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R E S E A R C H  L E T T E R

Investigating potential mechanisms underlying FVIII inhibition 
in acquired hemophilia A associated with mRNA COVID- 19 
vaccines

Acquired hemophilia A (AHA) is a rare bleeding disorder caused 
by functional insufficiency of coagulation factor VIII (FVIII). 
Autoantibodies targeting FVIII may neutralize its procoagulant ef-
fect, thereby causing severe bleeding. Such inhibitory autoantibodies 
have been detected in autoimmune diseases, pregnancy, infections, 
or malignant diseases. Older age and certain drugs are known co- risk 
factors.1 To our knowledge, only two reported cases document AHA 
diagnosed 8 and 20 days after influenza vaccination.2,3

Vaccines have been rarely associated with autoimmune disease 
occurrence or disease flares. Recently, vaccine- induced immune 
thrombocytopenia and thrombosis (VITT) has been characterized as 
a new entity.4 Immunological studies established a pathogenetic role 
of platelet- activating autoantibodies targeting platelet factor 4 (PF4) 
in VITT. VITT- associated anti- PF4- IgG were not cross- reactive with 
the SARS- CoV2 spike antigen, suggesting that the vaccine- specific 
antibody response is not directly causing VITT.5 A recent study 
linked the occurrence of VITT to the interaction of the adenoviral 
vector with the coxsackie and adenovirus receptor and PF4, thus 
instigating memory B cell differentiation and the release of anti- PF4 
auto- antibodies.6

Our group recently reported three cases of AHA occurring in 
temporal association with mRNA COVID- 19 vaccine immunizations.7 
Statistically, we found no strong evidence that the AHA incidence 
during the COVID vaccination campaign in Switzerland was substan-
tially higher than the background AHA incidence. In our previous 
report, we did not address the possibility of FVIII cross- reactivity 
of the vaccine- induced anti- spike IgG (anti- S- IgG). Excluding cross- 
reactivity of anti- foreign IgG with a self- antigen is critical to refute 
‘molecular mimicry’ in the immunopathogenesis of an autoimmune 
disease.

Here, we studied the binding, function, and cross- reactivity of 
the vaccine- induced anti- S- IgG in our previously reported three 
cases of AHA diagnosed in temporal association with COVID vacci-
nation.7 The main goal was to address whether the vaccine- induced 

antibody response against the SARS- CoV2 spike protein may exhibit 
FVIII inhibitory functions.

The sequence alignment of the FVIII (UniProtKB accession num-
ber P00451) and the SARS- CoV2 spike protein (UniProtKB accession 
number P0DTC2) revealed minimal sequence similarity. We identi-
fied one region (amino acid position 540– 570 within the A2 domain 
of FVIII) with 13/35(37%) amino acid sequence similarity using the 
NCBI blast sequence alignment tool. In silico antigenic peptide pre-
diction (http://imed.med.ucm.es/Tools/ antig enic.pl) revealed 95 
and 63 antigenic determinants in the FVIII and spike protein, respec-
tively. Of those, a single overlapping potential epitope was present 
in both proteins, locating to the region with the sequence similarity 
(Figure 1A; SDPRCLTRYYS- S in the FVIII sequence [FVIII 543– 554]; 
underlined amino acids indicate homology to the SARS- CoV2 spike 
protein). Since only a few amino acids are shared between the FVIII 
and spike protein in this region, the likelihood of a cross- reactive B 
cell epitope is, however, low.

Next, we addressed this experimentally. The presence of 
vaccine- specific antibodies is a pre- requisite for a potential cross- 
reactivity to FVIII. Serological analyses proved considerable anti- 
Spike IgG (anti- S- IgG) levels in the serum of all three vaccinated 
patients (Figure 1B). Anti- S- IgG is the only antigen- specificity 
induced by the mRNA COVID vaccines. To explore the FVIII in-
hibitory potential of the anti- S- IgG fraction, we performed a bead- 
based antibody pull- down to deplete and enrich for anti- S- IgG 
(Supplementary Data). The anti- S- IgG enrichment and - depletion 
was confirmed in a Luminex assay using spike protein- coated 
beads (Figure 1C) and in western blot loaded with recombinant 
spike protein (Figure 1D). Despite efficient depletion and enrich-
ment, the ‘anti- S- IgG enriched’ fraction contained residual non- 
anti- S- IgG based on total IgG measurements (mean total- IgG in 
the anti- S- enriched fraction 0.49g/l. Moreover, we found traces 
of other serum proteins as assessed by gel electrophoresis (Figure 
S1). To determine which of the serum fractions contained the 
FVIII inhibitory factor, we first performed a mixing FVIII assay 
(Supplementary Methods). The non- manipulated serum and anti- 
S- IgG- depleted fractions showed similar FVIII inhibition of 75%. In 
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contrast, only 35% FVIII inhibition was observed using the anti- S- 
IgG- enriched fraction, indicating that anti- S- IgG was not the main 
mediator of FVIII inhibition in this assay (Figure 1E). The applica-
tion of an enzyme- linked immunosorbent assay for total anti- FVIII 
IgG yielded detectable levels in serum and anti- S- IgG depleted 
fractions. However, the anti- S- IgG enriched fractions either 
showed no detectable (log10 titer <0.7, n = 1) or about 1.5 log10 

(30- fold, n = 2) lower titers (Figure 1F) compared to the other 
fractions. Furthermore, the binding of the anti- S- IgG enriched 
fraction to different therapeutic FVIII preparations, as assessed 
by Luminex- based analysis, was negative or very low in all cases 
(Figures S2 and S3). The FVIII inhibitory potential of the binding 
antibodies was addressed using the Nijmegen- Bethesda assay 
(NBA). Using serum rather than plasma in this study, neutralizing 

F I G U R E  1  Factor VIII inhibition by anti- SARS- CoV2- spike- IgG and the non- anti- spike- IgG fraction. (A) Localization of the potential 
epitope with sequence similarity between the Factor VIII and the SARS- CoV2 spike protein. Protein amino acid sequence and gene 
arrangement were retrieved from UniProtKB, accession number P00451. Amino acid annotations were adapted according to Ref. [14]. 
(B) Serum anti- Spike- IgG/M (Roche Elecsys® Anti- SARS- CoV- 2 assay; BAU = binding antibody units). (C) Anti- spike- IgG antibodies in the 
serum of the three patients, the anti- spike- IgG- depleted serum, and the anti- Spike- IgG enriched plasma in Luminex. ctrl = serum from three 
healthy subjects from pre- pandemic timepoints. (D) Western blot confirms the anti- spike- IgG's depletion and enrichment in the respective 
samples. FVIII mixed serum assay (E), anti- FVIII binding titers (F), and anti- FVIII inhibitor titers (G) from the same samples
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anti- FVIII- activity could not be detected within the original or 
derived samples of one of the patients. However, using citrated 
plasma, an inhibitor level of 1.01 BU/ml was previously described 
in the same patient.7 For the other two patients, neutralizing 
anti- FVIII- activity was detected in the original and the anti- S- IgG 
depleted serum samples, while no inhibition was observed in the 
anti- S- IgG- enriched fraction (Figure 1G). In patient AHA01, the 
inhibitory titer was even higher than in the original publication, 
which was likely due to a combination of another time- point of 
sample acquisition, different sample material (serum vs. plasma), 
and the use of different FVIII test systems for assay read- out.7 
In order to ensure assay specificity for anti- FVIII activity, we ap-
plied control measures with respect to the use of serum instead 
of plasma samples (Supplementary Data). Anti- phospholipid an-
tibodies may interfere with functional anti- FVIII assays.8 We 
therefore screened all samples for anti- phospholipid antibodies 
(IgG and IgM) that were found to be negative or only at thresh-
old levels (Table S1). Furthermore, to further increase specificity, 
a chromogenic FVIII assay was applied to determine (remaining) 
FVIII- activities.9

In summary, we found that (i) the likelihood of cross- reactive epi-
topes between the spike protein and FVIII is low based on in silico 
protein structures; (ii) the anti- S- IgG enriched fraction showed weak 
FVIII cross- reactivity in binding assays; (iii) weak cross- binding of the 
anti- S- IgG enriched fraction did not translate into FVIII inhibition. 
The FVIII binding in the enriched anti- S- IgG fraction may have been 
due to residuals of anti- FVIII- IgG with low cross- reactivity against 
the spike protein. The amount of total IgG measured in this fraction 
indeed indicated a substantial non- anti- S- specific IgG.

We conclude that AHA associated with mRNA COVID vacci-
nation was likely not due to vaccine- induced cross- reactive, FVIII- 
inhibiting anti- S- IgG. Alternatively, the broad toll- like- receptor 
stimulation by mRNA vaccines10 may cause polyclonal B cell acti-
vation and thereby trigger autoantibody production in pre- existing 
self- reactive B cell clones in persons predisposed to AHA. Indeed, 
several studies indicated that thymic deletion of T cell clones spe-
cific for endogenous (“self”) FVIII is incomplete and that these cells 
may expand in persons with AHA following a corresponding immune 
response.11 While we are not aware of comparable data on B cell 
clones, the detection of natural anti- FVIII antibodies in healthy sub-
jects strongly argues for the presence of anti- FVIII specific B cells.12 
Interestingly, the FVIII sequence (epitope) described above (FVIII 
543– 554), which shows some similarities to SARS- CoV2 Spike, has 
been identified to overlap with a particularly immunogenic FVIII se-
quence (FVIII 545– 559; patent application WO2009071886), and 
corresponding peptides are therefore part of a proposed strategy 
to induce immune tolerance in susceptible HA patients.13 Thus, 
due to these sequence similarities, it might be speculated whether 
the presentation of corresponding SARS- CoV2 Spike peptides by 
MHC class II led to activation of FVIII- specific pre- existing T cell 
clones. A detailed analyses of the T cell responses in the patients 
was, however, limited by sample availability and beyond the scope 
of this work as extensive T cell assays using peptide arrays would 

have been needed to experimentally assess this. As another limita-
tion, we studied only three subjects and moreover cannot exclude 
that ethnical backgrounds or MHC haplotypes may have affected 
the findings, given that we only studied patients in Switzerland. 
On a larger scope, the here presented data, combined with our ep-
idemiological analysis,7 demonstrates that immunological pheno-
types occurring related to vaccination may occur unrelated to the 
vaccine- antigen. Detailed epidemiological and immunological stud-
ies, rather than single clinical case reports, are needed to advance 
the understanding of adverse events following vaccination.
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