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Blood perfusion is an important index for the function of the cardiovascular system
and it can be indicated by the blood flow distribution in the vascular tree. As the
blood flow in a vascular tree varies in a large range of scales and fractal analysis
owns the ability to describe multi-scale properties, it is reasonable to apply fractal
analysis to depict the blood flow distribution. The objective of this study is to establish
fractal methods for analyzing the blood flow distribution which can be applied to real
vascular trees. For this purpose, the modified methods in fractal geometry were applied
and a special strategy was raised to make sure that these methods are applicable
to an arbitrary vascular tree. The validation of the proposed methods on real arterial
trees verified the ability of the produced parameters (fractal dimension and multifractal
spectrum) in distinguishing the blood flow distribution under different physiological
states. Furthermore, the physiological significance of the fractal parameters was
investigated in two situations. For the first situation, the vascular tree was set as a perfect
binary tree and the blood flow distribution was adjusted by the split ratio. As the split
ratio of the vascular tree decreases, the fractal dimension decreases and the multifractal
spectrum expands. The results indicate that both fractal parameters can quantify the
degree of blood flow heterogeneity. While for the second situation, artificial vascular trees
with different structures were constructed and the hemodynamics in these vascular trees
was simulated. The results suggest that both the vascular structure and the blood flow
distribution affect the fractal parameters for blood flow. The fractal dimension declares
the integrated information about the heterogeneity of vascular structure and blood flow
distribution. In contrast, the multifractal spectrum identifies the heterogeneity features in
blood flow distribution or vascular structure by its width and height. The results verified
that the proposed methods are capable of depicting the multi-scale features of the
blood flow distribution in the vascular tree and further are potential for investigating
vascular physiology.
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INTRODUCTION

The microcirculation is the end destination of the cardiovascular
system and the patency of microvascular perfusion is essential
for the maintenance of tissue metabolism (Ince, 2005; Guven
et al., 2020). Various cardiovascular diseases influence the blood
perfusion and thus impair the physiological function of organs
(Efimova et al., 2008; Kitagawa et al., 2009; Alosco et al., 2013,
2014). These findings imply that the blood perfusion may act
as an important index for the physiological states of living
bodies. The blood perfusion can be indicated by the blood
flow distribution in the vascular tree. The blood flow in a
vascular tree is distributed at different generations, varying in
a large range of scales, and the blood flow distribution at a
certain generation is directly affected by the superior generation.
In the meantime, there is a huge difference between the
magnitude of the blood flow at different generations. However,
the conventional statistical parameters for characterizing the
blood flow distribution, like the coefficient of variation (CV)
(Bassingthwaighte et al., 2001; Pries and Secomb, 2009), ignored
the connection of the blood flow among multiple scales. To
develop a unified description of the blood flow distribution
covering all scales remains a big challenge.

To depict the scale-independent characteristic of objects, the
fractal theory provides an efficient approach for multi-scale
analysis (Mandelbrot, 1982). Presently, a few studies have made
an effort on investigating the fractal characteristics of blood
flow distribution in the vascular tree directly or indirectly.
Van Beek et al. (1989) uncovered the fractality of the relative
dispersion of blood flow distribution. Zamir (2001) defined the
fractal dimension based on the relationship between the vessel
diameter and blood flow according to Murray’s law. Grasman
et al. (2003) described that the distribution of blood flow at
the same generation is multifractal. In all these studies, the
unified description for a vascular tree by the fractal parameter all
demands that the vascular tree should be a perfect binary tree,
in which all interior branch nodes have two daughter branches
and all terminals have the same depth or generation. However,
the structures of real vascular trees are diverse which limits the
physiological application of the methods above.

The fractal analysis has been widely used to investigate
the geometrical characteristics of the vasculatures (Cheng and
Huang, 2003; Stosic and Stosic, 2006; Lorthois and Cassot,
2010; Gould et al., 2011; Nadal et al., 2020). It inspires us
to introduce the established fractal methods for geometrical
architecture analysis into the hemodynamic study, and further
develop a universal fractal depiction for blood flow distribution.
The conservation law is common during the emergence of fractal
and multifractal (Hassan, 2019). In fractal geometry, this law
presents as the conservation of the number of signal pixels
in an image. On the other hand, the total volume of blood
flow in the vascular tree also obeys the conservation law. This
consistency makes it possible to apply the principle of the
fractal method for geometry to the analysis of blood flow by
appropriate modification.

In this study, the primary aim is to establish fractal methods
for analyzing the blood flow distribution which is potential

to be applied to real vascular trees. To achieve this goal, we
firstly modified the fractal methods in geometry to accommodate
the situation of blood flow and then applied the established
methods on experimental data to test the validity. Further,
to explore the physiological significance of the yielded fractal
parameters, the blood flow distribution in vascular trees with
fixed structure or with varying structures were examined in which
the hemodynamics was simulated based on a hemodynamic
model (Yang and Wang, 2013) and a rheological model
(Pries and Secomb, 2005).

MATERIALS AND METHODS

Establishment of Fractal Methods for
Blood Flow
The fractal dimension is the most important parameter to
quantify the fractality of objects. And measuring the information
dimension is an efficient way to estimate the fractal dimension
in geometry (Pitsianis et al., 1989; Liu et al., 2018). For the
calculation of information dimension, non-overlapping boxes are
adopted to cover the image of the object and the mass probability
of each box, which is defined as the ratio of the number of signal
pixels in the box to that of the whole image, is obtained. And the
information dimension DI (Pitsianis et al., 1989) is estimated as:

DI = lim
L→0

∑N(L)
i=1 −Pilog Pi

log (1/L)
(1)

where
∑N(L)

i=1 −Pilog Pi is the total entropy of mass according to
the information theory, Pi is the mass probability of the ith box
and N(L) is the number of boxes needed to cover the image with
size L.

The total mass, which is the number of signal pixels in the
whole image, obeys the law of conservation regardless of the box
size. And so does the blood flow. As shown in Figure 1, the
total volume of blood flow at the same generation also follows
the law of conservation no matter how many times the vascular
tree bifurcates. Thus, with appropriate modification, the fractal
methods in fractal geometry can be introduced to investigate the
fractality of blood flow. By replacing the mass probability Pi in
Eq. 1 with the flow probability pi and 1/L with the number of
vessel segments N(g) at generation g, the expression of the fractal
dimension for the blood flow DQ is derived as:

DQ = lim
N(g)→∞

∑
−pilog pi

log N
(
g
) (2)

Practically, DQ is estimated as the slope of the linear fitting curve
of the discrete data pair (log N

(
g
)

,
∑
−pilog pi) (Wang et al.,

2019). The precondition of the fractal analysis is scale invariance.
And the strong linearity over three orders of magnitude of the
fitting curve can be taken as the criteria of the existence of scale
invariance (Halley et al., 2004).

For the fractal analysis in geometry, the box-counting
dimension (So et al., 2017; Nayak et al., 2019), also known
as capacity dimension, is the most popular. This method also
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FIGURE 1 | The schematic of the conservation of flow at different
generations. Q is the blood flow and Q0 =

∑
Q1,i =

∑
Q2,j .

requires the image to be covered by non-overlapping boxes.
However, the box-counting dimension method only considers
the existence of signal pixels in the box but ignores the
number of pixels. When applied to blood flow analysis, it
produces fractal dimension about the vascular structure other
than the distribution of blood flow. In contrast, the information
dimension method takes the quantity of blood flow into account
and thus can reflect the blood flow distribution.

Very few objects possess perfect mono-fractality exhibiting
a single fractal dimension (Gould et al., 2011). In reality,
objects with the subsets having different scaling properties are
much more common and the estimation of multifractality is
more desirable. For the multifractal measure of blood flow,
the multifractal spectrum f (α)∼α of the blood flow is adopted
(Chhabra and Jensen, 1989) and modified as:

f
(
q
)
= lim

N(g)→∞

∑
µi
(
q
)

log
[
µi
(
q
)]

log N
(
g
) (3)

α
(
q
)
= lim

N(g)→∞

∑
µi
(
q
)

log pi

log N
(
g
) (4)

in which

µi
(
q
)
=

pq
i∑
pq

i
(5)

where q is the moment order. And the range of the spectrum
1α = αmax − αmin can be used to measure the degree of
multifractality (Halsey et al., 1986).

Generalization of the Established
Methods
The methods given in Section “Establishment of Fractal Methods
for Blood Flow” are based on the premise that the total blood
flow at the same generation in a vascular tree obeys the law of
conservation. This premise is valid for a perfect binary tree, as
shown in Figure 1, but not for real vascular trees as shown in
Figure 2A. If the branch which stops bifurcating before reaching
the maximal generation is regarded as a branch covering multiple
generations, the vascular tree in Figure 2A can be thought
of as the perfect binary tree as shown in Figure 2B. In this
case, the proposed methods can be applied and a strategy for
the calculation is raised: If a vessel segment stops bifurcating
at generation n (n is smaller than the maximal generation of
vascular tree), it will be involved in the calculation at all the
generations greater than n.

That is to say, for the vascular tree in Figure 2A, V2,1 will
be included in the calculation of total entropy at generation 3
and V1,2 will be included in the calculation at both generation 2
and generation 3. It should be noted that the number of vessel
segments N in Eq. 2 should be 2n at generation n but not the
number of vessel segments at this generation. The reason is
explained below.

FIGURE 2 | (A) An instance of a vascular tree with the maximal generation of 3. (B) A hypothetical perfect binary tree for the vascular tree in panel (A) and there is no
blood flow in the vessel segment surrounded by dotted lines. (C) The analogy of the blood flow distribution in panel (B) to a one-dimension graph.
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FIGURE 3 | The schematic of the hemodynamic parameters at a bifurcation.

The blood flow distribution in the vascular tree in Figure 2B
can be analogous to a one-dimension graph as shown in
Figure 2C. The gray segments indicate the range of the graph
and the black segments reflect the blood flow in vessel segments.
Each bisection corresponds to a bifurcation of the vascular tree
and divides this geometrical structure into smaller subsections.
When adopting Eq. 1 for the estimation of fractal dimension for
this one-dimension graph, L is corresponding to the length of
the smallest subsection. And each bisection of the graph halves
L no matter whether there is always a black segment in each
subsection. The number of subsections should be 2n after n
bisections. Similarly, the number of vessel segments N(g) in Eq. 2
should be 2n at generation n.

Vascular Tree Construction and
Hemodynamic Simulation
By now, the methods established in “Establishment of Fractal
Methods for Blood Flow” and “Generalization of the Established
Methods” can be used to characterize the blood flow distribution
in arbitrary vascular trees. For validation, the established fractal
methods were tested in a real arterial tree (Reglin et al., 2009,
2017; Wang et al., 2019) under normal and ischemic state.
Besides, the capability of the derived fractal parameters was
examined in two situations.

For the first situation, the vascular tree was fixed to be a perfect
binary tree and the blood flow distribution was adjusted by the
split ratio. For a bifurcation with a parent vessel segment and two
daughter branches, the split ratio r is defined as the ratio of the
smaller blood flow to the larger one in the two daughter branches,
ranging from 0 to 1. Assuming that r is constant throughout
the perfect binary tree, the fractal dimension for blood flow can
be obtained as shown in Eq. 6. The detailed derivation of the
equation is given in the Appendix.

DQ (r) =
(1+ r) log (1+ r)− rlog r

log 2 · (1+ r)
(6)

For the second situation, a series of vascular trees were
constructed. The structures of these vascular trees were diverse
while the blood flow distribution was estimated under the same
boundary condition.

The successive dichotomous division is the most common
branching pattern of the vascular tree, in which a parent vessel
segment is divided into two daughter branches (Zamir, 2001).

Based on this pattern, the construction of a vascular tree calls
for the determination of the vessel diameter and length. For a
bifurcation with the diameter of the parent vessel being d0 and
those of the two daughter branches being d1 and d2, a power-
law relationship between the diameters is given as shown in Eq. 7
according to Murray’s law.

dk
0 = dk

1 + dk
2

λ =
d2

d1

(7)

where d0 > d1 ≥ d2, k is bifurcation exponent and λ is asymmetry
ratio. It is reported that the k value varies from 2.33 to 3.0 (Gabrys
et al., 2005). And a value above 0.6 is most commonly observed
for λ (Schmidt et al., 2004; Cheung et al., 2011; Takahashi, 2014).
Based on the power-law relationship, the diameters of all vessel
segments in a vascular tree can be estimated with the given root
diameter and cut-off diameter. In this study, the root diameters
of all constructed vascular trees are set as 300 µm and all the
terminal diameters are 10 µm, the size of capillaries. An empirical
formula (Takahashi et al., 2009) is adopted to obtain the length l
(µm) from the diameter d (µm):

l = 7.4 ·
(

d
2

)1.15
(8)

With the estimated vessel diameters and lengths, a vascular tree
can be constructed, and serves for the hemodynamic simulation.
According to Hagen-Poiseuille’s law as shown in Eq. 9, the
blood flow Q (µm3/s) in a vessel segment is proportional to the
pressure drop 1P (Pa) between the inlet and outlet. And the
flow resistance R is determined by vessel diameter d (µm), vessel
length l (µm), and blood viscosity µ (Pa · s).

Q =
4P
R

R =
128µl
πd4

(9)

Fahraeus and Lindqvist (1931) reported a decline in apparent
blood viscosity with decreasing tube diameter, the so-called
Fahraeus-Lindqvist effect. Among the models to describe the
relationship between the blood viscosity µ (mPa · s) and the
diameter of the vessel segment d (µm), the model proposed
by Pries and Secomb (2005) matches well with the in vivo
experimental data. In this model, the in vitro viscosity is firstly
estimated as:

µvitro = 1+ (µ0.45 − 1) ·
(1−Hd)

C
− 1

(1− 0.45)C
− 1

(10)

in which Hd (%) is the hematocrit and:

µ0.45 = 220e−1.3d
+ 3.2− 2.44e−0.06d0.645

(11)

C =
(

0.8+ e−0.075d
)
·

(
1

1+ 10−11 · d12 − 1
)
+

1
1+ 10−11 · d12

(12)
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The estimation of the in vivo viscosity should take account
of the effect of the endothelial surface layer. This will involve
two parameters, the effective diameter deff = d − 2Weff and
the physical diameter dph = d − 2Wph. The effective thickness
of the layer Weff and physical thickness of the layer Wph are
estimated as:

Weff =Was +Wpeak (1+Hd · EHD) (13)

Wph =Was +Wpeak · Epeak (14)

Was =


0 d ≤ doff

d − doff

d + d50 − 2doff
·Wmax d ≥ doff

(15)

Was =


0 d ≤ doff

Eamp ·
d − doff

dcrit − doff
doff < d ≤ dcrit

Eamp · e−Ewidth·(d−dcrit) d > dcrit

(16)

Based on the experimental data, EHD = 1.18, Epeak = 0.6,
Eamp = 1.1, Ewidth = 0.03, Doff = 2.4 µm, Dcrit = 10.5 µm,
D50 = 100 µm, and Wmax = 2.6µm. By replacing the d in Eqs
11 and 12 with dph, we can get the in vitro viscosity µvitro. And
the in vivo viscosity µvivo can be obtained as below.

µvivo = µvitro ·

(
d

deff

)4

(17)

For the bifurcation as shown in Figure 3, the relationship between
the hemodynamic parameters can be given by Eq. 18 based on
Hagen-Poiseuille’s law and the conservation law of flow.

P0 − P1

R1
+

P2 − P1

R2
+

P3 − P1

R3
= 0 (18)

Without losing generality, in the hemodynamic simulation we
prescribed the inlet pressure as 1 mmHg and the outlet pressure
at all terminal branches as 0 mmHg (Yang and Wang, 2013).
With each bifurcation of the vascular tree assigned an equation
like Eq. 18, the blood pressure at each branch node can be
obtained by solving these equations. Further, the blood flow in
each vessel segment is estimated by Eq. 9 and finally the blood
flow distribution in a tree can be acquired.

Numerical Solution
In this study, all the calculations and simulations were
programmed by MATLAB R2019a (MathWorks Co., MA,
United States). Firstly, the node information for each
constructed vascular tree was obtained. Then, the blood
flow in each vessel segment of the constructed vascular tree
was captured by solving the equations set. Ultimately, the
fractal dimension and multifractal spectrum were calculated.
All the results about the fractal parameters were presented as
Mean± SD.

RESULTS

The Validation of the Proposed Methods
To test the validity of the proposed methods, the fractal, and
multifractal analysis were conducted on a real arterial tree
under normal and ischemic state. The blood flow distribution
in these two states is as shown in Figures 4A,B. The fractal
dimension for the normal and ischemic state are 0.53 and 0.40,
respectively. As for the multifractal spectrum for the blood flow,
the results are shown in Figures 4C,D. We can observe that the
multifractal spectrums for both states appear as curves indicating
the existence of multifractality. While the maximal values of the
multifractal spectrum for the two states are the same, the range
of the multifractal spectrum 1α for the ischemic state is wider
than that for the normal state which indicates a higher degree
of multifractality for the ischemic state. The results verified the
ability of the proposed methods in distinguishing different blood
flow distribution in a real vascular tree.

The Fractality of Blood Flow in the
Perfect Binary Vascular Tree
The blood flow distribution in the perfect binary vascular tree
was evaluated by both the fractal parameters and the CV, which is
defined as the standard deviation divided by the mean value. For
a perfect binary vascular tree with the identical split ratio for each
bifurcation, the fractal dimension for blood flow was obtained
based on Eq. 6. Figure 5A shows the trends of fractal dimension
and the coefficient of variation with the change of split ratio.
It is noticed that the fractal dimension increases monotonically
from 0 to 1 with the increment of the split ratio. In the case
r = 1, the distribution of blood flow has the highest value of
fractal dimension. And the CV decreases from 10.1 to 4.4 with
the increment of the split ratio.

As for the multifractal characteristic, the multifractal
spectrums of the blood flow are shown in Figure 5B. With
the decrement of the split ratio, the range of the multifractal
spectrum 1α expands while the maximal value remains
unchanged. It is worth noting that the multifractal spectrum
is presented as a point when r = 1, implying the absence of
multifractality.

We also examined the fractal dimension and the CV of the
blood flow in perfect binary vascular trees with different maximal
generations. As shown in Figure 6, the fractal dimension
holds steady with the change of maximal generation while the
CV varies greatly.

The Fractality of Blood Flow in
Constructed Vascular Trees
Vascular trees with diverse structures were constructed. To
reflect the heterogeneity in the real vascular tree, the bifurcation
exponent k, and asymmetry ratio λ of the bifurcations in
each constructed vascular tree were set following the normal
distribution. And ten vascular trees were constructed for each
pair of k and λ. The statistical characteristics of these vascular
trees are shown in Table 1. In these constructed vascular trees,
the hemodynamics was simulated and the results are shown
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FIGURE 4 | (A) The blood flow distribution in the arterial tree under normal state. (B) The blood flow distribution in the arterial tree under ischemic state. (C) The
multifractal spectrum of the blood flow distribution under normal state. (D) The multifractal spectrum of the blood flow distribution under ischemic state.

FIGURE 5 | The change of different parameters of the blood flow for different split ratios in a perfect binary vascular tree. (A) The fractal dimension and the coefficient
of variation. (B) The multifractal spectrum.

in Figure 7. We can see that there exists a strong linear
relationship between the logarithmic values of the diameter and
the blood flow rate.

The fractal dimensions for blood flow in the constructed
vascular trees are shown in Figure 8. For the vascular trees

with the mean k value of 2.7, the fractal dimension increases
monotonically from 0.74± 0.01 to 1.00± 0.00 with λ rising from
0.60 to 1. While for the vascular trees with the mean λ value of
0.8, the fractal dimension fluctuates between 0.91 and 0.95 with
the increment of k.
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FIGURE 6 | The change of different parameters of the blood flow in the perfect binary vascular trees with different maximal generations. (A) The fractal dimension.
(B) The coefficient of variation.

TABLE 1 | The characteristics of the constructed vascular trees.

k λ Vessel number Max generation k λ Vessel number Max generation

2.7 0.60 7471 ± 97 33.8 ± 1.7 2.3 0.80 2822 ± 334 15.3 ± 0.6

0.65 8261 ± 130 28.2 ± 1.2 2.4 3525 ± 281 15.8 ± 0.6

0.70 9012 ± 83 24.9 ± 0.8 2.5 5102 ± 469 16.7 ± 0.5

0.75 9777 ± 73 21.5 ± 0.7 2.6 6987 ± 887 17.4 ± 0.7

0.80 10692 ± 99 19.5 ± 0.7 2.7 10210 ± 1389 18.8 ± 0.9

0.85 11387 ± 112 17.8 ± 0.4 2.8 14672 ± 1038 20.2 ± 0.7

0.90 12189 ± 93 16.4 ± 0.5 2.9 19149 ± 2544 21.2 ± 0.4

0.95 12818 ± 110 15.3 ± 0.5 3.0 27222 ± 1774 22.2 ± 0.9

1.00 16234 ± 102 13.0 ± 0.0

The multifractal spectrums of the blood flow for these vascular
trees are presented in Figures 9A,C. It is observed that the
multifractality of blood flow exists in all vascular trees but the
multifractal spectrums fluctuate. With the increment of λ, the
range of the multifractal spectrum 1α narrows from 0.89 ± 0.04
to 0.04 ± 0.01 and the maximal value grows from 0.93 ± 0.01
to 1.00 ± 0.00. And with the increment of k, 1α expands from
0.32 ± 0.04 to 0.65 ± 0.03 and the maximal value grows from
0.95 ± 0.01 to 0.99 ± 0.00. The features of the multifractal
spectrums are shown in Figures 9B,D. Compared with the fractal
dimensions, the difference of multifractal spectrums among these
vascular trees is more striking.

DISCUSSION

Validity of the Hemodynamic Simulation
The hemodynamic simulation was conducted to investigate
the variation of fractal parameters with varying blood flow
distribution. To make sure that the obtained blood flow
distribution is reasonable, a quantitative comparison of the
hemodynamic simulation with the existing physiological studies
is necessary. For avoiding losing the generality, the boundary
condition in the present work was prescribed with an inlet

pressure of 1 mmHg and an outlet pressure of 0 mmHg. However,
the pressure drop between the inlet and outlet may vary in
different studies. Thus, for quantitative comparison, it is more
appropriate to examine the relative indices.

As shown in Figure 7, a strong linear relationship exists
between the logarithmic values of the diameter and the blood
flow rate. This is consistent with the assertion in Huo and Kassab
(2016) that there is a scaling law between the blood flow rate
and diameter. The slope of the fitting line indicates the relation
between the blood flow rate and vascular diameter thus can
be an indicator for quantitative comparison. Within a similar
diameter range, the slope with a value of 2.40 produced in
our work is comparable with the reported work of 1.97 (Wang
et al., 2009), 2.0 ± 0.2 (Pijewska et al., 2020), 2.33 (Huo and
Kassab, 2012), and 2.49 ± 0.09 (Haindl et al., 2016). Thus, it
can be concluded that the simulation results of our work are
reasonable.

Physiological Significance of the Fractal
Parameters
Two fractal parameters, i.e., fractal dimension and multifractal
spectrum, were obtained in this study to investigate the fractality
and multifractality of blood flow.
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FIGURE 7 | The log-log plot of the blood flow rate versus the vessel diameter
for all constructed vascular trees. The solid line is the best fit result of linear
regression.

By definition, the fractal dimension is determined by the
total entropy of blood flow. And the total entropy is calculated
by considering the existence as well as the quantity of blood
flow in the vessel segment. The existence and the quantity of
blood flow are corresponding to the vascular structure and the
blood flow distribution, respectively. Thus, the fractal dimension
characterizes the combination of the features of vascular structure
and blood flow distribution. When the vascular structure is fixed,
the lower entropy is obtained from the more heterogeneous
distribution according to the information theory. That is to
say, the fractal dimension reflects the degree of the blood flow
heterogeneity for a specific vascular tree and the lower fractal
dimension comes from the blood flow distribution with a higher
degree of heterogeneity. The results in Figure 5A that the lower
fractal dimension is corresponding to the lower split ratio also
support this conclusion.

For a fractal object, the multifractal spectrum describes
the scaling properties in different subsets. And when
multifractality presents, the subsets of this object will be
scaled by different multiples at the same q order moment during
the calculation of the multifractal spectrum. Therefore, the
degree of multifractality, which is measured by the width of
the multifractal spectrum, essentially describes the degree of
heterogeneity within the fractal object and it rises with the
increment of the blood flow heterogeneity. This judgment
is consistent with the results as shown in Figure 5B. The
multifractal spectrum f (α(q)) reaches its maximal value when
q = 0. In this case, the quantity of the blood flow volume no
longer has an effect on the value of f (α(0)). In other words, the
height of the multifractal spectrum reflects the heterogeneity or
asymmetry of the vascular structure. The higher the multifractal
spectrum the closer the vascular tree is to the perfect binary tree.
And this makes clear why the height of the multifractal spectrums
in Figures 4C,D or Figure 5B is the same. By means of the width
and height, the multifractal spectrum separates the information

about the vascular structure and blood flow distribution. In this
sense, the multifractal spectrum makes the evaluation of the
blood flow distribution in different vascular trees possible. As
shown in Figure 9D, the heterogeneity of the vascular structure
decreases with the increment of the bifurcation exponent while
the heterogeneity of the blood flow distribution increases. The
interaction of these two opposite trends may explain why the
fractal dimension changes slightly with the bifurcation exponent
as shown in Figure 8B.

Both the fractal dimension and the multifractal spectrum
reflect the blood flow heterogeneity. Physiologically speaking, the
change of blood flow heterogeneity is usually associated with
pathological conditions. For microcirculation, the increment of
blood flow heterogeneity can be an early indicator of diseases,
such as sepsis and shock (Ince, 2005; Dubin et al., 2018; Ince
et al., 2018) as well as peripheral vascular disease (Butcher et al.,
2013). And the increase of blood flow heterogeneity can be
depicted by the decrease of fractal dimension and the broadening
of the multifractal spectrum. The multifractal spectrum can
separate the information about the vascular structure and blood
flow distribution. Thus, the multifractal spectrum is also able
to distinguish the causes responsible for the change in blood
flow heterogeneity, either by hemodynamic problems or by
structural alteration due to the diseases such as large vessel
stenosis (Kharche et al., 2018).

There are also some other quantitative or semi-quantitative
methods for characterizing the blood flow heterogeneity
(Bassingthwaighte et al., 1989; Pries and Secomb, 2009; Ince
et al., 2018). In this study, the blood flow heterogeneity is also
evaluated by CV. The results in Figure 5A confirm the availability
of this statistical parameter. However, the CV treats different
vessel segments in a vascular tree as independent components
ignoring the connection of blood flow along the whole tree.
This would make this parameter less accurate in some cases as
discussed below. When the split ratio for each bifurcation in
the perfect binary vascular tree is 1, the blood flow is evenly
distributed for each generation in the vascular tree. The degree
of blood flow heterogeneity should remain unchanged no matter
what the maximal generation of the vascular tree is. And this
property holds for the other values of the split ratio. As shown
in Figure 6A, the fractal dimension stays the same with the
change of the maximal generation. However, the values of CV
for the vascular trees with different maximal generations are
quite different. Considering both the connection and difference
of blood flow in different vessel segments, the fractal parameters
can provide a more accurate description of the blood flow
heterogeneity for the tree-like vasculature.

Limitations
It should be pointed out the hemodynamic simulation in this
study was simplified. Nowadays, the RCL model has been
developed for hemodynamic simulation in which the resistance
(R), capacitance (C), and inductance (L) elements were used
to mimic the effects of vessel resistance, vessel compliance, and
blood inertia, respectively (Muller and Toro, 2014; Zhang et al.,
2014). And models from 0D to 3D were established (Arciero et al.,
2017; Liu et al., 2020). In the present hemodynamic model of
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FIGURE 8 | The fractal dimension for blood flow of the vascular trees with varying λ (A) and k (B).

FIGURE 9 | The multifractal spectrums for blood flow of the vascular trees with varying λ (A) and k (C). The range 1α and the maximal value fmax of the multifractal
spectrums with varying λ (B) and k (D).
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microcirculation, only the resistance element for a vessel segment
was considered. Although in the microcirculation the resistance
element plays a dominant role in hemodynamics (Katanov et al.,
2015; Nichols et al., 2015; Secomb, 2017) and the results show
that the model is sufficient for produce varying blood flow
distribution in a tree, a comprehensive model is worth being
introduced in the future study.

CONCLUSION

In this study, the fractal methods were introduced, with
appropriate modification, to characterize the multi-scale
properties of blood flow. The application of the methods to
the real physiological data verified its ability in distinguishing
the variety of blood flow distribution. The yielded parameters,
as the fractal dimension and the multifractal spectrum for
blood flow, can quantify the degree of blood flow heterogeneity.
With the increase of blood flow heterogeneity, the fractal
dimension decreases and the multifractal spectrum expands.
And the investigation on various constructed vascular trees
suggests that both the vascular structure and the blood flow
distribution influence the fractal parameters. With the aid of
the fractal dimension, it is possible to look into the change of
blood flow heterogeneity in a specific vascular tree. While the
multifractal spectrum can be utilized to assess the blood flow
heterogeneity for different vascular trees by considering the blood

flow distribution and the structure of vascular trees separately. It
can be concluded that the proposed methods provide efficient
tools to describe the multi-scale properties of the blood flow
distribution and has the potential to assist the study of multi-scale
vascular physiology.
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APPENDIX

For the perfect binary vascular tree where the split ratio of each bifurcation is identical, if we normalize the blood flow in the main

vessel at generation 0 as 1 and denote the split ratio by r, there will be Ck
n vessels with blood flow

(
r

1+r

)k( 1
1+r

)n−k
at generation n.

And the summed entropy of the blood flow at generation n is as below:
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]
− log

(
1

1+ r

)
·

n∑
k=0

Ck
n

[
k ·

1
(1+ r)k

rn−k

(1+ r)n−k

]

Assuming p= r
1+r

, there is
n∑

k=0

Ck
n · k ·

rk

(1+ r)k
1

(1+ r)n−k =

n∑
k=0

Ck
n · k · p

k(1− p
)n−k

which is the expression of the expectation of a binomial distribution B(n, p) and it equals to np. Thus,

−log
(

r
1+ r

)
·

n∑
k=0

Ck
n

[
k ·

rk

(1+ r)k
1

(1+ r)n−k

]
− log

(
1

1+ r

)

·

n∑
k=0

Ck
n

[
k ·

1
(1+ r)k

rn−k

(1+ r)n−k

]

= −log
(

r
1+ r

)
· n ·

r
1+ r

− log
(

1
1+ r

)
· n ·

1
1+ r

= −n
(

rlog r − (1+ r) log (1+ r)
(1+ r)

)
And the fractal dimension of blood flow for the perfect binary vascular tree with split ratio r is obtained as:

DQ (r) =
−n

(
rlog r−(1+r)log(1+r)

(1+r)

)
log 2n =

(1+ r) log (1+ r)− rlog r
log 2 · (1+ r)
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