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Abstract

Motivation: Many variants identified by genome-wide association studies (GWAS) have been

found to affect multiple traits, either directly or through shared pathways. There is currently a

wealth of GWAS data collected in numerous phenotypes, and analyzing multiple traits at once can

increase power to detect shared variant effects. However, traditional meta-analysis methods are

not suitable for combining studies on different traits. When applied to dissimilar studies, these

meta-analysis methods can be underpowered compared to univariate analysis. The degree to

which traits share variant effects is often not known, and the vast majority of GWAS meta-analysis

only consider one trait at a time.

Results: Here, we present a flexible method for finding associated variants from GWAS summary

statistics for multiple traits. Our method estimates the degree of shared effects between traits from

the data. Using simulations, we show that our method properly controls the false positive rate and

increases power when an effect is present in a subset of traits. We then apply our method to the

North Finland Birth Cohort and UK Biobank datasets using a variety of metabolic traits and discover

novel loci.

Availability and implementation: Our source code is available at https://github.com/lgai/CONFIT.

Contact: eeskin@cs.ucla.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Over the past few decades, genome wide association studies

(GWAS) have found numerous genetic variants associated with

phenotypic variation (Dorn and Cresci, 2009; Eskin, 2015;

McCarthy et al., 2008). These phenotypes include a wide range of

diseases and medically relevant traits such as heart disease (Dorn

and Cresci, 2009; Lee et al., 2013; Nikpay et al., 2015), cholesterol

level (Postmus et al., 2016) and depression (Cai et al., 2015; Hyde

et al., 2016), among others. In some cases, variants have been found

to affect multiple traits, a phenomenon known as pleiotropy

(Andreassen et al., 2015). For example, multiple psychiatric disor-

ders, immune diseases and nervous system phenotypes have been

found to share causal variants (Chen et al., 2016; Chesler et al.,

2005; Cross-Disorder Group of the Psychiatric Genomics

Consortium, 2013; Solovieff et al., 2013; Zeggini and Ioannidis,

2009). Variants associated with disease have also been found to be

associated with tissue-specific gene expression phenotypes (Liu

et al., 2016). Considering multiple traits at once may increase power

to detect variant effects when there is pleiotropy.

One approach to combine information from different studies is

to apply meta-analysis. Meta-analysis methods are often used in

GWAS to combine results from different studies on the same trait to

increase power (Berndt et al., 2016; Nikpay et al., 2015; Postmus

et al., 2016). Intuitively, one can effectively increase the sample size

by pooling summary statistics from multiple small studies, which

also have the benefit of being more readily obtainable compared to

individual level data. The two classic versions of meta-analysis are

fixed effects (FE) meta-analysis and random effects (RE) meta-

analysis (Fleiss, 1993). In the FE model, a variant is assumed to have

the same effect in each study, which is only realistic if all studies in

the meta-analysis measure the same phenotype in the same popula-

tion. If instead the true effect size differs between studies, we say

there is heterogeneity. The RE model allows for heterogeneity by

assuming study-specific effect sizes are drawn independently from a

normal distribution. The binary effects (BE) model also allows for

heterogeneity (Han and Eskin, 2012). In BE meta-analysis, a variant

may either have an effect of fixed size or no effect in each study

(Han and Eskin, 2012). A variant’s configuration of effects across
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traits may then be expressed as binary vector with entries indicating

whether or not the effect is zero for each trait.

However, it is problematic to directly apply meta-analysis to

combine studies that analyze different traits for a number of reasons.

First, some traits share many causal variants while others share very

few. Existing meta-analysis methods do not allow for varying

degrees of shared variants between traits, and combining unrelated

traits in a meta-analysis may actually decrease power compared to

independent analysis of such traits. Second, a variant that affects

one trait may have no effect in a different trait. While RE meta-

analysis and related methods allow for differences in effect size be-

tween studies, such methods inherently assume an effect is present in

all studies in the meta-analysis. Finally, studies may share individu-

als across traits. For example, data on several traits may be collected

from the same cohort of individuals. Meta-analysis techniques as-

sume that the studies are independent, but this only holds if the stud-

ies are performed on non-overlapping individuals.

In this paper, we present CONFIT, a novel meta-analysis method

for multiple traits that addresses these shortcomings. CONFIT esti-

mates the degree of shared effects between traits from the data using

GWAS summary statistics, then uses these estimates to analyze

multiple traits while allowing effects to be present in only a subset of

the traits. CONFIT is inspired by the existence of pleiotropy

and its potential to increase power to detect variants that affect mul-

tiple traits. Unlike traditional meta-analysis methods, CONFIT is

designed to combine GWAS on different traits and does not assume

a particular relationship between the different traits. Our test

statistic is a likelihood ratio averaged over many models, where

each model assumes the variant to have non-zero effect in a particu-

lar subset of traits and is weighted by a prior estimated from

the data.

We tested CONFIT and show it has increased power compared

to multiple independent (MI) GWAS in simulated data when var-

iants have effect in multiple traits. We also show CONFIT accounts

for correlated effect size estimates from overlapping individuals be-

tween studies. We then demonstrate that CONFIT finds unique loci

when combining studies on multiple traits using the North Finland

Birth Cohort (NFBC) dataset and the UK Biobank (UKKB) dataset.

CONFIT has many potential applications due to the vast variety of

GWAS datasets available.

2 Materials and methods

2.1 Finding associated variants in one trait using a

genome-wide association study (GWAS)
We now describe how to test a variant v for association in a trait t

using a GWAS. Let gvt be the vector of genotype values in nt individ-

uals collected in the study for trait t. Denote entry j in gvt as gvt;j,

which corresponds to the genotype of the jth individual in study t,

i.e. the number of copies of variant v they possess. Thus

gvt;j 2 f0; 1; 2g. Let xvt be the vector of standardized genotype values

in study t. In other words, xvt is obtained by mean-centering and

scaling gvt to have a sample variance of 1.

Let yt be the vector of phenotype values in nt individuals for trait

t. Assume yt has been centered to have mean 0. Given xvt; yt, GWAS

assumes the linear model

yt ¼ bvtxvt þ et (1)

where bvt is the effect of v on trait t and et � Nð0;r2
e IÞ is gaussian

noise (Eskin, 2015). The magnitude of bvt indicates how predictive v is.

One then finds the estimated effect bbvt by linear regression. The solu-

tion given by ordinary least squares is

bbvt ¼ ðx>vtxvtÞ�1x>vtyk (2)

where

bbvt � Nðbvt; ðx>vtxvtÞ�1r2
e Þ (3)

Since r2
e is unknown, we estimate it as br2

e ¼ 1
nt�1 jjyt � bbvtxvtjj22. Let

dvt ¼ ðx>vtxvtÞ�1br2
e . The summary statistic for v in study t is then the

pair ðbbvt;dvtÞ. One may also estimate bbvt and dvt using a LMM,

which corrects for population structure within the study cohort

(Furlotte and Eskin, 2015; Kang et al., 2010).

Because the variance may differ from study to study, we normal-

ize each effect by its standard error to obtain a z-score, where for

each variant v, we have

zvt ¼ bbvt=
ffiffiffiffiffiffi
dvt

p
� Nðkvt; 1Þ (4)

where kvt is the true normalized effect size. One may then use zvt as

a test statistic to test whether v is associated with t. Let a be the

desired significance level. If jzvtj exceeds some threshold value za, or

equivalently, pðzvtÞ ¼ Prðjzj � jzvtj jH0Þ � a, then we conclude v is

significantly associated with t.

Because a typical GWAS may test millions of variants, a should

be set to account for multiple testing at the variant level. Say 0.05 is

the desired significance level for the whole family of tests. A simple

way to correct for multiple testing is to apply the Bonferroni correc-

tion, which yields a ¼ 0:05=jVj. However, due to the presence of

linkage disequilibrium (LD) in the human genome, the Bonferroni

correction on the total number of variants is overly conservative. In

the GWAS community, aGWAS ¼ 5� 10–8 is commonly accepted as a

significance level that takes into account the number of SNPs and

presence of LD in the human genome (Consortium, 2005;

McCarthy et al., 2008; Pe’er et al., 2008).

2.2 Finding associated variants in at least one of

multiple traits using MI GWAS
Suppose we have a variant v and a set of traits T ¼ ft1; . . . ; tkg, and

we are given GWAS effect sizes and variance (bbvt;d
2
vt) of v for each

trait t in T. To perform MI GWAS on a set of traits, one simply per-

forms a GWAS as described above for each variant v on each trait to

obtain a vector of z-scores across traits z ¼ ðzvt1
; zvt2

; . . . ; zvtk
Þ>. The

MI GWAS test statistic is then maxtjzvtj, or equivalently the smallest

GWAS P-value across traits, mint pðzvtÞ. In MI GWAS, one must

correct for two levels of multiple testing–multiple variants and mul-

tiple traits. If we assume each trait to be an independent test, then

we may apply Bonferroni correction for k traits to aGWAS, yielding

multiple testing corrected significance level aMI ¼ aGWAS/k. Then v

is significant if mint p(zvt) � aMI.

2.3 Finding associated variants using CONFIT
CONFIT attempts to find variants v 2 V that affect at least one of k

traits t1; . . . ; tk, given summary statistics from a GWAS on each

trait. CONFIT assumes each variant v either has zero effect on the

trait, or if it has non-zero effect, that its normalized effect size, i.e.

its NCP, follows a Fisher polygenic model. We describe whether the

variant has non-zero effect in each of the k traits using a binary vec-

tor c ¼ ½c1 . . . ck�>, where ct¼1 if the variant is active in trait t in

that configuration and 0 otherwise.
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For convenience, we use a fixed k for all traits and variants when

explaining the test statistic in this section. This fixed k assumption is

very strong. Later, we describe how this assumption can be relaxed

to allow different NCPs for each variant v. We also assume the z-

scores are independent across studies given the activity configur-

ation, but will also relax this assumption in a later section. Let zv

¼ ½zvt1
; . . . ; zvtk

�> Then

zv � Nðkc; IÞ (5)

Our test statistic at v is a likelihood ratio with multiple alternate

models, where model is a different activity configuration. The statis-

tic has the likelihoods of each alternate configuration against c0,

weighted by a prior on each configuration PrðcÞ. Let C denote the

set of all possible configurations and c0 denote the null configur-

ation c0 ¼ ½0 . . . 0�>, and CA denote the set of alternate configura-

tions, CA ¼ Cnfc0g. Then

Fv ¼
X
c2CA

pðzjc; kÞPrðcÞ
pðzjc0ÞPrðc0Þ

(6)

2.4 Setting a prior on each activity configuration
Many choices of prior on the configurations are possible. We set an

initial prior Pr0ðcÞ as the fraction of variants which have univariate

GWAS P-value less than threshold 10�4 in the subset of traits that

are active in c. We chose 10�4 as a threshold because we wished to

capture shared effects between variants which are not necessarily

strong enough to reach GWAS significance. If c contains only one

active trait, we set the final prior PrðcÞ by averaging Pr0ðc0Þ over all

configurations c0 with a single active trait. Otherwise we set

PrðcÞ ¼ Pr0ðcÞ. The reason for this is that the CONFIT model

assumes a similar distribution of GWAS z-scores for each trait, but

in real life, some traits may tend to have larger effects and others to

have smaller effects. We mitigate this by averaging the prior for each

trait alone being active. Then traits with large effect sizes will still

have high power even with a smaller prior on their configuration,

and traits with small effect sizes will now have a power boost with a

larger prior. This is the default choice of prior for CONFIT.

2.5 Significance testing with Fv

We now describe how to find a P-value and perform significance

testing for variant v using Fv.

We find a null distribution for Fv by generating GWAS summary

statistics at a variant v under the null hypothesis, by drawing vector

of z-scores for each trait z � Nð0; IÞ. To generate GWAS summary

statistics under the null in the real dataset, one may permute the

labels on the set of phenotypes for each trait, such that the correl-

ation between traits is preserved but variant-phenotype correlation

is not before performing GWAS, or one could perform GWAS on

the real genotypes and simulated phenotypes generated under the

null.

The null distribution of Fv also depends on the estimated priors

fPrðcÞ : c 2 Cg. Say we have estimated priors fPrðcÞ : c 2 Cg from

the data. We generate GWAS summary statistics for 5� 109 var-

iants under the null hypothesis and compute Fv on the null data

using the fPrðcÞ : c 2 Cg from the original data. Then we have

obtained a null distribution for Fv. The P-value of Fv; pðFvÞ is the

fraction of null variants with test statistic less than Fv. Let pa be the

desired P-value threshold. If pðFvÞ � pa, we then conclude variant v

is associated with at least one of the k traits.

In a simulated dataset containing m independent variants, one

may set pa as the Bonferroni corrected threshold pa ¼ 0:05=m.

However, the Bonferroni correction is overly stringent when LD is

present between variants, as is the case in real datasets. For the

NFBC and UKBB datasets, we perform significance testing with Fv

at the P-value threshold pa ¼ 5� 10�8. This threshold is widely

used by the GWAS community to account for multiple testing across

the human genome (McCarthy et al., 2008; Pe’er et al., 2008).

2.6 Setting a prior on the NCP
We now return to our assumption that NCP kvt ¼ k is fixed for all

variants. We instead relax this assumption by allowing each variant

to have an NCP drawn from a zero-mean normal distribution with

variance r2, as in the Fisher polygenic model. Consider a vector of z-

scores at the same variant across traits, rather than across variants.

Recall our earlier simple formulation, with fixed kv for all variants.

ðzjkv; cÞ � Nðkvc; IÞ

This assumption about kv is strong and not necessarily realistic.

We instead model the NCP for a given variant as a vector, and allow

it to differ between traits. Let kv ¼ ½kvt1
; . . . ; kvtk

� be the vector of

NCPs across traits for variant v. Supposing a true causal status c, we

then put a prior on kv:

kvjc � Nð0; r2Ik�kÞ (7)

where Ik�k is the k-dimensional identity matrix. This prior assumes

a Fisher polygenic model on the active traits, where the parameter

r2 is a fixed value set by the user. In our experiments, we set

r2 ¼ 25. However, the performance is not that sensitive to choice

of r2, as shown in power simulation results for CONFIT with

r2 ¼ f4; 10; 36g in Supplementary Table S2.

2.7 Correcting for overlapping individuals across

studies
We may also relax the assumption that the estimated effects are inde-

pendent across traits given the NCPs. This is useful in scenarios where

there are overlapping individuals across studies, such as studies where

multiple traits are collected from the same individuals. When the

cohorts fully overlap between studies (i.e. the k traits are collected

from the same individuals), we assume a linear model in each trait

yt1
¼ bvt1

xvt1
þ et1

; . . . ytk
¼ bvtk

xvtk
þ etk

(8)

where for each individual j, we have yj ¼ ðyt1 ;j
; yt1 ;j
Þ> following the

model

yj ¼ bvxv;j þ ej (9)

where ej � Nð0; r2
e ReÞ. Re is a k by k covariance matrix representing

how the environmental effect on an individual is correlated across

traits. Note that under this single-variant linear model,

Re ¼ Covðet1 ;j; . . . ; etk ;jÞ ¼ Covðyt1 ;j
; . . . ; ytk ;j

Þ (10)

Let Y be the matrix of phenotype values such that entry yij is the

value of ith trait in the jth individual. The correlation between traits

can be modeled as a mix of correlation explained by genetics and

correlation explained by shared environment. Re should represent

correlation explained by the environment. Assume the proportion of

covariance explained by genetics is 50%, i.e. each trait in the ana-

lysis is 50% heritable. Then Re may be estimated as

bRe ¼
1

2

YY>

n� 1
þ Ik�k

� �
(11)

where n is the number of individuals.
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If individual level phenotype data is not available, as is often the

case with publicly released summary statistics, Re may instead be

approximated using the correlation between z-scores across traits,

assuming that the contribution of any particular variant is small and

the heritability is known. Let Z be the matrix of phenotype values

such that entry zij is the value of ith trait in the jth SNP. Then if m is

the number of SNPs,

bRe ¼
1

2

ZZT

m� 1
þ Im�m

 !
(12)

Under this model with correlated environmental effects for each

individual, the distribution of zv under the null becomes Nð0;ReÞ in-

stead of N(0, I), and given a particular alternate configuration c,

then zjc � Nðkc;ReÞ instead of Nðkc; IÞ. We then compute test stat-

istic Fv as in Equation (13) using this distribution for z to account

for correlation due to sharing of individuals between studies.

To generate null CONFIT test statistics to set a significance

threshold when studies are correlated, we now draw z � Nð0;RZÞ,
where RZ ¼ ZZT

m�1 is the empirical correlation matrix for the GWAS

z-scores. Again assuming that the contribution of any particular vari-

ant is small, RZ will capture correlation of z-scores between traits due

to the environment and due to variants besides the one being tested.

3 Results

3.1 Method overview
CONFIT tests whether variant v affects at least one of k traits

t1; . . . ; tk, given summary statistics from a GWAS on each trait.

Assume that for each trait, variant v either has an effect on the trait

or not, and in each trait where there is an effect, v’s non-centrality

parameter (NCP) kvt (i.e. its standardized effect size) follows a

Fisher polygenic model and is drawn from kvt � Nð0; r2Þ. If the vari-

ant has non-zero effect on a phenotype, then it is considered ‘active’

in that phenotype. We can then describe a potential activity config-

uration of a variant in the k traits as a binary vector c ¼ ½c1 . . . ck�>,

where ct¼1 if it is active in trait t and 0 otherwise. Let C denote the

set of all possible configurations, c0 denote the null configuration

c0 ¼ ½0 . . . 0�>, and CA denote the set of alternate configurations.

The CONFIT test statistic is a sum of the relative likelihoods for

each alternate configuration c against c0, weighted by a prior on

each configuration PrðcÞ:

Fv ¼
X
c2CA

pðzjcÞPrðcÞ
pðzjc0ÞPrðc0Þ

(13)

where z ¼ ½z1; . . . ; zk�> is a vector of standardized GWAS effect sizes

for each trait t, zt � Nðkvt; 1Þ. The null hypothesis is that v is not ac-

tive in any trait (corresponding to the null configuration c0), and the

alternate hypothesis is that v is active in at least one trait. We esti-

mate the prior on configuration c; PrðcÞ, using GWAS summary sta-

tistics for each variant and trait. More details of the method are

given in Section 2. We then run CONFIT on simulated datasets to

evaluate its performance, and apply it to two real datasets on meta-

bolic traits to find novel variants.

3.2 CONFIT increases power when a variant has effect

in multiple traits
To measure the power of CONFIT, we generated simulated GWAS

summary statistics for k traits as follows. For each variant, we draw

a true effect configuration from a multi-nomial distribution with

known probability PrsðcÞ for each configuration c 2 C, where C is

all possible effect configurations. We set PrsðcÞ ¼ 0:005 for each al-

ternate configuration. Then the probability of a variant being active

in a given trait is dependent on whether it is active in other traits.

Given the true configuration, for each variant we draw GWAS

z-scores with mean zero in traits where there is no effect, and mean

ks � Nð0; 25Þ where there is an effect. For each of the following

experiments, we generated a panel of 5� 105 variants. We then run

CONFIT by setting the priors on each configuration from the

5� 105 variants, then computing the CONFIT test statistic F for each

variant. We run this experiment in two and three simulated traits.

The CONFIT test statistic threshold is set using 5� 109 null sim-

ulations for each experiment, and we find no false positives in the

simulations. To demonstrate that the threshold is properly cali-

brated, we compute the genomic control (GC) factor (Devlin and

Roeder, 1999) for CONFIT and for GWAS in each trait in the

CONFIT analysis (Tables 1 and 2). The GC factor measures how far

the median test statistic or P-value deviates from the expected me-

dian under the null hypothesis, where larger values indicate more in-

flation. We find that the GC factor for CONFIT is similar or below

the GC factors of the input GWAS. We also show quantile-quantile

plots for CONFIT P-values on the NFBC and UKKB datasets in the

Supplementary Figure S1.

From our power simulations, we find that CONFIT loses power

compared to MI GWAS when the variant is only active in one trait,

but strongly outperforms MI GWAS when the variant is active in

more than one trait (Tables 3 and 4). To understand when CONFIT

has more power over MI GWAS, we plotted the H0 rejection region

for each method on simulated GWAS z-scores in two traits

(Fig. 1A). MI GWAS is slightly more powerful if the GWAS statistic

is large in only one trait, but CONFIT is able to detect variants with

moderate effects in both traits.

In real datasets, it is possible that some traits will tend have

larger or smaller effects than others. To see how CONFIT performs

in this case, we also ran simulations where non-zero effects for one

trait are drawn from ks1 Nð0;4Þ and ks1 Nð0;100Þ, and non-zero

effects in the remaining traits are drawn ks � Nð0;25Þ. We found

that CONFIT still increases power when an effect is present in more

than one trait (Table 5).

Table 1. GC factors for the NFBC dataset

Method GC

GLU 1.000761

HDL 0.998390

INS 1.002076

LDL 0.998764

TG 0.997929

CONFIT 0.841884

Notes: We report GC factors for univariate GWAS in each trait and for

CONFIT on the glucose (GLU), HDL, insulin (INS), LDL and TG traits.

Table 2. GC factors for the UKBB dataset

Method GC

High cholesterol 1.125458

Cholesterol medication 1.101478

Insulin medication 1.030950

Elevated blood glucose 1.031507

CONFIT 1.106578

Notes: We report GC factors for univariate GWAS in each trait and for

CONFIT applied to GWAS summary statistics in four traits.
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3.3 CONFIT increases power in polygenic variants when

applied to studies with overlapping cohorts
To model the scenario where each trait is measured in the same co-

hort, i.e. dependent studies, we simulate summary statistics with

correlation RZ between the z-scores across traits, using RZ computed

from the Northern Finland Birth Cohort (NFBC) low-density lipo-

protein (LDL) and high-density lipoprotein (HDL) traits for simula-

tions in two traits, and from LDL, HDL and triglycerides (TG) for

simulations in three traits. We find that the RZ estimated from the

covariance between individual level phenotypes matches closely

with RZ estimated from summary statistics (results not shown). We

then run CONFIT with the correction for overlapping individuals

described in Section 2.7.

Again, we see that CONFIT achieves slightly less power than MI

GWAS when the effect is present in one trait, and increased power

when the effect is present in more than one trait (Tables 3 and 4).

The rejection region for CONFIT is now shifted relative to the rejec-

tion region for CONFIT without the overlapping individuals as-

sumption, as shown in Figure 1B.

3.4 CONFIT finds unique loci for metabolic traits in the

NFBC
Next, we applied CONFIT to a real dataset, on metabolic traits from

the NFBC dataset (Kang et al., 2010; Sabatti et al., 2009). This data-

set contains 331 476 variants and 5326 individuals, with data col-

lected in ten traits from each individual. These traits include a variety

of metabolic traits. We selected the five traits with at least one SNP

with a GWAS P-values less than 10�4 in two or more traits and ran

CONFIT on their summary statistics. These traits were measurements

for glucose (GLU), HDL, insulin level (INS), LDL and TG. Note that

for MI GWAS with five traits, the significance threshold is 1� 10�8

for the minimum GWAS P-value out of the five traits.

We used pyLMM (https://github.com/nickFurlotte/pylmm) to

obtain GWAS summary statistics on the full NFBC cohort for each

trait under a linear mixed model (LMM) as in (Kang et al., 2010).

Our GWAS results are consistent with those reported by a previous

GWAS in the NFBC data also using LMMs (Kang et al., 2010). We

report the univariate GWAS P-value in each trait as well as the

CONFIT P-value in Table 6. For MI GWAS in five traits, the signifi-

cance threshold is 1� 10�8.

Table 4. Power simulation in three traits with 0.5% true probability of drawing each alternate configuration

Uncorrelated studies Correlated studies

ks � Nð0; 25Þ 1 active trait 2 traits 3 traits 1 active trait 2 traits 3 traits

GWAS in t1 0.283 – – 0.286 – –

MI GWAS 0.274 0.469 0.607 0.267 0.457 0.602

CONFIT 0.272 0.504 0.681 0.285 0.518 0.697

The power of univariate GWAS in t1 is in italics. Bolded values indicate multi-trait method with highest power for each simulation.

Notes: We draw the true NCP ks from a normal distribution for each variant, ks � Nð0; 25Þ, either with or without correlation of effect size between traits.

For GWAS in t1, we only count simulated SNPs which truly have an effect in t1.

Table 3. Power simulation in two traits

Uncorrelated studies Correlated studies

ks � Nð0; 25Þ 1 active trait 2 traits 1 trait 2 traits

GWAS in t1 0.290 – 0.291 –

MI GWAS 0.278 0.474 0.283 0.481

CONFIT 0.272 0.513 0.276 0.540

The power of univariate GWAS in t1 is in italics. Bolded values indicate

multi-trait method with highest power for each simulation.

Notes: Here, the probability of each alternate configuration is set as 0.5%.

We draw the true NCP for each variant in each trait from a normal

distribution, ks � Nð0; 25Þ, either with or without correlation of effect size

between traits. For GWAS in t1, we only count simulated SNPs which truly

have an effect in t1. We find significant variants using a P-value significance

threshold of 5� 10�8. For MI GWAS, we apply the Bonferroni correction to

this threshold to account for multiple testing of traits.

Table 5. Power simulation in three traits with differing effect size

distributions between traits

1 active trait 2 traits 3 traits

ks1 � Nð0; 4Þ
GWAS in t1 0.013 – –

MI GWAS 0.182 0.3404 0.474

CONFIT 0.198 0.384 0.552

ks1 � Nð0; 100Þ
GWAS in t1 0.581 – –

MI GWAS 0.366 0.605 0.768

CONFIT 0.347 0.627 0.832

The power of univariate GWAS in t1 is in italics. Bolded values indicate

multi-trait method with highest power for each simulation.

Notes: In the first trait t1, we draw true effect size ks1 � Nð0; 4Þ or ks �
N(0,100), and in the other two traits, we draw ks � Nð0; 25Þ. The true prob-

ability for each alternate configuration is 0.5%. For GWAS in t1, we only

count simulated SNPs which truly have an effect in t1.

Fig. 1. Rejection regions for MI GWAS and CONFIT. We ran MI GWAS and

CONFIT on simulated GWAS summary statistics in two traits with simulation set-

tings k2 � Nð0; 25Þ for (A) uncorrelated and (B) correlated studies. In each plot,

the variants are color coded black if significant by both MI GWAS and CONFIT

(i.e. MI GWAS P-value � 2:5� 10�8 and CONFIT P-value � 5� 10�8), red if

found significant by CONFIT but not MI GWAS, blue if found significant by MI

GWAS and not CONFIT, and grey if not found significant by either method
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CONFIT finds two unique loci in the NFBC data compared to

MI GWAS. One of these loci (Chr 16, peak SNP rs255049) is signifi-

cant for HDL under a univariate GWAS threshold, and the other

loci (Chr 8, peak SNP rs10096633) has been associated with TG in

a larger study from 2010 (Kamatani et al., 2010). CONFIT missed

one loci found by MI GWAS only which is GWAS significant for

TG only, also shown.

3.5 CONFIT outperforms a multi-variate linear

regression model when applied to multiple traits
Next, we compared the performance of CONFIT against another

multi-trait analysis method. Previously, Furlotte et al. applied multi-

vate regression with a LMM (implemented in their software

mvLMM) to the NFBC dataset using four traits: C-reactive protein

(CRP), HDL, LDL and TG (Furlotte and Eskin, 2015). When run-

ning mvLMM to CRP, HDL, LDL and TG simultaneously, Furlotte

et al. found only one significant locus, which contains SNPs

rs1811472, rs2794520, rs2592887 and rs12093699.

We applied CONFIT to the NFBC dataset in these same four

traits, again using GWAS summary statistics generated by pyLMM.

Results are shown in Table 7. CONFIT in fact finds this locus, as

well as nine other loci which were all reported in the univariate

LMM analysis performed by (Kang et al., 2010). CONFIT discovers

the same loci in these four traits as in the analysis on GLU, HDL,

INS, LDL and TG, with the exception of a GLU-specific locus. It

also finds a locus (Chr 19, rs11668477) that it missed in the five

trait analysis. Although CONFIT can discover SNPs with effects

present in only a subset of traits in the analysis, the specific traits

chosen will affect its performance.

3.6 CONFIT finds unique loci in the UKKB dataset
We also applied CONFIT to UKKB summary statistics publicly

released by Neale lab. We selected four traits related to the metabolic

traits we used in the NFBC data. These are: self-reported high choles-

terol (phenotype code 20002_1473), use of cholesterol lowering

medication (phenotype code 6177_1), use of insulin medication

(phenotype code 6177_3) and diagnosis of elevated blood glucose

level (phenotype code R73, ICD10 R73). CONFIT finds 6 unique loci

(Table 8), MI GWAS finds 44 unique loci (shown in Supplementary

Material) and 304 loci are found by both methods (not shown). The

loci found by CONFIT are all close to GWAS significance in both the

self-reported high cholesterol and use of cholesterol medication

Table 6. P-values of peak CONFIT SNPs in analysis of five metabolic traits in NFBC data

Univariate GWAS

Chr Position rsID GLU HDL INS LDL TG CONFIT

CONFIT only

8 19875201 rs10096633 4.5E–01 3.0E–06 4.1E–01 9.3E–01 1.9E–08 8.0E–10

16 66570972 rs255049 8.4E–01 1.7E–08 7.3E–01 1.7E–01 1.9E–01 2.0E–08

MI GWAS only

19 11056030 rs11668477 8.3E–01 1.8E–02 1.4E–02 3.5E–09 1.7E–02 6.4E–08

Found by both CONFIT and MI GWAS

1 109620053 rs646776 8.8E–01 1.2E–01 1.0E–01 3.0E–15 7.6E–01 <2.0E–10

2 21047434 rs6728178 1.6E–01 6.7E–07 8.9E–01 4.8E–08 1.8E–07 <2.0E–10

2 27584444 rs1260326 2.4E–01 2.6E–01 3.2E–01 2.1E–01 1.9E–10 2.0E–10

2 169471394 rs560887 6.9E–13 8.8E–01 9.9E–01 3.8E–01 6.2E–01 <2.0E–10

7 44177862 rs2971671 4.4E–09 9.0E–01 2.4E–01 5.9E–01 5.4E–01 8.6E–09

11 92308474 rs3847554 2.4E–10 3.5E–01 1.3E–02 6.2E–01 5.9E–01 8.0E–10

15 56470658 rs1532085 2.3E–01 7.2E–12 5.1E–01 5.6E–01 8.8E–02 <2.0E–10

16 55550825 rs3764261 4.4E–01 1.0E–32 7.5E–01 2.8E–01 1.2E–01 <2.0E–10

Notes: Table contains loci found significant by CONFIT or MI GWAS. The traits used in the analysis are glucose (GLU), HDL, insulin (INS), LDL and

triglyceride (TG) levels.

Table 7. P-values of peak CONFIT SNPs in analysis of four metabolic traits in NFBC dataset

Univariate GWAS

Chr Position rsID CRP HDL LDL TG CONFIT

CONFIT only

8 19875201 rs10096633 3.9E–01 3.0E–06 9.3E–01 1.9E–08 4.0E–09

16 66570972 rs255049 7.8E–01 1.7E–08 1.7E–01 1.9E–01 4.2E–08

Found by both CONFIT and MI GWAS

1 109620053 rs646776 1.4E–01 1.2E–01 3.0E–15 7.6E–01 <2.0E–10

1 157908973 rs1811472 1.2E–15 4.8E–02 6.1E–01 8.7E–01 <2.0E–10

2 21047434 rs6728178 5.3E–02 6.7E–07 4.8E–08 1.8E–07 <2.0E–10

2 27584444 rs1260326 5.1E–02 2.6E–01 2.1E–01 1.9E–10 2.4E–09

12 119873345 rs2650000 2.2E–12 2.8E–01 6.8E–01 6.0E–01 <2.0E–10

15 56470658 rs1532085 7.1E–01 7.2E–12 5.6E–01 8.8E–02 <2.0E–10

16 55550825 rs3764261 3.2E–01 1.0E–32 2.8E–01 1.2E–01 <2.0E–10

19 11056030 rs11668477 8.7E–01 1.8E–02 3.5E–09 1.7E–02 3.4E–08

Notes: Table contains peak CONFIT SNPs for loci found significant by CONFIT or MI GWAS. Italics indicates the only locus found significant by (Furlotte

and Eskin, 2015) in their joint analysis of all four traits.
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phenotypes, whereas the loci it fails to discover are mostly borderline

GWAS significant in a single trait (Supplementary Table S1).

4 Discussion

Here, we present CONFIT, a method for detecting associated var-

iants from independent GWAS in multiple traits using summary sta-

tistics. We demonstrate our method in simulated data on two and

three traits, and on real data up to four traits, though this frame-

work may be applied to larger numbers of traits. CONFIT controls

the false positive rate and increases power relative to MI GWAS

when the variant is active in multiple traits in the analysis. When the

variant is only active in one trait, CONFIT is less powerful than MI

GWAS, which is the standard method for analyzing independent

traits, so CONFIT does not discover exactly the same SNPs as

GWAS. We discover unique loci when applying CONFIT to sum-

mary statistics from the NFBC and UKKB datasets.

A related problem exists in the field of eQTL studies, which often

collect gene expression data from individuals in multiple tissues. In

this case, the phenotypes are a given gene’s expression levels in each

tissue, and the problem is to find variants associated with the gene’s

expression in at least one tissue. Several approaches have successfully

increased power in these multi-tissue eQTL datasets. Examples in-

clude MetaTissue (Sul et al., 2013), RECOV (Duong et al., 2017) and

eQTL-bma (Flutre et al., 2013). MetaTissue uses RE meta-analysis to

combine data from different tissues. RECOV explicitly models correl-

ation between studies using a covariance matrix. eQTL-bma uses con-

figurations to allow heterogeneity and performs Bayesian model

averaging using each potential configuration as a model. We note the

similarity of our test statistic to that of eQTL-bma, which was devel-

oped by Flutre et al. specifically for multi-tissue eQTL context (Flutre

et al., 2013). A variant is an eQTL if it is associated with the expres-

sion of any gene in any tissue, which is quite likely when there are

large number of tissues. For this reason, methods developed for multi-

tissue eQTL studies differ from those for traditional GWAS in that

eQTL studies typically do not assume a sparse model. In contrast, the

majority of variants are believed to have no effect on the majority of

disease traits. Hence it is not obvious whether multi-phenotype ana-

lysis methods for eQTL studies are also applicable to GWAS. Our

results suggest they may be applicable.

The CONFIT framework is general and there are many options

for setting the priors on each configuration. Here, we used a rela-

tively simple method to estimate the priors by counting the number

of SNPs with GWAS summary statistics that match each configur-

ation. One alternative is to formulate this as an optimization prob-

lem and select priors that explicitly maximize power, with some

form of regularization to avoid overfitting. Another possibility is to

use external information about the variants to set the prior. This has

been done previously in eQTL data, where variants in regulatory

regions receive a stronger prior for association (Duong et al., 2016).

The count-based prior used here has the disadvantage of

not scaling well as the number of traits grows, since as the number

of possible configurations grows exponentially, the probability of

observing any particular configuration decreases sharply. From a

methods viewpoint, count-based methods for setting the prior on

each configuration become less and less useful with larger numbers

of traits, as the probability of observing any particular configuration

amongst the GWAS statistics decreases with the number of traits.

From a computational viewpoint, the runtime of CONFIT grows ex-

ponentially. For these reasons, we do not recommend running

CONFIT on more than 10 traits. If the user has a large set of candi-

date traits, they may narrow down which traits to include in the

analysis by choosing sets of traits with overlapping GWAS signifi-

cant SNPs. One may use the Jacquard index to measure overlap be-

tween traits while also accounting for the fact where one trait may

simply have more significant SNPs than other traits.

It is common for GWAS datasets to share individuals between

studies. For example, a study may collect both LDL and triglyceride

levels from each individual, or controls may be shared across mul-

tiple case-control studies. CONFIT handles the cases where the stud-

ies use the same cohort by approximating the correlation between

traits due to sharing of individuals as proportional to correlation be-

tween traits or association statistics. This assumes the effect and

residuals are approximately independent, and that any individual

SNP or LD block has small effect on the phenotype. In this paper,

we assume heritability of 50% when estimating this correlation, but

a more sophisticated approach would be to use trait-specific herit-

ability estimates. There are also many other methods to address the

issue of overlapping individuals. For example, MetaTissue uses

LMMs to model effects in multiple studies with shared individuals

(Sul et al., 2013). Although their method was designed for multi-

tissue eQTL studies, a similar LMM approach could be applied to

combine GWAS. This approach has the advantage of estimating the

proportion of the phenotype that can be attributed to sharing of

individuals, and applies even if there is only partial overlap between

studies. However, it requires individual level data and is relatively

computationally expensive.

Several methods for analyzing multiple traits require individual

level genotype and phenotype data, such as multi-variate regression.

Several methods, such as GEMMA-mvLMM, mvLMM and

GAMMA, extend this to use LMMs, which allow for correction of

population structure and other covariates (Furlotte and Eskin, 2015;

Joo et al., 2016; Zhou and Stephens, 2014). As with traditional meta-

Table 8. P-values of peak SNPs in analysis of four metabolic traits in UKKB dataset

Univariate GWAS

Chr Position rsID High cholesterol Cholesterol medication Insulin medication Elevated blood GLU CONFIT

CONFIT only

3 135925191 rs1154988 5.2E–08 9.8E–07 7.2E–01 2.3E–01 5.6E–09

7 73020301 rs799157 3.2E–08 3.1E–05 5.4E–01 7.3E–01 3.9E–08

7 150690176 rs3918226 3.0E–08 3.0E–07 3.9E–01 1.9E–01 1.0E–09

10 94772638 rs10748588 2.3E–07 1.5E–06 8.7E–01 3.1E–01 3.0E–08

11 126225876 rs112771035 5.9E–07 4.2E–06 3.6E–02 8.0E–01 4.8E–08

20 17844492 rs2618567 1.6E–08 6.0E–07 3.9E–01 2.4E–01 1.0E–09

Notes: Table contains peak SNPs found significant by CONFIT (CONFIT P-value � 5E–08) only. SNPs found significant by MI GWAS only are shown in the

Supplementary Material.
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analysis, multi-variate regression is not suitable for combining data

on arbitary traits and may achieve sub-optimal power for detecting

variants that only affect one of the traits tested, or in the case where

the variant only affects one trait, which indirectly affects another

(Stephens, 2013). Such methods are typically applied to sets of traits

that are already believed to share an underlying genetic basis (Furlotte

and Eskin, 2015). Thus there is a need for flexible approaches to asso-

ciation testing when the traits only partially share a genetic basis and

the study cohorts are not independent between traits.
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