradrenaline, possibly in the NTS or the lateral
parabrachial nucleus (LPB) [33]. These AP neurons are necessary for
peripheral amylin to reduce eating, because even a partial chemical
lesion of these neurons is sufficient to abolish the eating inhibitory
effect of peripheral amylin; this type of lesion had no effect on baseline
food intake [33] and therefore circumvents the problem of a surgical
destruction of the entire AP, which itself has a negative influence on
eating and body weight gain [16,32].
The activation of AP neurons is the first step in the subsequent acti-
vation of a neural pathway that projects rostrally to the forebrain and
includes the NTS, LPB, and possibly the central amygdala (CeA). Le-
sions of the respective brain areas (AP, NTS, LPB) abolish amylin’s
effect on eating and the expression of the neuronal activation marker
c-Fos, indicating that activation was absent in brain areas rostral to the
lesion, e.g. in the NTS, LPB, and CeA in AP-lesioned rats, or in the CeA
in LPB-lesioned rats [9,35,36]. Indeed using anterograde and retro-
grade tracing, the AP was shown to project to the NTS, LPB, CeA, and
the bed nucleus of the stria terminalis [37].
Furthermore, a recent study suggested that glutamatergic neuro-
transmission in the AP seems to play a role in mediating amylin effects
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on eating, and that the amylin receptors appear to be located mainly on
presynaptic glutamatergic terminals synapsing with AP neurons [38];
interestingly, our own studies also showed a close apposition of
amylin-activated neurons that expressed DBH with VGLUT2-positive
boutons [39]. How these effects may be linked mechanistically, and
whether this mechanism is physiologically relevant, is currently
unknown.

3.2. Amylin action in other brain areas
As mentioned, amylin binding sites have widespread distribution
throughout the brain [21]. Similarly, the expression of all critical amylin
receptor components has also been described in many brain areas
[23,24], and amylin itself may also be expressed selectively in the
lateral hypothalamic area [4], although the contribution of the latter to
the physiological control of eating remains largely unknown. Recent
experiments focused on how amylin receptors in other brain areas
outside the AP mediate the physiological actions of peripheral amylin.
Among the most prominent of these is the VTA, where components
forming the active amylin receptor complex are expressed and where
the peripheral administration of the amylin receptor agonist salmon
calcitonin (sCT) reduces eating by activating amylin receptors.
Importantly, this effect was blocked by the VTA administration of the
amylin antagonist AC187 [12,13].
The LDTg has been implicated in processing signals related to the
homeostatic but also the hedonic control of eating. It expresses all
components of the amylin receptor, and administration of amylin or
sCT into the LDTg reduces eating primarily by reducing meal size,
similar to amylin’s satiating action in the AP [14,40]. Furthermore,
administration of the amylin receptor antagonist AC187 into the LDTg
reduces the inhibitory effect of peripheral sCT on eating, and depletion
of the CTR component leads to increased body weight gain suggesting
a physiological relevance of these findings [14].
The relationship between the effects mediated by intra-VTA or intra-
LDTg administration of sCT and the previously described AP-
mediated effects of amylin and its receptor agonists is unclear at
present. Indeed, it is not clear if amylin and its agonists activate several
brain areas in parallel. With the exception of the circumventricular
organs, including the AP, it is also unclear how much peripheral amylin
actually reaches these respective receptor populations as a function of
transport across the blood brain barrier [41e43]. It needs to be tested
whether similarly to leptin [44], amylin crosses the tanycyte layer
around the 3rd ventricle in particular to reach hypothalamic areas.
Finally, available data do not distinguish between a direct activation of
the pertinent receptors by peripheral amylin or sCT or activation
elsewhere (possibly in the AP) and mediation of this effect via pro-
jection to the VTA or LDTg, both of which may use CGRP as neuro-
transmitter interacting with the amylin-1 receptor [27].

4. AMYLIN ACTION ON FOOD REWARD

Conceptually, controls of eating have often been classified as ho-
meostatic, acting via the caudal hindbrain, including the AP, NTS and
LPB, and the hypothalamus, and hedonic, acting via reward pathways
in the brain (e.g. [45e48]). However, this distinction is probably over-
simplistic since hedonic controls of eating through reward pathways
interact with homeostatic control pathways and often can rely on the
same signaling molecules. For example, gastrointestinal hormones
such as glucagon-like peptide-1 (GLP-1) not only act as homeostatic
signals that are involved in the control of meal size or body weight but
also influence rewardebased aspects of ingestive behavior [49,50].
Food reward is often divided into two components: “liking” and
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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“wanting.” In particular, wanting seems to be modulated by the
mesolimbic dopamine system that includes neurons in the VTA, which
release dopamine from axon terminals in the NAc of the ventral
striatum [46,51]. Recent data indicate that amylin may be one of the
signals influencing the rewarding properties of food, and that the
mesolimbic reward pathway may be involved in these effects.

4.1. Amylin’s effect on food choices
Direct activation of amylin receptors using sCT in the VTA has been
shown to reduce not only the intake of chow, which has low palat-
ability, but also the intake of a palatable sucrose solution in rats [13].
Similar to the effect of peripheral amylin, these effects appear to be
mainly due to a reduction in meal size. Further, administration of
amylin agonists into the VTA also reduces sucrose self-administration
on a progressive ratio schedule [52]. These studies were recently
extended by showing that sCT administered into the VTA greatly
reduced the intake of fat in fat-preferring rats [13,52]. Sucrose-
preferring rats did reduce sucrose intake after sCT, but the selec-
tivity was more variable than in fat-preferring rats. Interestingly,
administration of amylin or sCT into the LDTg also reduced motivated
behaviors such as lever pressing for sucrose solution in rats, sug-
gesting that not only the consummatory phase, but also the appetitive
phase of eating is affected [14].

4.2. Amylin’s effect on highly palatable diet intake
Our own studies indicated that the effectiveness of amylin to reduce
energy intake may actually depend on the palatability of the diet offered
to animals, but there is also an important influence of the diet that is
Figure 1: (A) Cumulative energy intake after saline or amylin (5 pmol; i3vt injection at da
chow or on chow only; n ¼ 18e19/group. Cumulative energy intake after saline or amylin
injection at dark onset after 3 h-food deprivation (C, n ¼ 32/group), respectively) in rats m
intake after saline or amylin (5 pmol; i3vt injection at dark onset in undeprived rats) in ra
n ¼ 6e10/group. Values are mean � SEM, symbols denote significant differences betw
**p < 0.01, ***p < 0.001.
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context specific [53e55]. In recent unpublished experiments (see
Figure 1), we used rats that were exposed for different periods of time
to Ensure�, a highly palatable, liquid high-fat, and high-carbohydrate
diet. Please see Supplementary part of this review for experimental
details.
Rats that were adapted to chocolate-flavored Ensure� in addition to
standard rat chow ingested approximately 90% of energy as Ensure�

and only 10% in the form of chow. Animals that were exposed to either
chocolate Ensure� or chow for 3 weeks both decreased eating in an
acute feeding test when amylin was injected into the 3rd cerebral
ventricle (i3vt; Figure 1A). Hence, long-term access to Ensure� did not
reduce the sensitivity of obese rats to central amylin. Interestingly, the
outcome was very different when rats were tested after only 3 days of
exposure to chocolate Ensure�. Presumably due to very strong drive to
eat early after exposure to a novel, highly palatable diet, rats appeared
to be insensitive to centrally or peripherally injected amylin (Figure 1B,
C). In contrast, amylin reduced acute intake of a high fat diet, which
was provided for 3 days and had a similar nutrient composition to
Ensure� (Figure 1D). The “insensitivity” to amylin after Ensure�

appeared to be linked to the presence of the chocolate flavor in the
diet, which produced a very strong drive to eat, because rats with brief
exposure to unflavored Ensure� reduced eating after amylin, similar to
amylin’s effect on intake of high fat diet-exposed rats (data not
shown).
Thus, amylin insensitivity early after exposure to the highly palatable
chocolate Ensure� seemed to be more dependent on the palatable
flavor and duration of exposure rather than diet composition. These
data also suggest that specific taste preference, rather than diet
rk onset in undeprived rats) in rats maintained for three weeks on Ensure� cacao plus
(5 pmol; i3vt injection at dark onset in undeprived rats (B, n ¼ 10/group) or 5 mg/kg s.c.
aintained for three days on Ensure� cacao only or on chow only; (D) Cumulative energy
ts maintained for three days on Ensure� cacao, a pelleted high-fat diet, or chow only;
een saline- and amylin-treated groups within the respective diet groups; *p < 0.05,
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composition, appeared to play the major role, indicating that homeo-
static signals may fail to influence eating when the rewarding effect is
too strong. Finally, the data showed that the “insensitivity” towards
amylin waned once the animals had had been exposed to the highly
palatable diet for an extended period.

4.3. Mechanism of amylin’s action on food reward
A possible direct implication of the mesolimbic reward system in
amylin action, and in particular of the VTA and the NAc, was indicated
by studies showing that infusion of sCT into the VTA reduced the
release of dopamine in the NAc and that dopamine receptor activation
in the NAc overcame the inhibitory effect of sCT on eating [15]. Along
these same lines, we recently reported that peripheral sCT was also
able to reduce the VTA-stimulated release of dopamine in the NAc of
rats. Interestingly, amylin itself had no such effect, suggesting that this
difference might relate more to the duration of amylin receptor acti-
vation by amylin, which is short lasting, versus sCT, which is long
lasting, than a true difference in pharmacodynamics [16].
Most importantly, like the meal-terminating properties of amylin, the
effect of peripheral sCT to reduce evoked dopamine release was ab-
sent in rats with AP or LPB lesions [16]. This suggests that, as opposed
to what had been suggested before [13,15], the effect of sCT on
reducing dopamine release in the NAc may be mediated in the reward
system through the AP and LPB, rather than by direct action on VTA
amylin receptors. Our data can be reconciled with the previously
published work by assuming that peripheral sCT (and presumably also
amylin, at least when given chronically) activates a caudal hindbrain
network including CGRP-positive projections to the VTA, where CGRP
acting on the amylin-1 receptor may reduce the activity of dopami-
nergic neurons projecting to the NAc. This model opens up the pos-
sibility that the AP and LPB are also important in mediating hedonic and
motivational processes and that homeostatic signals also interact
directly with the hedonic system and the perception of food reward.
Hence, similar to GLP-1, amylin would be another example of a
negative feedback signal acting in the hindbrain that also plays a role in
the mediation of food reward [49,50,56,57].
These studies raise a number of questions. For example, is the
sensitivity of this system and its responsiveness to amylin due to
differences in the circumstances of varying feeding situations? Does
the effect of chronic exposure to highly palatable diets differ from the
effect of short-term exposure, and if so, which is the critical compo-
nent? Is amylin “insensitivity” linked to changes in the dopaminergic
reward pathway between the VTA and NAc?

5. CLINICAL USE OF AMYLIN AND AMYLIN ANALOGS

Experience with pramlintide (Symlin�) and other clinical studies in
obesity have shown that amylin agonists could also be useful for
weight loss, especially in combination with other agents [58e62]. One
of the most promising and clinically relevant combinations seems to be
amylin plus leptin [63e65]. Amylin can improve leptin sensitivity and
overcome leptin resistance in obese individuals [62]. In the following
paragraphs, the development and effects of new agonists will be
summarized, because, even though pramlintide is a useful amylin
mimetic, other amylin agonists with improved potency and pharma-
cokinetics may provide optimized therapeutics for the treatment of
obesity. Based on the findings discussed above that amylin seems to
affect homeostatic and hedonic controls of eating and that a distur-
bance of both aspects of eating is responsible for the increase in
obesity rates, amylin-based pharmacotherapy may be a particularly
promising approach for future treatment options.
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Since next to its satiating action, amylin has an effect on the reward
system [15,16] and since alterations in the function of the reward
processing brain areas have been linked to mood disorders [66], it is
important to examine if amylin analogs do not induce anxiety- and
depression-like behaviors. Currently, there is no indication that this
might be the case. For example, it has been shown that rats treated
with sCT did not display an increase in anxiety type behaviors when
tested during an open field and social interaction test [52]. Further,
chronic amylin improved the recovery from social stress in a visible
burrow system in rats [67], and long term administration of pramlintide
did not induce signs of anxiety or depression in people [62]. Some
studies indicate that amylin has anxiolytic and anti-depression like
properties (see Ref. [68] for review).

5.1. Next generation drugs for the amylin system

5.1.1. Davalintide
Davalintide is an amylinomimetic with increased potency, efficacy, and
duration of action. It binds similarly to rat amylin to amylin receptors
but has greater affinity than amylin at the human CGRP receptor or the
rat calcitonin receptor, at least under in vitro conditions [69]. In gen-
eral, davalintide exhibits a greatly enhanced duration of action and is
more potent than amylin in reducing food intake and body weight in
rats. Thus, davalintide shares similarities with sCT. Apart from dif-
ferences in pharmacokinetics, davalintide’s mode of action seems to
be more similar to that of amylin, because both preferentially reduced
intake of a palatable high fat diet, and the effect of both peptides on
eating appears to depend on an intact AP [69].

5.1.2. PEGylated or glycosylated amylin
Given the short half-life of the native amylin peptide (13 min), one
strategy to improve the effectiveness of amylin mimetics is to modify
the peptide chain by coupling it to molecular scaffolds such as poly-
ethylene glycol (PEG) or by glycosylation. Compared to native amylin,
PEGylated amylin has a prolonged glucose-lowering effect, but no in-
depth data are available for the effect of these compounds on eating
and body weight regulation. Further, glycosylation of the amylin analog
pramlintide also provides increased half-life compared to the native
peptide (10e15 vs. 45 min) [70e73].

5.1.3. Dual amylin and calcitonin receptor agonist (DACRA)
As discussed before, sCT is an amylin mimetic that differs from native
amylin by a prolonged activation of the amylin receptor, which leads to
enhanced and prolonged in vivo effects. Further, sCT activates not only
amylin receptors but also the classical calcitonin receptor. Based on
these findings, several dual amylin- and calcitonin receptor agonists
(DACRA) have been designed and tested for their anti-obesity and anti-
diabetes effects.
The best investigated compounds with published structures are KBP-
042, KBP-088, and KBP-089 [74e79]. KBP-042 exhibited stronger
binding affinity and receptor activation at amylin and calcitonin re-
ceptors and also produced a stronger eating-inhibitory effect than sCT.
Further, KBP-042 reduced body weight more than in pair-fed controls,
indicating a potential effect on energy expenditure, effects which had
also been reported for amylin and sCT [6]. Interestingly, despite its
peptide structure, KBP-042 was also active when given orally, albeit at
much higher doses [74,77e79].
In a direct comparison between KBP-088 and davalintide, KBP-088
produced stronger effects on eating and body weight than davalin-
tide, which may be associated with the extended receptor activation
under in vitro conditions [75]. Finally, KBP-089 was shown to reduce
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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eating and body weight and significantly reduced total energy intake by
reducing the intake of energy rich diets and a relative shift towards the
intake of low energy diets in chronically treated rats [76,80].

5.1.4. Oral amylin agonists
Several studies have tested the usefulness of the oral administration of
amylin agonists. Some studies used the carrier Intravail� which is a
transmucosal absorption enhancement agent. Pramlintide has been
formulated in Intravail, and the effects on energy balance and glycemic
control corresponded to the known effects of injected pramlintide [81].
Further studies showed that orally administered sCT which was
formulated in N-(5-chlorosalicyloyl)-8-aminocaprylicacid (5CNAC-sCT)
also had reduced weight and improved glucose tolerance [82e84].

5.2. Integrated circuits for the release of amylin agonists
In recent years, various approaches led to the development of engi-
neered mammalian cell systems that allow an “automated” release of
bioactive peptides to treat metabolic diseases. The underlying idea of
such systems is that synthetic gene networks are designed in a way
that allow the systems to respond to certain physiological stimuli in a
well-balanced manner to produce an appropriate amount of bioactive
molecules in a specific metabolic situation [85e88]. Next to glucose-
sensing cell systems that release insulin and that may be used for the
treatment of diabetes mellitus, a novel method has been described
recently to deliver the amylin analog pramlintide in a diet-specific
manner in mice. The engineered closed-loop synthetic gene circuit
Figure 2: (A) Linoleic acid (LA)-induced pramlintide production in HT1080 cells at 48 h.
treated cells were incubated with transfection solution and 250 ng pKR135 (LSR construct
treated cells were transfected with 250 ng pKR135 þ 250 ng pKR146 or 250 ng pKR135 þ
n ¼ 4/group. Data with differing superscripts differ from each other by P ¼ 0.05 or less w
alginate beads or LSR-pramlintide alginate beads were then injected i.p in male Sprague
*P < 0.05 after a two-way repeated measures ANOVA and post-hoc Bonferroni test. (C) Foo
24 h tested in a cross-over design on day 5 and 7 post-injection. Values are mean � S
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is able to monitor blood free fatty acid levels (FFA) and to produce
pramlintide in response to elevated fatty acids. Interestingly, intra-
peritoneal implantation of the engineered cell circuits in mice led to a
reduced food intake and body weight, and it also decreased blood FFA
levels compared to respective controls [89].
Please see Supplementary part of this review for experimental details
of these unpublished data. Plasmids for lipid sensing and peptide
synthesis were co-transfected into human fibrosarcoma cells, micro-
encapsulated in inert porous alginate-poly-(L-lysine)-alginate beads,
and then used in vivo studies in rats. The genetically engineered lipid
sensor is based on the nuclear lipid receptor peroxisome proliferator-
activated receptor-a (PPARa) which causes the fibrosarcoma cells to
release pramlintide in a dose-dependent manner in presence of FFA
[89].
First, we confirmed that pramlintide was released from co-transfected
cells in vitro and them showed that they released pramlintide into the
incubation medium upon exposure to linoleic acid (Figure 2A). We then
tested the efficacy of the pramlintide-releasing microcapsules under
in vivo conditions in rats. These microencapsulated cells were injected
intraperitoneally in male SpragueeDawley rats maintained on a 60%
high fat diet (D12492, Research Diet); 20� 106 cells were injected per
rats, which is 10-times more than what has been previously used in
mice [89]. High-fat diet fed rats displayed a temporary effect of fatty
acid-induced pramlintide production as compared to control animals.
Indeed, high-fat fed rats receiving pramlintide exhibited a reduction in
body weight gain although the effect waned approximately 5 days after
Non-transfected cells were incubated with transfection solution without plasmids, non-
) þ 250 ng pKR146 (pramlintide construct) or 250 ng pKR135 þ 500 ng pKR146, and
500 ng pKR146 and treated daily with 100 mM linoleic acid. Values are mean � SEM,

hen assessed by two way ANOVA followed by post-hoc Bonferroni t-test. LSR-construct
eDawley rats fed HF 60% (B) Cumulative body weight gain over the 12-day period.
d intake in kcal after a 4 h meal test on day 3 and (D) leptin-induced anorexia at 4 h and
EM, n ¼ 6/group, **P < 0.01 or less, using unpaired Student’s t-test.
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microcapsule implantation (Figure 2B). In a fastingerefeeding test,
rats injected i.p. with the pramlintide secreting cells ate about 26%
less than control animals (Figure 2C). Further, when tested 5 and 7
days after injection, the leptin induced anorexia was amplified at 4 h by
34% in rats injected with pramlintide secreting cells. The effect of
leptin on food intake at 24 h was no longer different between groups
(Figure 2D).
When tested about 2 weeks after the implantation of the pramlintide
secreting cells, there was no enhancement of leptin signaling (leptin-
induced pSTAT3) in the hypothalamus of rats receiving pramlintide
versus control (data not shown). Possibly, this lack of effect was due to
an insufficient number of cells that were still functional at this time
point. Hence, our data showed that when genetically-engineered
pramlintide-releasing cells were stimulated via the LSR plasmid
reacting to an increase in lipids in plasma, we saw effects on body
weight and eating that mimicked those observed after repeated pe-
ripheral injection of pramlintide itself. Our study extended previous
findings and demonstrated the successful but transient effect of an
autonomous genetic system providing monitoring, production and
secretion of pramlintide in rats put on a high fat diet.

6. SUMMARY

In this review, we summarized recent findings on the physiological
effects of amylin on the control of eating. We briefly discussed the
potential relevance of different amylin receptor subtypes, but a
better understanding of the role of specific amylin receptor subtypes
is needed. We also summarized recent evidence that amylin, similar
to other gastrointestinal hormones, modulates both homeostatic and
hedonic feedback systems regulating ingestive behavior. Finally, we
summarized recent reports on the development of amylin analogs
that may have the potential for the development of anti-obesity
drugs.

ACKNOWLEDGMENT

The continued financial support by the Swiss National Science Foundation (several

grants) is highly appreciated. Further substantial funding was obtained from the

Novartis Foundation, the Olga Mayenfisch Foundation, the Vontobel Foundation and

the University of Zurich (Forschungskredit and Zurich Center for Integrative Human

Physiology). We also thank M. Fussenegger (ETHZ, Basel) for the generous supply of

plasmids and the introduction to the microencapsulation technique.

CONFLICT OF INTEREST

None declared.

APPENDIX A. SUPPLEMENTARY DATA

Supplementary data related to this article can be found at https://doi.org/10.1016/j.

molmet.2017.11.009.

REFERENCES

[1] Butler, P.C., Chou, J., Carter, W.B., Wang, Y.N., Bu, B.H., Chang, D., et al.,

1990. Effects of meal ingestion on plasma amylin concentration in NIDDM and

nondiabetic humans. Diabetes 39:752e756.

[2] Cooper, G.J., 1994. Amylin compared with calcitonin gene-related peptide:

structure, biology, and relevance to metabolic disease. Endocrine Reviews 15:

163e201.
208 MOLECULAR METABOLISM 8 (2018) 203e210 � 2017 The Authors. Published by Elsevier GmbH. T
[3] Hartter, E., Svoboda, T., Ludvik, B., Schuller, M., Lell, B., Kuenburg, E., et al.,

1991. Basal and stimulated plasma levels of pancreatic amylin indicate its co-

secretion with insulin in humans. Diabetologia 34:52e54.

[4] Li, Z., Kelly, L., Heiman, M., Greengard, P., Friedman, J.M., 2015. Hypotha-

lamic amylin acts in concert with leptin to regulate food intake. Cell Meta-

bolism 22:1059e1067.

[5] Young, A.A., 2012. Brainstem sensing of meal-related signals in energy ho-

meostasis. Neuropharmacology.

[6] Lutz, T.A., 2012. Control of energy homeostasis by amylin. Cellular and Mo-

lecular Life Sciences 69:1947e1965.

[7] Jorsal, T., Rungby, J., Knop, F.K., Vilsboll, T., 2016. GLP-1 and amylin in the

treatment of obesity. Current Diabetes Reports 16:1.

[8] Hay, D.L., Chen, S., Lutz, T.A., Parkes, D.G., Roth, J.D., 2015. Amylin:

pharmacology, physiology, and clinical potential. Pharmacological Reviews 67:

564e600.

[9] Potes, C.S., Lutz, T.A., 2010. Brainstem mechanisms of amylin-induced

anorexia. Physiology & Behavior 100:511e518.

[10] Le Foll, C., Johnson, M.D., Dunn-Meynell, A., Boyle, C.N., Lutz, T.A.,

Levin, B.E., 2015. Amylin-induced central IL-6 production enhances ventro-

medial hypothalamic leptin signaling. Diabetes 64:1621e1631.

[11] Johnson, M.D., Bouret, S.G., Dunn-Meynell, A.A., Boyle, C.N., Lutz, T.A.,

Levin, B.E., 2016. Early postnatal amylin treatment enhances hypothalamic

leptin signaling and neural development in the selectively bred diet-induced

obese rat. American Journal of Physiology. Regulatory, Integrative and

Comparative Physiology. https://doi.org/10.1152/ajpregu.00326.2016.

[12] Mietlicki-Baase, E.G., Olivos, D.R., Jeffrey, B.A., Hayes, M.R., 2015. Cooper-

ative interaction between leptin and amylin signaling in the ventral tegmental

area for the control of food intake. American Journal of Physiology: Endocri-

nology and Metabolism 308:E1116eE1122.

[13] Mietlicki-Baase, E.G., Rupprecht, L.E., Olivos, D.R., Zimmer, D.J., Alter, M.D.,

Pierce, R.C., et al., 2013. Amylin receptor signaling in the ventral tegmental

area is physiologically relevant for the control of food intake. Neuro-

psychopharmacology 38:1685e1697.

[14] Reiner, D.J., Mietlicki-Baase, E.G., Olivos, D.R., McGrath, L.E., Zimmer, D.J.,

Koch-Laskowski, K., et al., 2017. Amylin acts in the lateral dorsal tegmental

nucleus to regulate energy balance through gamma-aminobutyric acid

signaling. Biological Psychiatry.

[15] Mietlicki-Baase, E.G., Reiner, D.J., Cone, J.J., Olivos, D.R., McGrath, L.E.,

Zimmer, D.J., et al., 2015. Amylin modulates the mesolimbic

dopamine system to control energy balance. Neuropsychopharmacology

40:372e385.

[16] Whiting, L., McCutcheon, J.E., Boyle, C.N., Roitman, M.F., Lutz, T.A., 2017.

The area postrema (AP) and the parabrachial nucleus (PBN) are important sites

for salmon calcitonin (sCT) to decrease evoked phasic dopamine release in the

nucleus accumbens (NAc). Physiology & Behavior 176:9e16.

[17] Bower, R.L., Hay, D.L., 2016. Amylin structure-function relationships and

receptor pharmacology: implications for amylin mimetic drug development.

British Journal of Pharmacology 173:1883e1898.

[18] Christopoulos, G., Perry, K.J., Morfis, M., Tilakaratne, N., Gao, Y., Fraser, N.J.,

et al., 1999. Multiple amylin receptors arise from receptor activity-modifying

protein interaction with the calcitonin receptor gene product. Molecular

Pharmacology 56:235e242.

[19] McLatchie, L.M., Fraser, N.J., Main, M.J., Wise, A., Brown, J., Thompson, N.,

et al., 1998. RAMPs regulate the transport and ligand specificity of the

calcitonin-receptor-like receptor. Nature 393:333e339.

[20] Liberini, C.G., Boyle, C.N., Cifani, C., Venniro, M., Hope, B.T., Lutz, T.A., 2016.

Amylin receptor components and the leptin receptor are co-expressed in single

rat area postrema neurons. The European Journal of Neuroscience.

[21] Sexton, P.M., Paxinos, G., Kenney, M.A., Wookey, P.J., Beaumont, K., 1994.

In vitro autoradiographic localization of amylin binding sites in rat brain.

Neuroscience 62:553e567.
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
www.molecularmetabolism.com

https://doi.org/10.1016/j.molmet.2017.11.009
https://doi.org/10.1016/j.molmet.2017.11.009
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref1
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref1
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref1
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref1
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref2
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref2
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref2
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref2
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref3
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref3
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref3
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref3
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref4
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref4
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref4
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref4
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref5
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref5
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref6
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref6
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref6
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref7
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref7
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref8
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref8
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref8
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref8
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref9
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref9
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref9
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref10
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref10
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref10
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref10
https://doi.org/10.1152/ajpregu.00326.2016
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref12
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref12
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref12
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref12
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref12
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref13
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref13
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref13
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref13
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref13
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref14
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref14
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref14
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref14
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref15
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref15
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref15
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref15
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref15
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref16
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref16
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref16
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref16
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref16
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref17
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref17
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref17
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref17
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref18
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref18
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref18
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref18
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref18
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref19
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref19
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref19
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref19
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref20
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref20
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref20
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref21
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref21
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref21
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref21
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.molecularmetabolism.com


[22] Hay, D.L., Christopoulos, G., Christopoulos, A., Poyner, D.R., Sexton, P.M.,

2005. Pharmacological discrimination of calcitonin receptor: receptor activity-

modifying protein complexes. Molecular Pharmacology 67:1655e1665.

[23] Ueda, T., Ugawa, S., Saishin, Y., Shimada, S., 2001. Expression of receptor-

activity modifying protein (RAMP) mRNAs in the mouse brain. Brain Research.

Molecular Brain Research 93:36e45.

[24] Becskei, C., Riediger, T., Zund, D., Wookey, P., Lutz, T.A., 2004. Immuno-

histochemical mapping of calcitonin receptors in the adult rat brain. Brain

Research 1030:221e233.

[25] Dunn-Meynell, A.A., Le Foll, C., Johnson, M.D., Lutz, T.A., Hayes, M.R.,

Levin, B.E., 2015. Endogenous VMH amylin signaling is required for full leptin

signaling and protection from diet-induced obesity. American Journal of

Physiology. Regulatory, Integrative and Comparative Physiology. https://

doi.org/10.1152/ajpregu.00462.2015.

[26] Levin, B.E., Lutz, T.A., 2017. Amylin and leptin: Co-Regulators of energy

homeostasis and neuronal development. Trends in Endocrinology and Meta-

bolism 28:153e164.

[27] Bailey, R., Walker, C., Ferner, A., Loomes, K., Prijic, G., Halim, A., et al., 2012.

Pharmacological characterization of rat amylin receptors: implications for the

identification of amylin receptor subtypes. British Journal of Pharmacology

166:151e167.

[28] Hay, D.L., Walker, C.S., Gingell, J.J., Ladds, G., Reynolds, C.A., Poyner, D.R.,

2016. Receptor activity-modifying proteins; multifunctional G protein-coupled

receptor accessory proteins. Biochemical Society Transactions 44:568e573.

[29] Riediger, T., Schmid, H.A., Lutz, T., Simon, E., 2001. Amylin potently activates

AP neurons possibly via formation of the excitatory second messenger cGMP.

American Journal of Physiology. Regulatory, Integrative and Comparative

Physiology 281:R1833eR1843.

[30] Potes, C.S., Boyle, C.N., Wookey, P.J., Riediger, T., Lutz, T.A., 2012.

Involvement of the extracellular signal-regulated kinase 1/2 signaling pathway

in amylin’s eating inhibitory effect. American Journal of Physiology. Regulatory,

Integrative and Comparative Physiology 302:R340eR351.

[31] Mollet, A., Gilg, S., Riediger, T., Lutz, T.A., 2004. Infusion of the amylin

antagonist AC 187 into the area postrema increases food intake in rats.

Physiology & Behavior 81:149e155.

[32] Lutz, T.A., Senn, M., Althaus, J., Del Prete, E., Ehrensperger, F., Scharrer, E.,

1998. Lesion of the area postrema/nucleus of the solitary tract (AP/NTS) at-

tenuates the anorectic effects of amylin and calcitonin gene-related peptide

(CGRP) in rats. Peptides 19:309e317.

[33] Potes, C.S., Turek, V.F., Cole, R.L., Vu, C., Roland, B.L., Roth, J.D., et al.,

2010. Noradrenergic neurons of the area postrema mediate amylin’s hypo-

phagic action. American Journal of Physiology. Regulatory, Integrative and

Comparative Physiology 299:R623eR631.

[34] Lutz, T.A., 2011. Control of energy homeostasis by amylin. Cellular and Mo-

lecular Life Sciences.

[35] Becskei, C., Grabler, V., Edwards, G.L., Riediger, T., Lutz, T.A., 2007. Lesion of

the lateral parabrachial nucleus attenuates the anorectic effect of peripheral

amylin and CCK. Brain Research 1162:76e84.

[36] Riediger, T., Zuend, D., Becskei, C., Lutz, T.A., 2004. The anorectic hormone

amylin contributes to feeding-related changes of neuronal activity in key

structures of the gut-brain axis. American Journal of Physiology. Regulatory,

Integrative and Comparative Physiology 286:R114eR122.

[37] Potes, C.S., Lutz, T.A., Riediger, T., 2010. Identification of central projections

from amylin-activated neurons to the lateral hypothalamus. Brain Research

1334:31e44.

[38] Fukuda, T., Hirai, Y., Maezawa, H., Kitagawa, Y., Funahashi, M., 2013.

Electrophysiologically identified presynaptic mechanisms underlying amyli-

nergic modulation of area postrema neuronal excitability in rat brain slices.

Brain Research 1494:9e16.

[39] Braegger, F.E., Asarian, L., Dahl, K., Lutz, T.A., Boyle, C.N., 2014. The role of

the area postrema in the anorectic effects of amylin and salmon calcitonin:
MOLECULAR METABOLISM 8 (2018) 203e210 � 2017 The Authors. Published by Elsevier GmbH. This is an op
www.molecularmetabolism.com
behavioral and neuronal phenotyping. The European Journal of Neuroscience

40:3055e3066.

[40] Lutz, T.A., Geary, N., Szabady, M.M., Del, P.E., Scharrer, E., 1995. Amylin

decreases meal size in rats. Physiology & Behavior 58:1197e1202.

[41] Banks, W.A., Kastin, A.J., 1998. Differential permeability of the blood-brain

barrier to two pancreatic peptides: insulin and amylin. Peptides 19:883e889.

[42] Banks, W.A., Kastin, A.J., Maness, L.M., Huang, W., Jaspan, J.B., 1995.

Permeability of the blood-brain barrier to amylin. Life Sciences 57:1993e

2001.

[43] Kastin, A.J., Pan, W., 2016. Involvement of the blood-brain barrier in metabolic

regulation. CNS Neurol Disord Drug Targets 15:1118e1128.

[44] Balland, E., Dam, J., Langlet, F., Caron, E., Steculorum, S., Messina, A., et al.,

2014. Hypothalamic tanycytes are an ERK-gated conduit for leptin into the

brain. Cell Metabolism 19:293e301.

[45] Berthoud, H.R., 2006. Homeostatic and non-homeostatic pathways involved in

the control of food intake and energy balance. Obesity (Silver Spring) 14(Suppl

5):197se200s.

[46] Berridge, K.C., Kringelbach, M.L., 2015. Pleasure systems in the brain. Neuron

86:646e664.

[47] Finlayson, G., King, N., Blundell, J.E., 2007. Liking vs. wanting food: impor-

tance for human appetite control and weight regulation. Neuroscience &

Biobehavioral Reviews 31:987e1002.

[48] Munzberg, H., Qualls-Creekmore, E., Yu, S., Morrison, C.D., Berthoud, H.R.,

2016. Hedonics act in unison with the homeostatic system to unconsciously

control body weight. Frontiers in Nutrition 3:6.

[49] Dickson, S.L., Shirazi, R.H., Hansson, C., Bergquist, F., Nissbrandt, H.,

Skibicka, K.P., 2012. The glucagon-like peptide 1 (GLP-1) analogue, exendin-

4, decreases the rewarding value of food: a new role for mesolimbic GLP-1

receptors. Journal of Neuroscience 32:4812e4820.

[50] Skibicka, K.P., 2013. The central GLP-1: implications for food and drug

reward. Frontiers in Neuroscience 7:181.

[51] Berridge, K.C., 2009. ‘Liking’ and ‘wanting’ food rewards: brain substrates and

roles in eating disorders. Physiology & Behavior 97:537e550.

[52] Mietlicki-Baase, E.G., McGrath, L.E., Koch-Laskowski, K., Krawczyk, J.,

Reiner, D.J., Pham, T., et al., 2017. Amylin receptor activation in the ventral

tegmental area reduces motivated ingestive behavior. Neuropharmacology

123:67e79.

[53] Boyle, C.N., Lutz, T.A., 2011. Amylinergic control of food intake in lean and

obese rodents. Physiology & Behavior 105:129e137.

[54] Boyle, C.N., Munz, M., Wielinga, P.Y., Stöcker, D., Lutz, T.A., 2010. Short-

term, but not extended, access to palatable diet diminishes amylin respon-

siveness in rat. Appetite 54:636.

[55] Boyle, C.N., Rossier, M.M., Lutz, T.A., 2011. Influence of high-fat feeding, diet-

induced obesity, and hyperamylinemia on the sensitivity to acute amylin.

Physiology & Behavior 104:20e28.

[56] Anderberg, R.H., Anefors, C., Bergquist, F., Nissbrandt, H., Skibicka, K.P.,

2014. Dopamine signaling in the amygdala, increased by food ingestion and

GLP-1, regulates feeding behavior. Physiology & Behavior.

[57] Mietlicki-Baase, E.G., Ortinski, P.I., Rupprecht, L.E., Olivos, D.R.,

Alhadeff, A.L., Pierce, R.C., et al., 2013. The food intake-suppressive effects of

glucagon-like peptide-1 receptor signaling in the ventral tegmental area are

mediated by AMPA/kainate receptors. American Journal of Physiology:

Endocrinology and Metabolism 305:E1367eE1374.

[58] Aronne, L., Fujioka, K., Aroda, V., Chen, K., Halseth, A., Kesty, N.C., et al.,

2007. Progressive reduction in body weight after treatment with the amylin

analog pramlintide in obese subjects: a phase 2, randomized, placebo-

controlled, dose-escalation study. The Journal of Clinical Endocrinology &

Metabolism 92:2977e2983.

[59] Hollander, P., Maggs, D.G., Ruggles, J.A., Fineman, M., Shen, L.,

Kolterman, O.G., et al., 2004. Effect of pramlintide on weight in overweight and

obese insulin-treated type 2 diabetes patients. Obesity Research 12:661e668.
en access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 209

http://refhub.elsevier.com/S2212-8778(17)30870-0/sref22
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref22
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref22
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref22
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref23
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref23
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref23
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref23
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref24
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref24
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref24
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref24
https://doi.org/10.1152/ajpregu.00462.2015
https://doi.org/10.1152/ajpregu.00462.2015
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref26
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref26
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref26
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref26
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref27
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref27
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref27
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref27
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref27
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref28
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref28
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref28
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref28
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref29
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref29
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref29
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref29
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref29
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref30
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref30
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref30
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref30
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref30
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref31
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref31
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref31
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref31
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref32
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref32
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref32
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref32
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref32
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref33
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref33
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref33
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref33
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref33
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref34
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref34
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref35
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref35
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref35
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref35
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref36
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref36
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref36
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref36
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref36
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref37
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref37
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref37
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref37
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref38
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref38
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref38
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref38
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref38
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref39
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref39
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref39
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref39
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref39
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref40
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref40
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref40
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref41
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref41
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref41
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref42
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref42
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref42
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref43
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref43
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref43
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref44
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref44
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref44
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref44
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref45
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref45
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref45
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref45
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref46
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref46
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref46
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref47
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref47
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref47
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref47
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref48
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref48
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref48
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref49
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref49
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref49
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref49
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref49
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref50
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref50
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref51
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref51
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref51
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref52
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref52
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref52
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref52
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref52
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref53
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref53
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref53
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref54
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref54
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref54
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref55
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref55
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref55
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref55
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref56
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref56
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref56
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref57
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref57
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref57
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref57
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref57
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref57
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref58
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref58
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref58
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref58
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref58
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref58
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref59
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref59
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref59
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref59
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.molecularmetabolism.com


Review
[60] Smith, S.R., Aronne, L.J., Burns, C.M., Kesty, N.C., Halseth, A.E., Weyer, C.,

2008. Sustained weight loss following 12-month pramlintide treatment as an

adjunct to lifestyle intervention in obesity. Diabetes Care 31:1816e1823.

[61] Weyer, C., Maggs, D.G., Young, A.A., Kolterman, O.G., 2001. Amylin

replacement with pramlintide as an adjunct to insulin therapy in type 1 and

type 2 diabetes mellitus: a physiological approach toward improved metabolic

control. Current Pharmaceutical Design 7:1353e1373.

[62] Ravussin, E., Smith, S.R., Mitchell, J.A., Shringarpure, R., Shan, K., Maier, H.,

et al., 2009. Enhanced weight loss with pramlintide/metreleptin: an integrated

neurohormonal approach to obesity pharmacotherapy. Obesity (Silver Spring)

17:1736e1743.

[63] Roth, J.D., Roland, B.L., Cole, R.L., Trevaskis, J.L., Weyer, C., Koda, J.E.,

et al., 2008. Leptin responsiveness restored by amylin agonism in diet-

induced obesity: evidence from nonclinical and clinical studies. Proceedings

of the National Academy of Sciences of the United States of America 105:

7257e7262.

[64] Trevaskis, J.L., Lei, C., Koda, J.E., Weyer, C., Parkes, D.G., Roth, J.D., 2010.

Interaction of leptin and amylin in the long-term maintenance of weight loss in

diet-induced obese rats. Obesity (Silver Spring) 18:21e26.

[65] Turek, V.F., Trevaskis, J.L., Levin, B.E., Dunn-Meynell, A.A., Irani, B., Gu, G.,

et al., 2010. Mechanisms of amylin/leptin synergy in rodent models. Endo-

crinology 151:143e152.

[66] Manning, C.E., Williams, E.S., Robison, A.J., 2017. Reward network immediate

early gene expression in mood disorders. Frontiers in Behavioral Neuroscience

11:77.

[67] Smeltzer, M., Scott, K., Melhorn, S., Krause, E., Sakai, R., 2012. Amylin blunts

hyperphagia and reduces weight and fat gain during recovery in socially

stressed rats. American Journal of Physiology. Regulatory, Integrative and

Comparative Physiology 303:R676eR682.

[68] Roth, J.D., Maier, H., Chen, S., Roland, B.L., 2009. Implications of amylin

receptor agonism: integrated neurohormonal mechanisms and therapeutic

applications. Archives of Neurology 66:306e310.

[69] Mack, C.M., Soares, C.J., Wilson, J.K., Athanacio, J.R., Turek, V.F.,

Trevaskis, J.L., et al., 2010. Davalintide (AC2307), a novel amylin-mimetic

peptide: enhanced pharmacological properties over native amylin to reduce

food intake and body weight. International Journal of Obesity (London) 34:

385e395.

[70] Guerreiro, L.H., Guterres, M.F., Melo-Ferreira, B., Erthal, L.C., Rosa Mda, S.,

Lourenco, D., et al., 2013. Preparation and characterization of PEGylated

amylin. AAPS PharmSciTech 14:1083e1097.

[71] Sun, C., Trevaskis, J.L., Jodka, C.M., Neravetla, S., Griffin, P., Xu, K., et al.,

2013. Bifunctional PEGylated exenatide-amylinomimetic hybrids to treat

metabolic disorders: an example of long-acting dual hormonal therapeutics.

Journal of Medicinal Chemistry 56:9328e9341.

[72] Kowalczyk, R., Brimble, M.A., Tomabechi, Y., Fairbanks, A.J., Fletcher, M.,

Hay, D.L., 2014. Convergent chemoenzymatic synthesis of a library of gly-

cosylated analogues of pramlintide: structure-activity relationships for amylin

receptor agonism. Organic & Biomolecular Chemistry 12:8142e8151.

[73] Tomabechi, Y., Krippner, G., Rendle, P.M., Squire, M.A., Fairbanks, A.J., 2013.

Glycosylation of pramlintide: synthetic glycopeptides that display in vitro and

in vivo activities as amylin receptor agonists. Chemistry (Weinheim an der

Bergstrasse, Germany) 19:15084e15088.

[74] Andreassen, K.V., Feigh, M., Hjuler, S.T., Gydesen, S., Henriksen, J.E., Beck-

Nielsen, H., et al., 2014. A novel oral dual amylin and calcitonin receptor

agonist (KBP-042) exerts antiobesity and antidiabetic effects in rats. American

Journal of Physiology: Endocrinology and Metabolism 307:E24eE33.
210 MOLECULAR METABOLISM 8 (2018) 203e210 � 2017 The Authors. Published by Elsevier GmbH. T
[75] Gydesen, S., Andreassen, K.V., Hjuler, S.T., Christensen, J.M., Karsdal, M.A.,

Henriksen, K., 2016. KBP-088, a novel DACRA with prolonged receptor acti-

vation, is superior to davalintide in terms of efficacy on body weight. American

Journal of Physiology: Endocrinology and Metabolism 310:E821eE827.

[76] Gydesen, S., Andreassen, K.V., Hjuler, S.T., Hellgren, L.I., Karsdal, M.A.,

Henriksen, K., 2017. Optimization of tolerability and efficacy of dual amylin and

calcitonin receptor agonist, KBP-089, through dose escalation and combina-

tion with a GLP-1 analogue. American Journal of Physiology: Endocrinology

and Metabolism. https://doi.org/10.1152/ajpendo.00419.2016.

[77] Hjuler, S.T., Andreassen, K.V., Gydesen, S., Karsdal, M.A., Henriksen, K.,

2015. KBP-042 improves bodyweight and glucose homeostasis with indices of

increased insulin sensitivity irrespective of route of administration. European

Journal of Pharmacology 762:229e238.

[78] Hjuler, S.T., Gydesen, S., Andreassen, K.V., Karsdal, M.A., Henriksen, K.,

2017. The dual amylin- and calcitonin-receptor agonist KBP-042 works as

adjunct to Metformin on fasting hyperglycemia and HbA1c in a rat model of

type 2 diabetes. Journal of Pharmacology and Experimental Therapeutics 362:

24e30.

[79] Hjuler, S.T., Gydesen, S., Andreassen, K.V., Pedersen, S.L., Hellgren, L.I.,

Karsdal, M.A., et al., 2016. The dual amylin- and calcitonin-receptor agonist

KBP-042 increases insulin sensitivity and induces weight loss in rats with

obesity. Obesity (Silver Spring) 24:1712e1722.

[80] Gydesen, S., Hjuler, S.T., Freving, Z., Andreassen, K.V., Sonne, N.,

Hellgren, L.I., et al., 2017. A novel dual amylin and calcitonin receptor agonist,

KBP-089, induces weight loss through a reduction in fat, but not lean mass,

while improving food preference. British Journal of Pharmacology.

[81] Leinung, M.C., Grasso, P., 2012. [D-Leu-4]-OB3, a synthetic peptide amide

with leptin-like activity, augments the effects of orally delivered exenatide and

pramlintide acetate on energy balance and glycemic control in insulin-resistant

male C57BLK/6-m db/db mice. Regulatory Peptides 179:33e38.

[82] Karsdal, M.A., Henriksen, K., Bay-Jensen, A.C., Molloy, B., Arnold, M.,

John, M.R., et al., 2011. Lessons learned from the development of oral

calcitonin: the first tablet formulation of a protein in phase III clinical trials.

Journal of Clinical Pharmacology 51:460e471.

[83] Feigh, M., Andreassen, K.V., Hjuler, S.T., Nielsen, R.H., Christiansen, C.,

Henriksen, K., et al., 2013. Oral salmon calcitonin protects against impaired

fasting glycemia, glucose intolerance, and obesity induced by high-fat diet and

ovariectomy in rats. Menopause (New York, N.Y.) 20:785e794.

[84] Feigh, M., Hjuler, S.T., Andreassen, K.V., Gydesen, S., Ottosen, I.,

Henriksen, J.E., et al., 2014. Oral salmon calcitonin enhances insulin action

and glucose metabolism in diet-induced obese streptozotocin-diabetic rats.

European Journal of Pharmacology 737:91e96.

[85] Auslander, S., Fussenegger, M., 2017. Synthetic RNA-based switches for

mammalian gene expression control. Current Opinion in Biotechnology 48:54e

60.

[86] Saxena, P., Bojar, D., Fussenegger, M., 2017. Design of synthetic promoters

for gene circuits in mammalian cells. Methods in Molecular Biology (Clifton,

N.J.) 1651:263e273.

[87] Teixeira, A.P., Fussenegger, M., 2017. Synthetic biology-inspired therapies for

metabolic diseases. Current Opinion in Biotechnology 47:59e66.

[88] Xie, M., Ye, H., Wang, H., Charpin-El Hamri, G., Lormeau, C., Saxena, P., et al.,

2016. beta-cell-mimetic designer cells provide closed-loop glycemic control.

Science 354:1296e1301.

[89] Rossger, K., Charpin-El-Hamri, G., Fussenegger, M., 2013. A closed-loop

synthetic gene circuit for the treatment of diet-induced obesity in mice. Nature

Communications 4:2825.
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
www.molecularmetabolism.com

http://refhub.elsevier.com/S2212-8778(17)30870-0/sref60
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref60
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref60
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref60
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref61
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref61
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref61
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref61
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref61
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref62
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref62
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref62
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref62
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref62
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref63
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref63
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref63
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref63
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref63
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref63
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref64
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref64
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref64
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref64
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref65
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref65
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref65
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref65
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref66
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref66
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref66
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref67
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref67
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref67
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref67
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref67
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref68
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref68
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref68
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref68
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref69
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref69
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref69
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref69
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref69
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref69
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref70
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref70
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref70
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref70
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref71
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref71
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref71
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref71
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref71
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref72
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref72
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref72
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref72
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref72
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref73
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref73
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref73
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref73
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref73
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref74
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref74
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref74
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref74
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref74
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref75
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref75
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref75
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref75
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref75
https://doi.org/10.1152/ajpendo.00419.2016
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref77
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref77
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref77
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref77
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref77
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref78
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref78
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref78
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref78
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref78
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref78
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref79
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref79
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref79
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref79
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref79
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref80
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref80
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref80
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref80
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref81
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref81
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref81
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref81
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref81
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref82
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref82
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref82
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref82
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref82
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref83
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref83
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref83
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref83
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref83
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref84
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref84
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref84
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref84
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref84
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref85
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref85
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref85
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref86
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref86
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref86
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref86
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref87
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref87
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref87
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref88
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref88
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref88
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref88
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref89
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref89
http://refhub.elsevier.com/S2212-8778(17)30870-0/sref89
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.molecularmetabolism.com

	Amylin – Its role in the homeostatic and hedonic control of eating and recent developments of amylin analogs to treat obesity
	1. Amylin in the control of energy metabolism
	2. Amylin receptor structure and function
	3. Sites of amylin action
	3.1. Amylin activation of the brainstem and neuroaxis
	3.2. Amylin action in other brain areas

	4. Amylin action on food reward
	4.1. Amylin's effect on food choices
	4.2. Amylin's effect on highly palatable diet intake
	4.3. Mechanism of amylin's action on food reward

	5. Clinical use of amylin and amylin analogs
	5.1. Next generation drugs for the amylin system
	5.1.1. Davalintide
	5.1.2. PEGylated or glycosylated amylin
	5.1.3. Dual amylin and calcitonin receptor agonist (DACRA)
	5.1.4. Oral amylin agonists

	5.2. Integrated circuits for the release of amylin agonists

	6. Summary
	Acknowledgment
	Conflict of interest
	Appendix A. Supplementary data
	References


