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Purpose: We aimed to find out the distributed functional connectome of white matter
in patients with functional dyspepsia (FD).

Methods: 20 patients with FD and 24 age- and gender-matched healthy controls were
included into the study. The functional connectome of white matter and graph theory
were used to these participants. Two-sample t-test was used for the detection the
abnormal graph properties in FD. Pearson correlation was used for the relationship
between properties and the clinical and neuropshychological information.

Results: Patients with FD and healthy controls showed small-world properties in
functional connectome of white matter. Compared with healthy controls, the FD group
showed decreased global properties (Cp, S, Eglobal, and Elocal). Four pairs of fiber
bundles that are connected to the frontal lobe, insula, and thalamus were affected in
the FD group. Duration and Pittsburgh Sleep Quality Index positively correlated with the
betweenness centrality of white matter regions of interest.

Conclusion: FD patients turned to a non-optimized functional organization of WM
brain network. Frontal lobe, insula, and thalamus were key regions in brain information
exchange of FD. It provided some novel imaging evidences for the mechanism of FD.

Keywords: functional dyspepsia, functional connectome, white matter, resting-state fMRI, graph theory

INTRODUCTION

Functional dyspepsia (FD) is one of the most prevalent functional gastrointestinal disorders, with
high prevalence (5–11% of the population) (Ford et al., 2015). FD is characterized by four main
symptoms: bothersome postprandial fullness, early satiety, epigastric burning, and epigastralgia
(Enck et al., 2017). FD negatively affects the quality of life in patients and is a healthcare burden
for society for its recurrent nature of the symptoms (El-Serag and Talley, 2003; Lacy et al., 2011).
In the absence of detectable organic causes, FD was referred to be a functional disorder, which was
thought to result from the dysregulation in brain–gut interaction (Koloski et al., 2012). However,
the neural basis of FD remains poorly understood.
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Functional neuroimaging is a meaningful tool for identifying
the human brain circuitry which correlates with the clinical
phenotypic and behavioral manifestations in functional
gastrointestinal disorder, including FD (Van Oudenhove et al.,
2007; Lee et al., 2016; Kano et al., 2018). Based on the resting-
state activity or task-based responses (e.g., visceral distention),
the functional neuroimaging could assist in quantifying
viscerosensory inputs that reach the brain. Several brain regions
were reported in the research of neurological abnormalities in
patients with FD, including somatosensory cortex, frontal cortex,
insula, anterior cingulate cortex, thalamus, hippocampus, and
amygdala (Al Omran and Aziz, 2014; Lee et al., 2016; Kano et al.,
2018). Furthermore, a previous study suggested that people with
gastric fundic distension showed altered frontal-limbic network
(Ladabaum et al., 2007). Another study identified that the FD
patients showed abnormal pain and salience network (Lee et al.,
2016). These studies suggest that the brain network analysis
could be a helpful tool for understanding the mechanism of brain
alteration in patients with FD.

In general, the brain network could be derived from structural
connectivity, functional connectivity, and effective connectivity
among the distributed brain regions (Bullmore and Sporns,
2009). Functional connectivity mainly could be built by temporal
correlation or coherences between signals from brain regions
(Achard and Bullmore, 2007; Biswal et al., 2010). Functional
brain network analysis has been applied to the research of
cognition and brain diseases/disorders (He and Evans, 2010;
Ding et al., 2011; Zhang et al., 2011; Gao et al., 2013).
However, most of the previous studies evaluated the functional
connectivity of gray matter in blood oxygen level–dependent
(BOLD) fMRI. The information of white matter (WM) in
BOLD-fMRI has been ignored because the signals in white
matter were thought to be noisy, unreliable, and undetectable
in historical period. The role of WM in neuroimaging is
still controversial.

Recently, several studies have detected the brain activity in
WM in BOLD-fMRI. Evidences from amplitude and connectivity
studies demonstrated that the signal of WM in BOLD-
fMRI exhibited a specific distribution rather than a random
distribution of noise: the WM functional connectomes exhibited
a reliable and stable small-world topology, and the abnormal
amplitude of low-frequency fluctuation (ALFF) in WM could
provide the evidence for understanding the functional role of
fiber tracts in the pathology of Parkinson’s disease (Ji et al.,
2017; Li et al., 2019). Moreover, WM activity was shown to
be modulated under different cognitive tasks (Ji et al., 2017;
Wu et al., 2017; Huang et al., 2018). In Alzheimer’s disease,
the WM function was associated with the regional glucose
metabolism and correlated with memory function (Makedonov
et al., 2016). Another study found that patients with Parkinson’s
disease showed increased small-worldness in the functional
network of WM (Ji et al., 2019). It suggested that the functional
connectivity of WM could be a useful and novel tool for
investigating the alteration in brain disorders. In this study,
we aimed to reveal the functional connectome of WM in FD
patients. It might be helpful for the mechanism investigation with
a novel insight.

MATERIALS AND METHODS

Participants
Twenty patients with functional dyspepsia (FD) (14 female,
age range: 20–62 years, 40.80 ± 12.22 years) and 24 healthy
controls (16 female, age range: 21–68 years, 42.29 ± 15.66 years)
were included in this study. All participants were right-handed
and provided written informed consent before the whole study
began. The study was approved by the Medical Research Ethics
Committee of Jinling Hospital in accordance with the Helsinki
Declaration (Approval no. 2016NZGKJ-070).

The FD patients were diagnosed by the gastroenterologist
from the Digestive Disease Clinic of Jinling Hospital by following
the Rome III criteria (Drossman, 2006). The gastroenterologist
has extensive experience in functional gastrointestinal disorders.
The exclusion criteria were as follows: a history of gastrointestinal
surgery; major medical or neurological conditions; psychiatric
disorders or substance abuse; any previous treatment with
centrally acting medications such as aspirin and selective
serotonin reuptake inhibitors. All patients were assessed with
the Pittsburgh Sleep Quality Index (PSQI). The healthy
controls were recruited from the local community through
printed advertisements.

MRI Data Acquisition
MRI data were collected by using a 3T MR scanner (Tim
Trio, Siemens, Germany). The participants were instructed to
stay still during scanning and keep their eyes closed but not
fall asleep. Resting-state BOLD fMRI and high-resolution T1-
weighted structural image were scanned during the study. The
parameters of fMRI were as follows: TR/TE = 2,000/30 ms;
FOV = 240 mm × 240 mm; matrix = 64 × 64; thickness = 4 mm
with a gap of 0.4 mm between slices, 30 axial slices, with
250 brain volumes (500 s). The parameters of structural
images were as follows: TR/TE = 2,300/2.98 ms; field of
view = 256 mm × 256 mm; matrix size = 256 × 256, 176 sagittal
slices with thickness of 1 mm, no gap between slices.

Data Preprocess
Functional images were preprocessed by using DPARSF (v4.31)
(Chao-Gan and Yu-Feng, 2010) and SPM12 toolkit2. After
excluding 10 volumes, slice-timing correction and realignment
were applied to the 240 left functional volumes. Subjects were
excluded if his or her head motion exceeded 2.0 mm translation
or 2.0◦ rotation. The mean frame-wise displacement (FD) was
also calculated for each subject. Individuals with head motion
of > 1.0 mm in translation and 1.0◦ in rotation were excluded.
None of the participants was excluded for the head motion.

Structural images were then co-registered with the
preprocessed functional images (mean functional image for
each subject) and segmented into gray matter (GM), WM, and
cerebrospinal fluid (CSF) using a diffeomorphic non-linear
registration algorithm (DARTEL) (Ashburner, 2007) in SPM12.
The mean CSF signals from 95% threshold cut-off mask, 24

1https://www.restfmri.net/
2https://www.fil.ion.ucl.ac.uk/spm/
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head motion parameters (6 head motion parameters, 1 time
point before, and the 12 corresponding squared items), and
scrubbing parameters (FD > 0.5 mm along with one-forward
and two-back neighbors) were regressed out from functional
data. To avoid elimination of important neural signals, we
did not remove or regress out WM or global signals (Ji et al.,
2017; Li et al., 2019). To minimize mixing signal (and noise)
components from the WM regions due to partial volume effect,
subsequent processing of the functional images was performed
for WM in accordance with previous study parameters (Li
et al., 2019). First, the individual masks were generated using
a rigorous 90% threshold on the probability map of WM.
Functional images were spatially separated into WM images
using the dot product between functional images and individual
WM mask. Then the functional images in WM were spatially
normalized onto Montreal Neurological Institute (MNI) space
using DARTEL normalization operation and resampled to
3 mm × 3 mm × 3 mm. To minimize spurious local spatial
correlations between voxels, spatial smoothing was not applied.
Subsequently, linear trending and band-pass filtering (0.01–
0.10 Hz) were performed to minimize any drifts as well as
minimize high-frequency physiological noise sources such as the
respiration rate.

Next, the individual WM masks were spatially normalized
onto MNI space using DARTEL normalization operation and
resampled to 3 mm× 3 mm× 3 mm. Then, only voxels identified
as WM across 80% of subjects were included as part of the
group-level WM mask (Li et al., 2019). To exclude the impact of
deep brain structures, the probability (25% threshold) Harvard–
Oxford Atlas was used to remove subcortical nuclei (i.e., bilateral
thalamus, putamen, caudate, pallidum, and nucleus accumbens)
from the group-level WM mask.

Parcellation of WM
The group-level WM mask was subdivided into 128 random
regions of interest (ROIs) (Ji et al., 2019; Li et al., 2019)
and was generated and approximately identical in size
(mean ± SD = 99.24 ± 0.43 voxels across ROIs), as previously
described by Zalesky et al. (2010). The WM group parcellation
used here was attached as Supplementary Information Table 1
and marked using JHU-Atlas.

Functional Connectome of WM
Pearson’s correlation coefficient was used between each ROI’s
averaged time series. Fisher’s r to Z transformation was applied
to each of the correlation matrices. A schematic of the analyses
is shown in Figure 1. Finally, we estimated the topological
properties of the WM functional connectome.

Network Properties of Functional
Connectome of WM
Threshold Selection
To explore the influence of thresholds on topological
properties (Bullmore and Bassett, 2011), we used sparsity-
based (proportional) thresholds to the weighted correlation
matrix corresponding to each subject (Garrison et al., 2015). The

sparsity was defined as the ratio of the real edge numbers divided
by the maximum possible edge numbers in a given network
at rthr . We decreased the rthr from 1 to 0 (from maximum to
minimum) until the existing number of edges satisfied a sparsity
threshold. Specifically,

0 ≤ sparsity ≤ 1 =
εthr

N(N− 1)/2

Where εthrexpressed the existing number of edges generated
by threshold at rthr , and N(N − 1)/2 represents the maximum
possible number of edges existing in a given network of N nodes
(Bullmore and Bassett, 2011; Liao et al., 2018). In this case, when
rthr = 0, sparsity = 1; when rthr = 1, sparsity = 0.

Topological Properties of WM Functional Network
The global and nodal topological properties of WM functional
connectome were computed using Gretna software (v2.03). The
following global parameters were included: strength of network
(S), global efficiency (Eglobal), local efficiency (Elocal), clustering
coefficient (Cp), the shortest path length (Lp), normalized
clustering coefficient γ()normalized shortest path length λ()and
small-worldness σ()Here, S measured the connectivity capacity
of the network, Eglobal quantified the capacity of information
exchange across the whole network, and Elocal was the
measurement of the fault tolerance of the subgraph, showing
the efficiency of information exchange at the local level. The
small-worldness supported both segregated and intergrated
information processing.

Meanwhile, the following nodal parameters were included in
the study: betweenness centrality (BC), strength (Snodal), and
efficiency (Enodal). BC represents the node ability of bridging the
disparate parts of the network. Snodal measures the connectivity
capacity of the node, and Enodal measures the capacity of
information exchange of the node. A review outlined the uses
and interpretations of these topological properties (Rubinov and
Sporns, 2010). The definitions of these properties are described in
the Supplementary File.

Statistical Analysis
The statistical analysis of the demographic and
neuropsychological data was carried on by using GraphPad
Prism4. The differences of age between two groups were tested by
two-sample t-test. Also, the sex difference was tested by χ 2 test.

The statistical analysis of the global properties was carried by
using SurfStat toolbox5. The differences of each sparsity and those
of the AUC (area under curve) were test by two-sample t-test
under the model of general linear model. The differences of the
nodal properties were tested only on the AUC condition by using
the same method of the global properties.

The Pearson correlation analysis was used to find
the relationship between the clinical information,
neuropsychological table, and network properties.

3https://www.nitrc.org/projects/Gretna
4http://www.graphpad.com
5http://www.math.mcgill.ca/keith/surfstat/#ICBMagain

Frontiers in Human Neuroscience | www.frontiersin.org 3 April 2021 | Volume 15 | Article 589578

https://www.nitrc.org/projects/Gretna
http://www.graphpad.com
http://www.math.mcgill.ca/keith/surfstat/#ICBMagain
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-589578 April 12, 2021 Time: 20:18 # 4

Xu et al. Altered WM Network in FD

FIGURE 1 | Workflow of functional connectome of white matter construction.

TABLE 1 | Demographic and neuropsychological data.

FD HC Statistical results

Sex 14F/6M 16F/8M χ2 = 0.056, p = 0.813

Age (years) 40.80 ± 12.22 42.29 ± 15.66 t = −0.347, p = 0.731

Duration (months) 42.03 ± 75.92 – –

PSQI 8.15 ± 4.32 – –

RESULTS

Demographic and Neuropsychological
Data
There was no significant difference in age and sex between the FD
patients and healthy controls (Table 1).

Group Differences of Global Properties
Compared with the healthy controls, the FD patients showed
significant decreases in Cp (t =−3.303, p = 0.001 in AUC model),
S (t = −2.184, p = 0.017 in AUC model), Eglobal (t = −1.969,
p = 0.028 in AUC model), and Elocal (t = −2.116, p = 0.020 in
AUC model), and showed a significant increase in Lp (t = 2.595,
p = 0.007 in AUC model). The differences could be detected on
both AUC mode and sparsity mode. No significant difference
was found in γ, λ, and σ either on AUC or on sparsity (Table 2
and Figure 2).

Group Differences of Nodal Properties
For the comparison of nodal BC, the FD patients showed
increases on nodes 2 (located on the right anterior corona
radiata), 13 (located on the body of corpus callosum), and 42
(located on the left superior longitudinal fasciculus), and showed
decreases on nodes 57 (located on the right anterior corona

radiata) and 110 (located on genu of corpus callosum) (Table 3
and Figure 3).

For the comparison of nodal strength, the FD patients
showed decreases on nodes 12 (located on the right superior
longitudinal fasciculus), 15 (located on the right anterior
corona radiata), 18 (located on the left superior longitudinal
fasciculus), 27 (located on the right superior longitudinal
fasciculus), 64 (located on the left anterior corona radiata),
84 (located on the left posterior thalamic radiation), and
99 (located on left superior corona radiata) (Table 3 and
Figure 3).

For the comparison of nodal efficiency, the FD patients
showed decreases on nodes 8 (located on the left posterior
corona radiata), 9 (located on genu of corpus callosum),
12 (located on the right superior longitudinal fasciculus), 18
(located on the left superior longitudinal fasciculus), (located
on the left anterior corona radiata), 84 (located on the left
posterior thalamic radiation), 99 (located on left superior corona
radiata), and 106 (unclassified on the JHU-Atlas, but located
near left posterior corona radiata) (Table 3 and Figure 3).
All results of node comparison were corrected by false-
positive adjustment (Fornito et al., 2011; Jao et al., 2013;
Jin et al., 2014).

Correlation Between Clinical
Information, Neuropsychological Table,
and Network Properties
A positive correlation was found between duration of disorder
and BC value of node 13 (located on the body of corpus callosum,
r = 0.601, p = 0.005) (Figure 4).

Positive correlations were found between PSQI and BC values
of node 2 (located on the right anterior corona radiata, r = 0.593,
p = 0.006) and node 42 (located on the left superior longitudinal
fasciculus, r = 0.563, p = 0.010) (Figure 4).
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TABLE 2 | Group differences of small-world property.

γ λ σ Cp Lp Strength Eglobal Elocal

T values −1.013 0.773 1.078 −3.303 2.595 −2.184 −1.969 −2.116

P values 0.159 0.222 0.144 0.001* 0.007* 0.017* 0.028* 0.020*

*Significant alterations.

FIGURE 2 | Statistical analysis for the global properties between functional dyspepsia (FD) and healthy controls (HC). Compared with HC, the FD patients showed
decreased Cp, strength, Eglobal, and Elocal, and increased Lp.

DISCUSSION

In this study, we applied the functional connectome of WM
to discover the alteration of patients with FD. Both FD and
HC groups showed small-world properties in the functional
connectome of WM. Compared with the HC group, the FD
patients showed significant decreases in global properties (Cp, S,
Eglobal, and Elocal). Moreover, four pairs of fibers were affected
in FD patients in the nodal properties comparison. The duration
and PSQI also correlated with the alteration of nodal properties.

Graph theory provided a network prospective to investigate
how the brain works interactively. The human brain is organized
in a “small-world” pattern with high value and low energetic cost

(Bullmore and Sporns, 2009). Small-world properties have been
used to detect the alteration in brain disease, such as Alzheimer’s
disease (Phillips et al., 2015; Vecchio et al., 2018), epilepsy (Zhang
et al., 2011; Ji et al., 2015), and stroke (Case et al., 2019). In this
study, we investigated the functional architecture of WM using
resting-state fMRI in FD patients. It fitted the former studies that
the functional connectome of WM had a small-world structure
(Ji et al., 2019; Li et al., 2019). In both patients and healthy
controls, there was a small-world property in the WM functional
network. As we know, this was the first time that the graph
theory was applied to analyze the WM functional network in
FD researches. In our result, the FD patients showed decreased
strength, efficiency, and clustering coefficient, which implied
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FIGURE 3 | Group differences of nodal properties between FD and HC. Compared with HC, the FD patients showed alteration in anterior corona radiata, corpus
callosum, superior longitudinal fasciculus, and posterior thalamic radiation.

FIGURE 4 | Correlation analysis between duration, PSQI, and nodal BC. (A) Positive correlation was found between duration and BC of node 13 (body of corpus
callosum). (B) Positive correlation was found between PSQI and BC of node 2 (right anterior corona radiata). (C) Positive correlation was found between PSQI and
BC of node 42 (left superior longitudinal fasciculus).
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TABLE 3 | Group differences of nodal property.

Nodal order MNI coordinates Localization in JHU-Atlas T P

x y z

Betweenness

2 21 45 −6 Anterior_corona_radiata_R 2.847 0.003

13 −15 −30 30 Body_of_corpus_callosum 2.837 0.004

42 −42 −6 21 Superior_longitudinal_fasciculus_L 2.730 0.005

57 30 27 21 Anterior_corona_radiata_R −2.818 0.004

110 15 33 33 Genu_of_corpus_callosum −2.722 0.005

Strength

12 48 −12 30 Superior_longitudinal_fasciculus_R −2.653 0.006

15 27 9 21 Anterior_corona_radiata_R −2.534 0.008

18 −42 −39 33 Superior_longitudinal_fasciculus_L −2.915 0.003

27 45 −39 27 Superior_longitudinal_fasciculus_R −2.699 0.005

64 −18 45 3 Anterior_corona_radiata_L −2.871 0.003

84 −33 −63 27 Posterior_thalamic_radiation_(include_optic_radiation)_L −3.432 0.001

99 −27 −18 30 Superior_corona_radiata_L −2.944 0.003

Efficiency

8 −27 −51 24 Posterior_corona_radiata_L −3.003 0.002

9 −12 24 9 Genu_of_corpus_callosum −2.554 0.007

12 48 −12 30 Superior_longitudinal_fasciculus_R −2.536 0.008

18 −42 −39 33 Superior_longitudinal_fasciculus_L −2.604 0.006

64 −18 45 3 Anterior_corona_radiata_L −2.729 0.005

84 −33 −63 27 Posterior_thalamic_radiation_(include_optic_radiation)_L −2.544 0.007

99 −27 −18 30 Superior_corona_radiata_L −2.952 0.003

106 −21 −36 54 Unclassified −2.831 0.004

that the FD patients showed a non-optimized structure of WM
network in both global and local level properties. These findings
were partially consistent with our former study in irritable bowel
syndrome (IBS) patients where they showed decreased global
efficiency compared with healthy controls (Qi et al., 2016a). Also,
the decreased efficiency was found in other chronic pain, such as
postherpetic neuralgia (Zhang et al., 2014). It suggested that the
functional gastrointestinal disorders may show the information
process efficiency loss.

In nodal-level statistical analysis, there were alterations in
four pairs of fiber bundles in patients with FD: the anterior
corona radiata, corpus callosum, superior longitudinal fasciculus,
and posterior thalamic radiation. It was consistent with the
findings of WM in FD patients in a former DTI study, which
showed alteration in corona radiata, internal capsule, posterior
thalamic radiation, corpus callosum, external capsule, sagittal
stratum, and superior longitudinal fasciculus (Zhou et al., 2013).
A similar alteration in WM microstructure could be found in
other kinds of chronic pain, such as IBS (Chen et al., 2011),
migraine (Szabó et al., 2012), and temporomandibular disorder
(Moayedi et al., 2012). Besides, the anterior corona radiata was
the connecting fiber bundle within the frontal lobe, the superior
longitudinal fasciculus was the connecting fiber bundle from
frontal lobe to insula and ends in the posterior part of the brain,
the posterior thalamic radiation was the ascending fiber bundle
from thalamus to cerebral cortex, and the corpus callosum was
the connecting fiber bundle to bridge two hemispheres. These
results also fitted the functional alteration in GM-related studies,

such as decreased functional connectivity of insula (Sun et al.,
2020); decreased GM density in the middle frontal gyrus, right
precentral gyrus, and insula (Zeng et al., 2013); and decreased
connectivity between insula and thalamus (Liu et al., 2018).
Our former study also found altered amplitude of low-frequency
fluctuation in insula and thalamus (Qi et al., 2020). Our results
supported that the frontal lobe, insula, and thalamus were the key
regions in FD patients.

In addition, correlation analysis found that the nodal BC
was correlated with the duration and PSQI. No significant
correlation was found between nodal properties S and efficiency.
BC represents the ability of bridging different parts of the
brain network (Rubinov and Sporns, 2010). The increased
betweenness centrality of corpus callosum represents that the
information exchange between two hemispheres was enhanced,
and the positive correlation with the duration demonstrates that
the duration affected this process. It was consistent with our
former study of interhemispheric functional connectivity in IBS
(Qi et al., 2016b). The two enhanced betweenness centrality
nodes were located in the anterior corona radiata and superior
longitudinal fasciculus, which were near the frontal lobe and
insula (Zeng et al., 2013; Liu et al., 2018; Sun et al., 2020).
The positive correlation with PSQI represents that the frontal
lobe and insula might be important in the modulation of sleep
quality in FD patients.

Different with the GM connectome and WM structural
network, the alterations of connectome of WM might provide
novel and more information for description of the mechanism
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of FD. Compared with the GM connectome, the WM functional
network showed a tendency toward randomization (Li et al.,
2019). Previous studies showed that the effect of deoxygenated
blood drainage from GM, through WM to the deep venous
system, was less than 3% (Ruíz et al., 2009; Huang et al., 2018).
The WM functional connectome showed more relationship
to the WM structural network. According to the previous
studies, the ALFF of WM showed significant correlation with
FA in healthy subjects (Ji et al., 2017), but the alterations of
ALFF of WM and FA were different in Parkinson’s disease (Ji
et al., 2019). However, the WM connectome was the promising
neuromarker for the brain–behavior prediction (Li et al., 2020a).
Also, it was the potential neuromarker for the classification of
psychological disorder (Li et al., 2020b). It suggested that the WM
connectome could extend the width of neuroimaging insight for
understanding the pathophysiological mechanism for the disease.

LIMITATION

This study has several limitations. First, our results were based on
a relatively small sample size and therefore should be considered
preliminary. Further studies should contain more participants
and even could be separated into different subtypes. Second,
in this preliminary study, we did not have the diffusion MRI
for further support. Third, additional results of graph theory
analysis were not listed here. Further studies would consider the
combined connectivity of GM and WM.

CONCLUSION

In this study, we found that the functional connectome of WM
in FD patients turned to a non-optimized regularity in both
global and local level. Also, the abnormal nodes were mainly
located near the frontal lobe, insula, and thalamus. These findings
provided a new prospective for the mechanism of FD.
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