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Automated diagnosis of optical 
coherence tomography imaging 
on plaque vulnerability and its 
relation to clinical outcomes 
in coronary artery disease
Hirohiko Niioka1, Teruyoshi Kume2, Takashi Kubo3, Tsunenari Soeda4, Makoto Watanabe4, 
Ryotaro Yamada2, Yasushi Sakata5, Yoshihiro Miyamoto6, Bowen Wang1, Hajime Nagahara7, 
Jun Miyake7, Takashi Akasaka3, Yoshihiko Saito4 & Shiro Uemura 2*

This study sought to develop a deep learning-based diagnostic algorithm for plaque vulnerability by 
analyzing intravascular optical coherence tomography (OCT) images and to investigate the relation 
between AI-plaque vulnerability and clinical outcomes in patients with coronary artery disease (CAD). 
A total of 1791 study patients who underwent OCT examinations were recruited from a multicenter 
clinical database, and the OCT images were first labeled as either normal, a stable plaque, or a 
vulnerable plaque by expert cardiologists. A DenseNet-121-based deep learning algorithm for plaque 
characterization was developed by training with 44,947 prelabeled OCT images, and demonstrated 
excellent differentiation among normal, stable plaques, and vulnerable plaques. Patients who were 
diagnosed with vulnerable plaques by the algorithm had a significantly higher rate of both events 
from the OCT-observed segments and clinical events than the patients with normal and stable 
plaque (log-rank p < 0.001). On the multivariate logistic regression analyses, the OCT diagnosis of a 
vulnerable plaque by the algorithm was independently associated with both types of events (p = 0.047 
and p < 0.001, respectively). The AI analysis of intracoronary OCT imaging can assist cardiologists in 
diagnosing  plaque vulnerability and identifying CAD patients with a high probability of occurrence of 
future clinical events.

Despite the advances in medical science and healthcare practice, patients presenting with acute coronary syn-
drome (ACS) or with a history of myocardial infarction (MI) still have a significantly high rate of recurrent car-
diovascular events. In particular, more than 20% of ACS patients who were successfully treated by percutaneous 
coronary intervention (PCI) will have secondary cardiovascular events within 3 years due to the worsening of 
previously treated culprit lesions or the progression of untreated nonculprit coronary  plaques1. More recently, 
the PROSPECT II study showed that 13.2% of recent (within the past 4 weeks) MI patients who were treated by 
successful PCI had adverse events within 4  years2.

A vulnerable plaque is defined as a precursor coronary atherosclerotic plaque that may cause future coronary 
events by plaque rupture and subsequent intraluminal  thrombosis3. A vulnerable plaque is generally characterized 
as a plaque with typical pathohistological features such as a large amount of lipid accumulation, inflammatory 
cell infiltration, intraplaque angiogenesis, and the presence of a thin fibrous cap that covers a lipid core. Coronary 
angiography is, however, not able to characterize the plaque component and the vulnerability of the plaque. The 
use of intravascular imaging is one recent approach to this problem. Optical coherence tomography (OCT) is a 
novel intravascular imaging modality with a high spatial resolution that is comparable with the histopathology, 
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and vulnerable plaques, which are diagnosed by OCT, have been shown to be associated with the subsequent 
progression of coronary artery stenosis, as well as future major adverse cardiac  events4,5. For the secondary 
prevention of coronary artery disease (CAD), patients may have the opportunity to have their coronary lesions 
evaluated directly by intravascular imaging. However, the detailed analysis of OCT images in daily practice is 
difficult to perform because of the large numbers of OCT images that need to be evaluated. In addition, OCT 
image interpretation requires a highly skilled cardiologist due to the complex morphological configurations of 
the lesions and the coexisting imaging artifacts. To realistically address these problems, a possible solution is the 
application of artificial intelligence (AI) for the image analysis.

The purposes of the study were (1) to develop a deep learning-based diagnostic algorithm for coronary plaque 
vulnerability by analyzing intravascular OCT images; (2) to test the diagnostic accuracy of the algorithm for 
plaque vulnerability; and (3) to investigate the relation between AI diagnosis of plaque vulnerability and clinical 
outcomes by using OCT-observed segments from patients with CAD.

Methods
Study population. The study patients were recruited from the OCT clinical database that was obtained 
from three university hospitals in Japan: Kawasaki Medical School, Nara Medical University, and Wakayama 
Medical University. From these databases, patients who underwent intracoronary OCT imaging during coro-
nary angiography or PCI from 2010 to 2019 were screened (n = 6625) and were enrolled in this study when 
they fulfilled the following criteria: (1) patients who underwent OCT imaging of nonculprit lesions if they were 
diagnosed to have clinically overt CAD and (2) patients who had OCT imaging of angiographically normal or 
minor stenosis (< 25%) segments if they had no significant coronary stenosis. Patients who did not have OCT 
imaging of nonculprit lesions (n = 3735) were excluded from this study. Patients with poor OCT image quality 
or with severe calcification (n = 1099) were also excluded from this study.

From the database, 1791 patients whose OCT examinations matched the inclusion criteria were eventually 
identified, and they were randomly assigned to dataset 1 for the development of the AI algorithm (n = 1689, 
training: validation = 8:2) and to dataset 2 for the testing of the developed program (n = 102). In dataset 1, 1450 
patients who had complete long-term clinical outcome data for at least one month after the index OCT examina-
tion were enrolled in the follow-up study (dataset 3). The study flow chart is shown in Fig. 1.

This study complied with the Declaration of Helsinki and was approved by the institutional ethical review 
board of Kawasaki Medical School (IRB number: 3438-1). Written, informed consent was waived by the insti-
tutional review board (ethical review board of Kawasaki Medical School) because of the retrospective design of 
the study; however, informed consent was obtained in the form of an opt-out on the website. Those patients who 

Figure 1.  Study flow chart. OCT optical coherence tomography, AI artificial intelligence.
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rejected consent to the study were excluded. This study was called the TACUMI study (The Automated diagnosis 
of Coronary vUlnerable plaque using Medical artificial Intelligence).

Selection of the coronary segment for analysis and OCT image analysis. A nonculprit lesion in a 
CAD patient was defined as a plaque with a diameter stenosis of 25–75% on angiographic visual estimation and 
that was at least 10 mm away from the stented lesions, and lesions from either the culprit vessel or nonculprit 
vessels were included. Normal segments from non-CAD patients were selected from the proximal coronary 
segments with angiographically normal or minor stenosis (< 25%). The OCT images of the patient’s coronary 
arteries were recorded using an FD-OCT system (Dragonfly OPTIS and ILUMIEN OPTIS; Abbott Vascular, St. 
Paul, MN, USA) with a motorized catheter pullback system (36 mm/s). The plaque characterization of each OCT 
image was classified as normal, a stable plaque, or a vulnerable plaque using the previously established OCT 
criteria (Fig. 2)6. The OCT definition of a normal arterial wall was characterized by a thin (less than 300 μm) 
intima containing no lipid or calcification. The OCT definition of a stable plaque was characterized as the pres-
ence of intimal thickening in fibrous, fibrocalcific plaques (calcification arc ≤ 90°) or in a thick-cap (fibrous cap 
thickness > 100 μm) fibroatheroma. The OCT definition of a vulnerable plaque was characterized by a plaque 
with fibrous cap thickness < 100 μm overlying a lipid-rich plaque (lipid arc > 90°)6. The OCT images were labeled 
as being normal, a stable plaque, or a vulnerable plaque by 3 independent OCT expert cardiologists (Kume T, 
Soeda T, and Kubo T) who were blinded to the patient’s information. A consensus reading was obtained when 
there was concordance among the 3 independent readers. The interobserver reliability of the OCT diagnosis 
among the 3 OCT expert cardiologists was high (kappa coefficient = 0.81, 0.86, 0.97, respectively). This study 
allowed one lesion per patient. Therefore, if the patient had not only a normal segment but also had stable or 
vulnerable plaques, the stable or vulnerable plaque was assigned as the representative plaque of the patient. If the 

Figure 2.  Clinical OCT images and their corresponding raw images. OCT of a normal (a), a stable plaque (b), 
and a vulnerable plaque (c) diagnosed by OCT expert cardiologists. The clinical OCT images in (a–c) were 
generated from corresponding raw data (d–f) by a polar coordinate transformation.
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patient had more than two independent plaques with both stable and vulnerable characteristics, the vulnerable 
plaque was assigned as the representative plaque of the patient. If the patient had more than two independent 
vulnerable plaques, the lesion with the most characteristics of a vulnerable plaque was assigned as the repre-
sentative plaque of the patient. The mean number of OCT frames per patient was 26 ± 16 (5.3 ± 3.3 mm).

Development of the deep learning models. For the deep learning-based classification of the plaque 
characteristics, three different CNN (convolutional neural network)-based deep learning models, Inception-v3, 
DenseNet-121, and EfficientNet-B4, were pretrained with the ImageNet  dataset7, and they were then trained 
on the prelabeled OCT images by fine-tuning. All of the models had one fully connected (FC) layer that was 
connected with the global average pooling, and the sizes of the FC layers were 2084, 1024, and 1280 for the 
Inception-v3, DenseNet-121, and EfficientNet-B4 models, respectively. The input data put into the deep learning 
model were resized raw OCT image data (299 × 299 × 1), and the output was the probabilities of the three types 
of plaques: normal, stable, and vulnerable. The details of the development protocols and the external validation 
are shown in the Supplemental Data.

Testing the diagnostic capability of the AI algorithm. The diagnostic capability of the developed AI 
algorithm for plaque characterization was compared to the assessments made by general cardiologists in 102 
patients in dataset 2. A total of 1,173 OCT frame images (normal: 425, stable plaque: 374, vulnerable plaque: 
374) were randomly rearranged. The AI algorithm and four general cardiologists classified the test images as 
normal, a stable plaque, or a vulnerable plaque. The diagnostic accuracy was calculated as the number of true 
positives and true negatives using the OCT expert cardiologists’ diagnosis as the reference, and the value was 
divided by the total number of OCT images that were analyzed.

The AI diagnosis and its relation to clinical outcomes. The relation between the deep learning-based 
plaque characterization and the long-term clinical outcomes was retrospectively evaluated in 1450 patients 
(dataset 3) and was compared with those based on the diagnoses made by OCT expert cardiologists. As far as the 
long-term clinical outcomes, two independent parameters were configured. The first one was the presence of a 
coronary event from the OCT-observed segments, including the need for clinically driven revascularization and 
the angiographic progression of CAD with a diameter stenosis > 75%. Angiographic progression of CAD was 
defined as lesions with less than 75% stenosis at baseline that progressed to a stenosis of 75% or more at the fol-
low-up. Another outcome parameter was a composite of the clinical events including cardiac death, noncardiac 
death, and any clinically driven coronary revascularization, including ACS and a recurrence of the ischemia.

Statistical analysis. The degree of agreement with the OCT labeling as normal, a stable plaque, or a vul-
nerable plaque among the 3 independent OCT expert cardiologists (interobserver variabilities) was quantified 
by the kappa test of  concordance8. All of the variables were entered into a univariate analysis. Chi-squared 
tests were used for evaluating the categorical variables, and Student’s t tests were used to evaluate the continu-
ous variables. If significant differences were recorded among the groups on the univariate analysis, a post hoc 
analysis using Tukey’s honestly significant difference test was used to determine the differences between the 
groups. The event-free data over the follow-up period were evaluated with a Kaplan–Meier analysis. Variables 
with a p value < 0.05 on the univariate analysis were included in the multivariate logistic regression analysis to 
identify the independent factors that were associated with the events from the OCT-observed segment and the 
composite of the clinical events. The areas under the receiver operating characteristic curves (AUCs) were used 
to evaluate the diagnostic ability of the model for the plaque characteristics. The AUC was calculated for one of 
the three classes (normal, stable, vulnerable) and for the other two classes. The AUC was also used to compare 
the predictive ability of events from the OCT-observed segment and the composite of the clinical events between 
an AI-diagnosed vulnerable plaque and an expert-diagnosed vulnerable plaque.

The mean ± SD is reported for normally distributed data. A p value < 0.05 was considered significant. Statistical 
analysis was performed using JMP (version 14 for Windows; SAS Institute, Cary, NC, USA).

Results
AI algorithm for diagnosing the OCT plaque characteristics. The classification accuracies of the 
three deep learning models (Inception-v3, DenseNet-121, and EfficientNet-B4) for dataset 2 were 91.2%, 92.4%, 
and 91.9%, respectively. The results for the AUC, Brier score, F1 score, log loss, and calibration plots for each 
model are shown in Supplemental Table 1 and Supplemental Fig. 4. DenseNet-121, which performed the best on 
these measures, was used in the following analyses. When the majority decision method (Supplemental Fig. 2) 
was applied to the prediction labels of dataset 2, the accuracy increased to 94.0%.

Gradient-weighted class activation mapping (Grad-CAM) was used to visualize the regions of interest for 
the AI algorithm in predicting a  diagnosis9. Figure 3a–f shows the representative Grad-CAM results for each 
class of plaque. In the figure, the attention level is indicated with a heatmap, and the level increases from blue 
to red in rainbow colors. The areas in red roughly correspond to the areas that doctors focus on while making a 
diagnosis. Furthermore, the image distribution of dataset 2 was visualized using t-distributed stochastic neighbor 
embedding (t-SNE) (Fig. 3g).

Testing of the diagnostic capability of the AI algorithm. A total of 1173 independent OCT frame 
images from dataset 2 were used to test the diagnostic capability of the developed AI algorithm, and the OCT 
images were compared with the diagnoses from the general cardiologists. The clinical profiles of dataset 2 were 
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consistent with those of dataset 1 (age: 70.9 ± 10.9 vs. 68.0 ± 11.7 years old, male: 77.5% vs. 73.9%, respectively). 
Using the diagnosis made by the OCT expert cardiologists as the reference, the diagnostic accuracy of the algo-
rithm was 94.0%, compared to an average of 83.8% among the 4 general cardiologists (Fig. 4 a,b). The individual 
diagnostic accuracies of the general cardiologists for plaque differentiation were 68.1%, 85.7%, 89.7%, and 91.9%, 
respectively. The details for the individual diagnostic accuracies of the general cardiologists are provided in Sup-
plemental Fig. 5. The AUCs representing the ability of the AI algorithm to distinguish normal vessels, stable 
plaques, and vulnerable plaques were 0.992, 0.952, and 0.998, respectively (Fig. 4c–e). The time taken for plaque 
classification of the 1,173 OCT frame images ranged from 282 to 365 min among the general cardiologists.

Classification of the patients with the AI algorithm. A total of 1450 patients with complete outcome 
data (dataset 3) were classified into three groups based on the OCT plaque diagnosis by the AI algorithm: nor-
mal (n = 435), stable plaque (n = 465), and vulnerable plaque (n = 550). In this study population, the diagnostic 
accuracy of the developed algorithm was 90.6% using the diagnosis made by the OCT expert cardiologists as 
the reference. The baseline clinical characteristics of the study population based on the plaque diagnosis by the 
developed algorithm are summarized in Table 1. Age, sex, hypertension, diabetes mellitus, dyslipidemia, current 
smoker, prior myocardial infarction, prior PCI, and the index clinical presentation were significantly different 
among the three groups. The age of patients with vulnerable plaques was significantly higher than that of patients 
with a normal OCT registered lesion. The estimated glomerular filtration rate (eGFR), LDL-Cho, HDL-Cho, and 
the medications at baseline were significantly different among the three groups. Patients with vulnerable plaques 
had higher levels of LDL-Cho and lower levels of HDL-Cho than the patients with a normal OCT registered seg-
ment. These clinical characteristics were similar to those diagnosed by OCT expert cardiologists (Supplemental 
Table 2). The analyzed lesions were identified in the left anterior descending artery (49.3%), in the left circumflex 
artery (18.2%), in the right coronary artery (31.0%), and in the left main trunk (1.5%).

The relation between AI diagnosis of plaque vulnerability and clinical outcomes. The median 
duration between the index OCT examination and the determination of the clinical outcome was 530  days 
(interquartile range 310–1105 days).

The numbers of OCT-observed segment events and the composite of the clinical events were 31 and 187, 
respectively. The 31 events from the OCT-observed segments consisted of clinically driven coronary revasculari-
zation (n = 18: 3 ACS and 15 recurrent angina pectoris) and angiographic progression (diameter stenosis > 75%) 
of the predetermined segment (n = 13). The Kaplan–Meier analysis showed that the patients with AI-diagnosed 
vulnerable plaques had significantly higher cumulative rates of events from the OCT-observed segments than 

Figure 3.  Grad-CAM analysis and t-SNE visualization of the last hidden layer for the three types of OCT 
imaging. Normal (a), stable (b), and vulnerable (c) OCT images. (d–f) Images of (a–c) overlaid with the 
attention map output by Grad-CAM. Expert cardiologists usually differentiate vulnerable plaque from stable 
plaque based on the thickness of the fibrous cap overlying the lipid component in OCT image. It is interesting 
to note that for stable and vulnerable plaques, the attention is on a part of the fibrous cap overlying the lipid 
component, whereas for normal plaques, the attention is given to the whole vessel wall in the attention map 
output by Grad-CAM. The high-dimensional features obtained by DenseNet-121 are dimensionally compressed 
by t-SNE and are represented as two-dimensional data (g). A total of 1,173 images of the test dataset that was 
obtained from 102 patients are displayed. Normal (N), stable plaque (S), and vulnerable plaque (V) images are 
represented as green, yellow, and red dots, respectively. The normal, stable plaque, and vulnerable plaque clusters 
are clearly observed. Some stable plaque data are included in the normal cluster, which is consistent with the 
results of the confusion matrix (Fig. 4a).
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the patients with AI-diagnosed normal and stable plaques (Fig. 5a). Sixteen lesion-related events occurred in 
the patients with AI-diagnosed vulnerable plaques, whereas two events occurred in patients with AI-diagnosed 
stable plaques and normal plaques during the follow-up period. On the multivariate logistic regression analyses, 
only the AI diagnosis of an OCT vulnerable plaque was independently associated with the events from the OCT-
observed segments (p < 0.001) (Table 2).

Furthermore, the patients with AI-diagnosed vulnerable plaques had significantly higher cumulative rates 
for the composite clinical outcomes than the patients with AI-diagnosed normal and stable plaques (Fig. 5b), 
and AI-vulnerable plaques and eGFR were independently associated with the composite of the clinical events 
(p = 0.047 and p < 0.001, respectively) (Table 2).

The Kaplan–Meier analyses that were obtained by the OCT diagnosis of the AI algorithm were comparable to 
those diagnosed by the OCT expert cardiologists (Supplemental Fig. 6). The AUC value of the AI vulnerability for 
events from the OCT-observed segments was 0.719, indicating a moderate accuracy, and this accuracy (0.742) 
was comparable to the AUC of the OCT expert-vulnerable plaques. In addition, the AUCs of the AI vulnerability 
and the expert vulnerability for the composite clinical events were 0.590 and 0.592, respectively.

Discussion
The salient results of the present study are as follows: (1) the deep learning-based AI algorithm that was developed 
in this study demonstrated excellent differentiation among normal, stable plaques, and vulnerable plaques, and 
its diagnostic capability was better than that of general cardiologists; and (2) CAD patients with AI-classified 
vulnerable plaques had significantly higher rates of coronary lesion-related and clinical events than patients with 
AI-classified normal coronary arteries and stable plaques.

Patients with CAD have a high risk for recurrent cardiovascular events, not only in lesions that were pre-
viously treated with PCI, but also from untreated, nonculprit lesion  sites1,2. For lesions that were previously 
treated with PCI, improvements in the drug-eluting stents and antiplatelet therapy have significantly decreased 
the risk for PCI-related secondary  events10. On the other hand, the rate of cardiovascular events from untreated 
nonculprit lesions remains very high, despite intensive strategies for risk modification. Accordingly, the effective 
identification of patients who are at a high risk of developing events from nonculprit lesions is crucial regard-
ing the long-term care of CAD patients. OCT is a high-resolution intravascular imaging technique that uses 

Figure 4.  Diagnostic accuracy of the developed AI algorithm. Diagnostic accuracies of plaque vulnerability 
between the developed AI algorithm (a) and the general cardiologists (b) compared to the reference of the OCT-
expert diagnosis. Receiver operating characteristic (ROC) curves for the AI algorithm for the differentiation of 
normal vessels (c), stable plaques (d), and vulnerable plaques (e). The dot plots represent the diagnostic accuracy 
of each general cardiologist.
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Table 1.  Clinical characteristics of the patients in dataset 3 according to the classification by the AI 
algorithm. The values are presented as the means ± SD. *p < 0.05 vulnerable vs. normal. † p < 0.05 stable vs. 
normal. ‡ p < 0.05 vulnerable vs. stable. PCI percutaneous coronary intervention, eGFR estimated glomerular 
filtration rate, HbA1c hemoglobin A1c, LDL-Cho low-density lipoprotein cholesterol, HDL-Cho high-density 
lipoprotein-cholesterol, BNP brain natriuretic peptide, ACEI angiotensin-converting enzyme inhibitor, ARB 
angiotensin II receptor blocker.

Overall (n = 1450) Vulnerable (n = 550) Stable (n = 465) Normal (n = 435) p value

Age (years) 68.0 ± 11.3 69.0 ± 10.8* 67.8 ± 10.8 66.9 ± 12.3 0.022

Male 1081 412 365 304 0.012

Body mass index (kg/m2) 23.9 ± 3.7 23.7 ± 3.7 24.1 ± 3.6 24.0 ± 3.9 0.260

Hypertension 1071 422 361 288  < 0.001

Diabetes mellitus 544 223 184 137 0.006

Dyslipidemia 1029 377 351 301 0.042

Current smoker 349 160 95 94 0.014

Prior myocardial infarction 428 127 168 133  < 0.001

Prior PCI 671 173 286 212  < 0.001

Index clinical presentation  < 0.001

Acute coronary syndrome 495 353 87 55

Chronic coronary artery disease 644 152 281 211

Others 311 45 97 169

Laboratory data

Serum creatinine (mg/dL) 1.17 ± 1.55 1.28 ± 1.73 1.15 ± 1.40 1.08 ± 1.45 0.121

eGFR (mL/min/1.73  m2) 66.0 ± 23.5 65.1 ± 25.6 64.4 ± 21.4† 68.6 ± 22.4 0.025

HbA1c (%) 6.35 ± 1.11 6.45 ± 1.28* 6.34 ± 0.96 6.26 ± 1.07 0.060

LDL-Cho (mg/dL) 96.5 ± 31.1 104.3 ± 34.2*‡ 88.4 ± 28.8† 96.4 ± 30.0  < 0.001

HDL-Cho (mg/dL) 48.1 ± 13.0 46.9 ± 12.1* 47.9 ± 12.6 49.5 ± 14.4 0.029

Triglycerides (mg/dL) 140 ± 87 138 ± 91 146 ± 90 135 ± 78 0.233

Uric acid (mg/dL) 5.66 ± 1.40 5.65 ± 1.41 5.76 ± 1.38 5.56 ± 1.39 0.136

C-reactive protein (mg/dL) 0.51 ± 1.58 0.54 ± 1.34 0.52 ± 1.72 0.46 ± 1.71 0.749

BNP (pg/mL) 146 ± 348 162 ± 280 114 ± 188 164 ± 506 0.131

Medications at baseline

Antiplatelet therapy 1183 430 388 365  < 0.001

Statins 820 245 314 261  < 0.001

Beta-blockers 487 146 198 143  < 0.001

ACEI/ARB 742 265 266 211  < 0.007

Figure 5.  Clinical outcomes in patients with CAD diagnosed by the AI algorithm. Kaplan–Meier curves 
of the event-free survival from the OCT-observed segments (a) and the composite of the clinical events (b) 
according to classification by the AI algorithm. Patients with OCT-diagnosed vulnerable plaques showed higher 
cumulative rates for both endpoints than the patients with OCT-diagnosed normal and stable plaques.
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near-infrared spectroscopy, and it can differentiate plaque instability in vivo4,5. However, the routine analysis 
of coronary lesions with OCT has practical limitations because of the large numbers of OCT images that need 
to be evaluated, and OCT image interpretation requires substantial experience. To address this practical issue, 
we sought to develop an AI algorithm, as an accurate and automatic diagnostic tool, for the vulnerability of 
nonculprit coronary plaques and evaluate the relation between AI diagnosis of plaque vulnerability and clinical 
outcomes in patients with CAD.

Various medical image analyses using deep learning have been studied as diagnostic aids for clinicians, and 
these imaging modalities include CT images, retinal fundic images, pathological images, mammography images, 
and skin  images11,12. Recently, Liu and colleagues reported the application of an AI program to OCT for coronary 
plaque  characterization13. Based on their relatively small dataset, they could detect vulnerable plaques with a 
good diagnostic accuracy (detection quality score 88.46%) using cross-sectional images (generated by a polar 
coordinate transformation) of the vessels. More recently, Min and colleagues reported the application of an AI 
program to OCT for identifying thin-cap fibroatheroma using 602 coronary lesions from 602 angina patients 
and a developed AI program could accurately detect a thin-cap fibroatheroma (AUC = 0.96)14. The present study 
used raw OCT data instead of cross-sectional transformation images. Although this process is not intuitive for 
humans, it is thought that information loss occurs due to the polar transformation. After a polar coordinate 
transformation, the information in an image is sparser in the outer part of the image than in the center. Therefore, 
the information loss is more significant in the outer part of the image. This can be complemented by bilinear or 
bicubic processing, but these techniques are not sufficient. When DenseNet-121 was trained using the polar-
transformed dataset, the accuracy for the test data (dataset 2) was 89.5%, which was 2.9 percentage points lower 
in accuracy than when using the raw data. In addition, by using a graph convolutional neural network (GCN), 
it is possible to use the raw data of OCT images as the polar coordinate data without any information loss. This 
is a promising method for the future. However, the OCT polar coordinate image used in the present study had 
488,064 nodes (984 × 496) in the raw data and 89,401 nodes (299 × 299) in the resized images for input into the 
CNN model, which is a very large data size for GCN computation and requires a high computational cost for 
training. Another notable feature of this study was that OCT images were prelabeled based on the consensus of 
three OCT experts. According to such a novel approach to training, the AI algorithm demonstrated a very high 
diagnostic capability (92.4%), and this diagnostic rate was better than that of that from general cardiologists. The 
time between inputting a single OCT image into DenseNet-121 and obtaining the result was 35 ms; of course, 
with a more powerful GPU, it could be even faster. Such technology could support clinicians in decision-making 
and can reduce the burden of patient care. In addition, since this is a very short amount of time, there are poten-
tial applications for determining the plaque vulnerability by using a deep learning analysis of angiographic images 
in real time during coronary angiography and PCI.

In this study, the relation between AI diagnosis of plaque vulnerability and clinical outcomes of CAD patients 
was also tested. To the best of our knowledge, no previous study has used a well-defined cohort of OCT image 
samples with a well-established large clinical database to assess the clinical implications of medical AI with 

Table 2.  Events from the OCT-observed segments and the composite of clinical events. CI confidence interval, 
PCI percutaneous coronary intervention, eGFR estimated glomerular filtration rate, LDL-Cho low-density 
lipoprotein cholesterol, HDL-Cho high-density lipoprotein-cholesterol, ACEI angiotensin-converting enzyme 
inhibitor, ARB angiotensin II receptor blocker.

Events from the OCT-observed 
segments (n = 31) Composite of the clinical events (n = 187)

Odds ratio 95% CI p value Odds ratio 95% CI p value 95% CI p value

Age 0.983 0.940–1.028 0.450 1.013 0.992–1.034 0.225

Male 3.057 0.651–14.347 0.157 1.353 0.802–2.282 0.257

Hypertension 0.915 0.332–2.523 0.864 0.923 0.558–1.524 0.751

Diabetes mellitus 1.350 0.563–3.238 0.502 1.221 0.810–1.842 0.340

Dyslipidemia 1.475 0.416–5.226 0.547 1.006 0.582–1.740 0.982

Current smoker 0.729 0.235–2.268 0.586 0.798 0.464–1.373 0.416

Prior myocardial infarction 1.053 0.308–3.600 0.934 0.750 0.436–1.292 0.301

Prior PCI 1.163 0.314–4.312 0.821 1.337 0.756–2.361 0.318

Index clinical presentation: acute coro-
nary syndrome 0.637 0.203–1.996 0.439 1.228 0.750–2.012 0.414

eGFR 0.983 0.966–1.001 0.062 0.991 0.982–1.000 0.047

LDL-Cho 1.008 0.994–1.023 0.253 1.003 0.996–1.010 0.442

HDL-Cho 0.984 0.944–1.026 0.444 0.989 0.972–1.006 0.198

Antiplatelet therapy 0.727 0.198–0.673 0.631 0.896 0.477–1.683 0.733

Statins 0.706 0.217–2.299 0.563 0.892 0.512–1.554 0.688

Beta-blockers 2.087 0.718–6.063 0.177 1.023 0.638–1.650 0.916

ACEI/ARB 0.551 0.201–1.509 0.245 0.874 0.552–1.384 0.567

Plaque characteristics: vulnerable plaque 13.526 3.730–49.051  < 0.001 2.295 1.478–3.562  < 0.001
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respect to its relation to future cardiac events. Several studies have attempted to use intravascular imaging for 
prognostic stratification. The PROSPECT I and II, AtheroRemo-IVUS, and LRP studies have shown the ability 
of grayscale IVUS, radiofrequency IVUS, and near-infrared spectroscopy IVUS to predict events in patients 
presenting with ACS and in stable patients undergoing an index  PCI1,2,15,16. These IVUS studies have dem-
onstrated the importance of identifying high-risk lesions in patients with ischemic heart disease. We recently 
showed that vulnerable plaques that were diagnosed with OCT were associated with the subsequent progres-
sion of coronary stenosis, as well as future major adverse cardiac  events4,5. In the present study, CAD patients 
with AI-diagnosed OCT vulnerable plaques had significantly worse lesion-specific outcomes. Furthermore, the 
presence of AI-diagnosed vulnerable plaques was also associated with a higher incidence of composite clinical 
outcomes, including noncardiac death, in CAD patients. The reason for this finding is unclear, but the comorbidi-
ties of CAD patients, such as chronic inflammatory diseases and malignant tumors, are known to correlate with 
enhanced plaque vulnerabilities in coronary  arteries17. However, the prognostic value of AI vulnerability for the 
lesion-specific events was higher (AUC = 0.719) than that for the composite of the clinical events (AUC = 0.590). 
These data suggested that AI diagnosis of plaque vulnerability might be more useful for evaluating the prognostic 
value form the OCT-observed segments rather than the composite of the clinical events including cardiac death, 
noncardiac death and any clinically driven coronary revascularization.

In the present study, patients with vulnerable plaques diagnosed by AI algorithm had a large number of coro-
nary risk factors suggesting that this new technology could differentiate high-risk patients who should receive 
intensive medical management without the need for expertise and experience with OCT. Furthermore, we will be 
able to adapt this new technology to noninvasive imaging modalities, including coronary computed tomography 
and magnetic resonance imaging, for predicting cardiovascular events in primary care settings in the future. In 
addition, the automatic diagnosis of the plaque vulnerability by an AI program will provide useful information 
not only for the prognostic stratification but also for planning the PCI treatment strategies for patients in the 
cardiac catheterization laboratory. The plaque characteristics of the stent edge landing zone may affect the stent 
length selection. Interventional cardiologists prefer to position the edges of the stents into reference segments that 
are normal or that are at least less diseased segments. A stent landing edge should be avoided in segments with a 
vulnerable plaque even if they have an angiographically normal appearance because of the possible development 
of stent edge dissection and stent edge restenosis. Therefore, a quick diagnosis of the plaque vulnerability by 
an AI program is very useful in the cardiac catheterization laboratory when interventional cardiologists select 
the stent edge landing zone. From this perspective, integration of an AI program in an OCT imaging apparatus 
might automatically and efficiently promote the practice of PCI and provide risk stratification of individual CAD 
patients. Furthermore, the automatic determination and localization of vulnerable plaques with an AI program 
might help us change the PCI strategy, as well as the medical treatment, in individual CAD patients.

Limitations. Several limitations of the present study should be addressed. First, this was a retrospective 
cohort analysis, which may have selection bias. In addition, information about the clinical characteristics, 
including the lipid profiles, at the follow-up was lacking. However, a large number of CAD patients with com-
plete baseline clinical characteristics were recruited. Second, OCT images with severe calcification (calcification 
arc > 90°) were excluded from this study because the impact of severe calcification detected by OCT in de novo 
lesions on clinical outcomes remains controversial. Third, lesions with OCT images that showed a fresh throm-
bus and/or plaque rupture indicating culprit lesions were excluded from this study. However, all of the registered 
lesions were not functionally tested using a pressure guidewire. Therefore, coronary angiograms have limitations 
in determining whether a lesion is culprit or nonculprit. Fourth, to test the diagnostic capability of the AI pro-
gram, four general cardiologists who had different years of experience were recruited. Shibutani et al. recently 
evaluated the effect of the observers’ years of experience on the interpretation of OCT images with reference to 
the histopathological  findings18. They reported that the interpretation ability of OCT varied significantly among 
observers, and it is possible that there was a significant selection bias of the observers in the present study. Fifth, 
the prognosis value of the AI vulnerability for the clinical outcomes in CAD patients was not actually higher 
than that of the OCT expert vulnerability (AUC of AI vulnerability: 0.590, AUC of expert vulnerability: 0.592). 
However, the automatic analysis of numerous OCT images by AI-assisted computer systems without the input 
by expert cardiologists may be able to substantially distinguish patients who are at a high risk without additional 
workload to the medical staff and hospital resources. In this study, the predictive capability of the algorithm on 
the clinical outcomes was not validated in an external independent patient cohort, so a future prospective study 
is needed to confirm the present findings. Last, the clinical event rates, especially the incidence of acute coronary 
syndrome, were low in the present study.

Conclusions
An AI program for analyzing intracoronary OCT imaging can assist cardiologists in diagnosing coronary plaque 
vulnerability and identifying CAD patients with a high probability for the development of future cardiovascular 
events. The clinical application of an AI system could reduce the medical workload and promote the individual-
ized care of CAD patients based on its prognostic value of clinical outcomes.

Data availability
All data generated or analyzed during this study are available from the corresponding author on reasonable 
request.
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