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Simple Summary: As the most common primary liver cancer, HCC is a tricky cancer resistant to
systemic therapies. The fibroblast growth factor family and its receptors are gaining more and
more attention in various cancers. Noticing an explosion in the number of studies about aberrant
FGF/FGFR signaling in HCC being studied, we were encouraged to summarize them. This review
discusses how FGF/FGFR signaling influences HCC development and its implications in HCC
prediction and target treatment, and combination treatment.

Abstract: Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, ranking
third in cancer deaths worldwide. Over the last decade, several studies have emphasized the
development of tyrosine kinase inhibitors (TKIs) to target the aberrant pathways in HCC. However,
the outcomes are far from satisfactory due to the increasing resistance and adverse effects. The
family of fibroblast growth factor (FGF) and its receptors (FGFR) are involved in various biological
processes, including embryogenesis, morphogenesis, wound repair, and cell growth. The aberrant
FGF/FGFR signaling is also observed in multiple cancers, including HCC. Anti-FGF/FGFR provides
delightful benefits for cancer patients, especially those with FGF signaling alteration. More and more
multi-kinase inhibitors targeting FGF signaling, pan-FGFR inhibitors, and selective FGFR inhibitors
are now under preclinical and clinical investigation. This review summarizes the aberrant FGF/FGFR
signaling in HCC initiating, development and treatment status, and provide new insights into the
treatment of HCC.
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1. Introduction

As one of the most common malignant tumors of the liver, hepatocellular carcinoma
(HCC) is a major public health issue worldwide with increasing morbidity and cancer-
related mortality but limited intervention options and low curative rates. Chronic liver
disease associated with hepatitis B virus (HBV) or hepatitis C virus (HCV) is the most
common etiology of HCC, especially in developing areas. Approximately 80% of HCC
patients worldwide have HBV or HCV infection. Non-alcoholic fatty liver disease (NAFLD)
and diabetes are the primary and increasing risk factors for HCC in developed countries.
The consumption of aflatoxin B1, cigarettes, and alcoholic substances are also associated
with HCC [1–3]. Although there are various kinds of interventions for HCC, only a
few early-diagnosed patients can receive potential curative therapies through surgical
resection, transarterial chemoembolization (TACE), or ablation. Even worse, HCC is a
highly insidious cancer, meaning that HCC is often detected at intermediate or even
advanced stages and therefore miss the optimal treatment window. In these cases, systemic
pharmacological treatment is the best therapy but can only provide modest benefits [3,4].
Despite the many surveillance protocols, the overall survival of HCC is still unsatisfactory.
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Agent acquired resistance, the high recurrence rate after surgical resection, and the lack of
biomarkers for HCC identification highlight the need for investigators to further elucidate
the molecular pathology of HCC and provide more alternative therapeutic options.

The family of fibroblast growth factors (FGFs) consist of eighteen ligands and four
homologous factors. FGFs bind with corresponding FGF receptors (FGFR1~4) and are
involved in various actions, including early embryogenesis, angiogenesis, wound repair,
metabolism, and many other physiological processes in adults [5,6]. The downstream
effects of FGF/FGFR, such as regulating cell proliferation, differentiation, and survival,
indicate that this axis is a potential target in the pathogenesis of multiple tumors. Several
cancers, such as breast cancer, gastric cancer, endometrial cancer, bladder cancer, myeloma,
and HCC, can be induced when FGF/FGFR signaling is abnormal [7–11]. Thus far, in-
terventions targeting FGF/FGFR have provided modest benefits for patients, and some
of these treatments have already been approved in the clinic. Furthermore, FGF/FGFRs
show value as biomarkers for patient identification, which is essential for detecting the
interpatient heterogeneity of HCC. All of the observations above indicate that targeting
FGF/FGFR signaling is a promising therapeutic option for HCC patients. In this review,
we summarize the recent discoveries relating to FGF/FGFR signaling in HCC. We discuss
the roles of FGF/FGFR signaling in HCC initiation and development, and the treatment
status and provide new insights into the treatment of HCC.

2. The FGF/FGFR System
2.1. FGF, FGFR, and Co-Factor

FGF ligands are categorized into five paracrine subfamilies (FGF1, FGF2; FGF4,
FGF5, FGF6; FGF3, FGF7, FGF10, FGF22; FGF8, FGF17, FGF18), one endocrine subfamily
(FGF15/19, FGF21, FGF23) and several homologous factors (FGF11-14) (Table 1). FGF11-14
share substantial sequence homology with other FGFs, but they have neither recognizable
secretory signal peptides nor the ability to be secreted from cells; thus, their bioactivity
is intracellular and they cannot initiate any FGFR signaling pathways. Therefore, these
molecules are not discussed in this review [12]. Mouse FGF15 is orthologous to human
FGF19, sharing 51% amino acid identity [13].

Table 1. The classification of FGF ligands and their corresponding FGFRs.

FGF Subfamily FGF FGFR

FGF1
(paracrine)

FGF1 (aFGF) All FGFRs

FGF2 (bFGF) FGFR1c, FGFR2c, FGFR3-IIIc, FGFR1b, FGFR4

FGF4
(paracrine)

FGF4 FGFR1c, FGFR2c, FGFR3c

FGF5 FGFR1c, FGFR2 c

FGF6 FGFR2b

FGF7
(paracrine)

FGF3 FGFR1b, FGFR2b

FGF7(KGF) FGFR2b

FGF10 FGFR2b

FGF22 FGFR1b, FGFR2b

FGF8
(paracrine)

FGF8 FGFR2c, FGFR3c, FGFR4

FGF17 FGFR2c, FGFR3c, FGFR4

FGF18 FGFR2c, FGFR3c, FGFR4

FGF9
(paracrine)

FGF9 FGFR3b, FGFR3c

FGF16 FGFR2c, FGFR3c, and FGFR4

FGF20 FGFR1c
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Table 1. Cont.

FGF Subfamily FGF FGFR

FGF19
(endocrine)

FGF15/19 FGFR4, FGFR1c, FGFR2c, FGFR3c

FGF21 FGFR1c, FGFR3c

FGF23 FGFR1c, FGFR2c, FGFR3c, FGFR4

FGF11
(Intracrine)

FGF11

FGF12

FGF13

FGF14

FGFRs are divided into three domains as transmembrane receptors: three extracellular
Ig-like loop domains (termed Ig I, Ig II, and Ig III), two intracellular tyrosine kinase domains
(termed TK1-2), and a single transmembrane helix linking the extra and intra components.
Ig-loop II and Ig-loop III are essential for signal transduction because they specifically
recognize ligands and cofactors [14]. In contrast, a conserved stretch of 7–8 acidic residue
sequences, called the acid box, is involved in receptor autoinhibition and signaling inhi-
bition along with Ig I. Four FGFRs share high sequence similarities, especially FGFR1-3.
Alternative splicing of FGFR is often observed in Ig-loop III of FGFR1-3, generating two
isoforms generally named IIIb and IIIc (Figure 1). The FGFR IIIb isoform tends to be
expressed in epithelial cells. While the FGFR IIIc isoform is more likely to be expressed
on mesenchymal cells, the transformation from IIIb to IIIc is associated with epithelial-
mesenchymal transition (EMT) [15]. FGFR4 lacks an alternative splicing exon and has
no isoform. Given the core role of ligand recognition in Ig-loop III, the isoforms alter the
ligand-receptor binding spectrum [15].

To signal, FGFs bind to FGFR in the presence of cofactors: heparin sulfate (HS)
proteoglycans (HSPGs), or Klotho protein. The affinity for different cofactors determines
the endocrine, paracrine, and autocrine actions. HSPGs exist widely in the extracellular
matrix. Nearly all FGFs have HS binding domains but differ in terms of affinities. On the
one hand, HSPGs potentiate signaling transmission for morphogens and growth factors
by functioning as accessory receptors. On the other hand, FGFs with strong association
associations are tethered nearby and act in a paracrine or autocrine manner. Contrarily,
FGFs with a low affinity for HSPG (FGF19, FGF21, and FGF23) enter the circulation and
exert their functions through endocrine actions [16]. Without HS, those endocrine FGFs
utilize klotho proteins to serve as coreceptors, which confer stability and preferential
binding of endocrine FGFs to their respective FGFRs. There are two homologs of klotho
protein that promote different FGF signaling pathway: β klotho (also named KLB) and α

klotho (also called KL) [16]. Multiple lines of evidence demonstrate that KLB is essential
for the coactivation of FGF19 and FGF21 signaling, while FGF23 tends to bind with KL to
initiate the pleiotropic cellular function [17,18]. Unlike the HS in the extracellular matrix,
Klotho protein has obvious tissue specificity, ultimately determining the various roles of
these endocrine FGFs in different tissues. KLB is widely expressed in the liver and fat and
preferentially binds with FGFR1c and FGFR4. Therefore, signals from FGFR4 and its ligand
FGF9 are among the major FGF signaling pathways in HCC [19].
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Figure 1. Schematic representation of aberrant FGF/FGFR signaling in HCC. (a) FGFR monomer
structure: FGFRs are comprised of the extracellular domains linked to intracellular catalytic domains
via a single pass transmembrane domain. The extra extracellular domains contains three loops
(namely Ig I, Ig II, and Ig III), and an acid box with rich serine; (b) The complex composed of FGF,
FGFR, and the co-factors: Ig I and the acid box is re-sponsible for signal autoinhibition, while Ig
II and Ig III are essential for signal transmission through binding with FGF and the co-factors; (c)
The intracellular downstream signaling of FGF/FGFR signaling: There are mainly four pathways
acting as canonical downstream signaling pathways of FGF-FGFR signal: mitogen-activated protein
kinase (MAPK); phosphatidylinositol 3-kinase (PI3-kinase), phospholipase Cγ (PLCγ), and signal
transducer and activator of transcription (STAT); (d) The target effects of FGF/FGFR signaling: the
final effects of these activating downstream pathways are transcriptionally activating a series of
target genes that are responsible for multiple hallmarks of HCC.

2.2. FGF/FGFR Downstream Signaling

To signal, secreted FGFs bind to heparin sulfate and heparin sulfate binding sites (HBS)
of FGFR, forming signal-transducing dimers. Such conformational changes enable the
autophosphorylation and activation of intracellular tyrosine kinases [14]. Activated FGFRs
then phosphorylate docking proteins such as FGFR substrate 2 (FRS2) and FGFR substrate
3 (FRS3) [20]. These effectors can function as scaffolds and finally activate four intracellular
pathways: mitogen-activated protein kinase (MAPK); phosphatidylinositol 3-kinase (PI3-
kinase), phospholipase Cγ (PLCγ), and signal transducer and activator of transcription
(STAT). These factors play important roles in proliferation, metastasis, angiogenesis, and
agent-acquired resistance in the initiation and development of HCC (Figure 1).
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3. Deregulation of FGF/FGFR in HCC
3.1. FGF2

FGF2 is expressed in HCC cells and is barely detected in nonparenchymal cells or
noncancerous liver tissue [21]. By targeting the IIIc isotype of FGFR1 as its primary receptor,
FGF2 is involved in the development of HCC as a potent mitogen. This molecule stimulates
DNA synthesis of hepatoma cell lines and promotes tumor growth. It also enhances the
synthesis of the plasminogen activator, promoting tumor cell invasion [21]. Additionally,
FGF2 is a potent mitogen for endothelial cells (ECs), vascular smooth muscle cells (VSMCs),
and mural cells, participating in HCC angiogenesis [22]. FGF2 and FGF19, seem to be
involved in maintaining cancer stem-like cells (CSCs) with CD44High/CD133High cell
membrane markers, which play a central role in the tumor microenvironment, potentially
enhancing HCC tumorigenesis, metastasis, and anticancer drug resistance [23]. Further-
more, FGF2 is reported to be involved in the immune regulation of HCC. FGF2 enhances
the sensitivity of NK cells to tumor cells by upregulating the expression of membrane-
bound major histocompatibility complex class I-related chain A (MICA) and suppressing
the expression of human leukocyte antigen (HLA) class I, which are activating molecule
and inhibitory molecules of NK cells, respectively [24]. From this point of view, FGF2 may
partly contribute to the elimination of innate immunity in HCC cells. GAL-F2 is a specific
monoclonal antibody for FGF2. This molecular inhibits the proliferation and migration of
HCC cell lines and blocks angiogenic signals in the mouse model, corroborating the role of
FGF2 in tumor growth and vascularization [25].

3.2. FGF8 Subfamily

Although widely expressed during embryonic development, the expression of FGF8
subfamilies is mainly restricted to hormonal cancers such as prostate cancer and breast
cancer during adulthood [26]. However, the abnormal signaling of FGF8 subfamilies (FGF8,
FGF17 and FGF18) have also been detected in many other cancers [8,26,27]. By a paracrine
and autocrine mechanism, FGF8, FGF17, and FGF18 participate in the development of HCC.
In vitro, FGF8 promotes the proliferation of HCC cell lines. Moreover, FGF8 increases the
expression of EGFR through transcriptionally upregulating Yes-associated protein 1 (YAP1),
which contributes to resistance to EGFR inhibitors [28]. FGF17 is a potent mitogen for
prostate cancer. This molecule can be induced by FGF8, indicating its potential mediating
role in FGF8 function [29]. FGF18 impaires apoptosis while enhancing cell proliferation,
motility, and invasion in HCC [30]. Knockout of FGF18 dramatically reduces the malignant
phenotype of cells [31]. According to research conducted by Gauglhofer et al. [26], the
levels of at least one FGF8 subfamily member and/or one FGFR are upregulated in 82%
of HCC cases. Additionally, the co-upregulation of the levels of at least one FGF and one
FGFR is detected in approximately one-third of these tumor. The researchers also noted that
the Wnt pathway and hypoxia-inducible transcription factors might be two possible mech-
anisms that regulated FGF8, FGF17 and FGF18 overexpression in HCC [26]. In addition to
contributing to the tumorigenic characteristics of tumor cells, FGF18 subfamilies are also
involved in the angiogenesis of HCC, which will be discussed in the subsequent chapters.

3.3. FGF9

FGF9 expression is often co-upregulated with FGFR3 IIIb/IIIc expression in HCC
patients. Furthermore, FGF9 is the most dominant ligand for FGFR3 IIIb/IIIc in HCC [32].
FGF9 is secreted mainly by HSCs in normal and cirrhotic livers and acts by the paracrine
mechanism to stimulate tumor cells. However, this molecule has an autocrine effect in HCC
since tumor cells are the primary source at this stage. This result is inconsistent with other
research, which noted out that activated HSCs/myofibroblasts are the primary sources of
FGF9, while no FGF9 expression was detected in either HCC cells and hepatocytes [33].
However, both findings emphasize the tumorigenic role of FGF9 in HCC. FGF9 exerts
its tumorigenic role by specifically binding to FGFR3, facilitating the proliferation and
migration of HCC cell lines and promoting new blood and lymphatic capillary forma-
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tion [32]. Moreover, FGF9 is involved in sorafenib resistance, indicating that FGF9 may be
a promising target of HCC. Pan-inhibitors of FGFR or siRNA targeting FGFR3 could block
the oncogenic properties of FGF9 in HCC [33].

3.4. FGF19 Subfamily

This family is closely associated with multiple metabolic regulatory processes, includ-
ing insulin resistance, fatty acid oxidation, bile acid, triglycerides, and glycogen [6]. Many
of these metabolic processes are found in the liver and have close relationships with liver
physiology and pathology status. FGF19, FGF21, and FGF23 can facilitate HCC in both
metabolism-dependent and metabolism-independent pathways. This chapter will discuss
the metabolism-independent roles, and the metabolic effects in HCC development will be
discussed in the following section.

In hepatocytes, FGF19 mainly targets FGFR4 as its receptor, with KLB stabilizing their
integration and interaction. FGF19 is primarily expressed and secreted from ileum villus
epithelial cells and gallbladder epithelial cells in adults. FGF19 can also be secreted by cells
from pathological liver tissue, such as cholestatic noncirrhotic and cirrhotic livers and livers
from individuals with alcoholic hepatitis and HCC [34]. Additionally, FGF19, FGFR4, and
KLB appear to increase with hepatic pathology, from steatosis to steatohepatitis, cirrhosis,
and finally HCC [35]. Transgenic mice with ectopically expressed FGF19 exhibited preneo-
plastic changes, including constitutive hepatocellular proliferation and AFP expression.
At 10–12 months, an average of 53% of the mice had developed locally invasive HCCs.
In p53−/− mice, all FGF19 transfected mice died within the 100-day observation period,
while none of those in the control groups died [36]. These results support the direct effect
of FGF19 on HCC initiation [37]. With the coaction of KLB, FGFR4 initiates a growing
number of intracellular signaling pathways to target tumor cells, promoting hepatoma cell
proliferation and migration and inhibiting tumor cells apoptosis. FGF19 mediates cell es-
cape from death by increasing the expression and phosphorylation of IL-6-induced STAT3,
which is known to lead to compensatory proliferation in tumor cells [38,39]. Another newly
discovered target gene of FGF19 in HCC is SOX18. SOX18 is an oncogene promoting the
proliferation and metastasis of tumor cells in many cancers. FGF19/FGFR4 upregulates the
expression of SOX18 through p-FRS2/p-GSK3β/β-catenin signaling. Interestingly, SOX18
is also a ligand for FGFR4, forming positive feedback among SOX18, FGF19, and FGFR4 in
HCC development. BLU9931, which is a selective FGFR4 inhibitor, significantly inhibits
the growth of SOX18-induced HCC metastasis [40].

However, FGF19 also exerts protective effects on the liver. Mitogenic FGF19 defi-
ciency delays liver regrowth and impairs hepatocyte regeneration after chemical liver
injury or partial hepatectomy in a mouse model. Similarly, the knockout of FGFR4 or
siRNA application increases the susceptibility of the liver to CCL4 exposure. This phe-
nomenon mechanism can be partly attributed to bile acid accumulation resulting from
FGF19 deficiency. Additionally, the proliferative signals provided by FGF15 are also indis-
pensable for the regeneration since a cholate-supplemented diet cannot compensate for the
growth impairment in FGF15-null mice [41]. NF2/Merlin might control the shunting of
pro-oncogenic and antioncogenic signaling of FGFR4. NF2/Merlin is an upstream regulator
of the Hippo pathway and is activated by FGFR4 signaling to maintain various organ sizes.
NF2/Merlin might act as a switch in FGFR4 signaling by activating ERK and attenuating
Mst1/2-mediated signaling [42].

Unlike other FGFs in HCC, FGF21 expression is usually decreased in HCC and is
believed to protect the liver. Multiple lines of evidence have shown that FGF21 maintains
metabolic homeostasis and contributes to antifibrotic processes during the development
of HCC [43,44]. FGF21 is reported to relieve acute or chronic inflammatory diseases by
inhibiting the production of IL-17A, which has recently been proven to be associated
with human hepatitis, fatty livers, and viral hepatitis-associated HCC [45]. Both rhFGF21
administration and blockage of IL-17A benefited the liver in terms of arresting progressive
liver diseases [44,45].



Cancers 2021, 13, 1360 7 of 22

3.5. Other FGFs in HCC

FGF5 has been discussed in many other cancers and has multiple roles in cancer
development [46–48]. FGFR1 IIIc and FGFR2 IIIc are considered the preferential receptors
for FGF5. In pancreatic cancer, FGF5 promotes pancreatic cancer cells growth through its
binding to FGFR1 IIIc [47]. Fang et al. [49] noted that FGF5, as a downstream molecule
of miR-188-5p, is involved in the proliferation, colony formation, cell migration, and
invasion of SMMC7721 cells, promoting carcinogenesis in HCC by activating H-Ras—p-
ERK signaling. However, no research has been conducted to identify the exact receptor of
FGF5 in HCC and its biological functions in vivo. FGF7 has been reported to participate in
the nucleotide excision repair (NER) pathway by upregulating ERCC1 expression via the
FGFR2-ERK pathway [50]. ERCC1 has been identified as a critical rate-limiting enzyme
during the NER process. The overexpression of ERCC1 reflects the higher activity of NER
related to HCC resistance to platinum drugs [51].

While some FGFs may have an oncogenic role in other organs, their roles in HCC
remain to be clarified. These FGFs include FGF6, FGF10, FGF20, and FGF22. FGF6 is
strongly overexpressed in prostate cancer tissues compared with normal prostate tissues,
stimulating the transformed of prostatic epithelial cells [52]. However, FGF6 poorly ex-
pressed in normal liver tissues and HCC, and it accumulates almost exclusively in the
myogenic lineage [53]. FGF10 is involved in multiorgan development, and its knockout
may cause severe dysmorphia [54]. Otherwise, FGF10 is thought to act as a mediator of
androgen action, thus contributing to prostate cancer pathogenesis by facilitating epithelial
proliferation [55]. FGF22 in the brain is reported to be associated with depression. To date,
no research has been performed to illustrate the role of these FGFs in HCC.

3.6. FGFRs in HCC

FGFR3 and FGFR4 are the major FGFRs overexpressed in HCC, while upregulation
of FGFR1 and FGFR2 expressing are rarely observed [56,57]. FGFR3 expression has been
reported to be upregulated in 17 of 32 HCC cases. In five cases displaying upregulation of
IIIb expression, eight cases showed upregulation of IIIc expression, and four cases showed
both. The ligands of FGFR3 are different according to the variants. The ligands of the
FGFR3-IIIb variants are mainly FGF1 and FGF9. In comparison, the FGFR3-IIIc variants
have additional binding sites for FGF2, FGF4, FGF8, FGF17, FGF18, FGF19, FGF21, and
FGF23. Although the two isoforms provide different FGFs docking sites and transmit
different downstream signals, upregulation of the expression of both enhances hepatoma
cells malignant phenotypes [57]. FGFR4 shows the highest expression in the liver compared
with other major organs. Additionally, hepatocyte is the only cell type where FGFR4 is more
dominant than all other FGFRs [58]. In HCC, FGFR4 expressions is upregulated in nearly
half of HCC cases, along with a major increase in different FGF ligands, such as the FGF2
and FGF8 subfamilies [59]. Although all of these ligands can bind with FGFR4, signals from
FGF19 seem to be exerted preferentially and cannot be replaced by any other ligands [59].

4. Aberrate FGF/FGFR Signaling

The FGF-FGFR pathway can be activated aberrantly in many ways. Gene muta-
tion, amplification, and chromosome translocation all contribute to the overactivation of
FGF/FGFR signaling. Many upstream molecules can stimulate FGF and thus transmit sig-
nals. Some molecules, such as miRNAs, can even function as ligands and directly interact
with FGFR. The most common aberration caused by FGF ligands is gene amplification.
Although FGFR mutation or amplification is quite common in many cancers, it is not a
frequent event during hepatocarcinogenesis [57].

4.1. Mutation

Most of the FGFR3 mutations occur in exons 7, 10, and 15. These mutations are
common in bladder and uterine cervical cancer [60,61]. However, they have not detected in
HCC [57]. FGFR347–9, which is a mutant formed by directly linking exon 6 to exon 10, has
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been proven to promote the malignant phenotype of HCC. This mutation may change its
ligand-binding domain, making it capable of autoactivation and self-phosphorylation [62].
FGFR347–9 significantly downregulates E-cadherin expression while upregulating Snail
and MMP-9 expression, which may partly explain how FGFR347–9 enhances malignant phe-
notypes [62]. FGFR347–9 can also phosphorylate and degrade tumor suppressor ten-eleven
translocation-2 (TET2) and its target gene PTEN, contributing to HCC cell proliferation [63].

4.2. Amplification

FGF3, FGF4, and FGF19 are located at the 11q13.3 amplicon, which is one of the
most frequent amplification sites in HCC and other cancers. The FGF3/4 and FGF19
amplification frequencies are approximately 2–3% and 20%, respectively [36,64]. FGF19
is located near known oncogene CCND1 and is often observed to be coamplified with
CCND1. The detection of TCGA liver hepatocellular carcinomas (LIHC) demonstrates
that all of the genetic alterations of FGF19 exhibit amplification instead of gene mutation
or deletion [65]. In human HCC oncogenic screening conducted by Sawey et al. [36],
14% of HCC samples were observed to harbor a focal amplicon (<10 Mb) containing
FGF19 with a good RNA/DNA association. The amplification of FGF19 can explain
approximately 6% of FGF19 overexpression in HCC. As a driver event, FGF19 amplification
seems to provide a selective advantage to the evolution of HCC, meaning that patients
with amplified FGF19 are more likely to succumb to HCC. Furthermore, amplified FGF19
is closely associated with lower 5-year OS (overall survival), along with a larger tumor size,
multiple tumors, and microvascular invasion [66]. The amplification of FGF19 is also closely
associated with HCC histological subtypes. Macrotrabecular-massive HCC (MTM-HCC) is
a proliferative and highly aggressive phenotype of HCC that is genetically characterized by
TP53 mutations and/or FGF19 amplification, accounting for 10–20% of all cases of HCC [67].
This subtype more frequent in patients infected with HBV and is clinically associated with
early tumor recurrence and poor overall survival [68]. Gene expression profiling revealed
that MTM-HCC is highly related to G3-subgrouped tumors, which have high chromosome
instability rates and are show cell cycle/proliferation/DNA metabolism-related genes
overexpression [67,68]. Whether these characteristics entirely or partially explains the
FGF19 proliferative and metabolic properties of amplified tumors is a fascinating question.
MTM-HCC is also characterized by angiogenic activation with angiopoietin 2 and vascular
endothelial growth factor A (VEGFA) overexpression [68]. However, few articles have
demonstrated the relationship between FGF19 and angiogenesis; that is, the two factors
may just be mechanically correlated. Nevertheless, the correlations between molecular
changes and disease phenotypes are promising for personalized medicine. Moreover, an
investigator found that the amplification of FGF19 has a good relationship with the clinical
response to sorafenib. Patients who showed a complete response to sorafenib harbor a
higher frequency of FGF19 copy number variations than those without a complete response
(p = 0.024, chi-squared test); that is, FGF19 amplification can also be biomarker to predict
sorafenib response [69]. The amplification of FGF3 and FGF4 is considered to have less
clinical importance. Although patients with amplified FGF3 and FGF4 are more likely
to respond to sorafenib [64,70], the frequency of FGF3/FGF4 amplifications is relatively
low, restricting its predictive value in the clinic. Combining FGF3/FGF4 amplifications
with multiple lung metastases and other events to predict sorafenib responsiveness has
been suggested [64]. Additionally, the amplification of FGF3 and FGF4 is barely associated
with an increase in the corresponding mRNA or protein, thus showing a limited biological
function during HCC development.

5. FGF/FGFR Signaling in Angiogenesis

HCC is a highly vascularized tumor and heavily relies on angiogenesis for tumor
growth. Vascular endothelial growth factor A (VEGF-A), also known as VEGF, is one of the
major factors contributing to new blood vessel formation. Thus far, most antiangiogenic
therapies have revolved around anti-VEGF strategies. Sorafenib, which is an antiangiogenic
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agent targeting VEGF, was approved by the FDA in 2007 [71]. Although it has been
proven to prolong median survival and the time to progression by nearly three months
in patients with advanced HCC, this treatment shows no increase in survival rate when
it is combined with other chemotherapies over the years [71]. Moreover, the mechanism
by which sorafenib benefits patients or patient tolerance to treatment remains unclear [72].
Further elucidation of the proangiogenic factors underlying this process and new insights
to assist with anti-VEGF therapy are needed.

The FGF1, FGF2, FGF4, and FGF8 subfamilies are the most frequently studied FGFs
in the angiogenic processes of HCC. Among these factors, FGF2 is the best known and
earliest characteristic factor. FGF2 mainly targets FGFR1 as its receptor to mediate an-
giogenic. FGF2 exerts various roles during multiple angiogenic stages [73]. As a potent
mitogen for ECs, VSMCs, and mural cells, FGF2 directly triggers new vessel formation by
promoting in their proliferation. FGF2 also synergizes with other angiogenic factors such as
VEGF and platelet-derived growth factor-BB (PDGF-BB), to potentiate mutual angiogenic
effects [22,74]. Multiple lines of evidence have demonstrated the synergistic effect between
VEGF and FGF2. FGF2 upregulates VEGFA expression in various types of cells, including
HCC tumor cells. VEGF mRNA increases 3.1-fold in cells with FGF2-overexpression in
murine HCC [74]. The tumor growth induced by FGF2 overexpression can be significantly
inhibited by the VEGFR2 monoclonal antibody, indicating VEGF’s role as a downstream
mediator in FGF2-induced angiogenesis [74,75]. For the same reason, many anti-VEGF
therapies confer resistance due to the compensating role of FGF2. Increasing research is
now focusing on the dual blockage of these factors [76].

PDGF-BB is a potent stimulator of VSMCs, but not ECs. The main reason for this is
the lack of PDGFR expression on ECs membrane. FGF2 is reported to transcriptionally
upregulate the PDGFR on ECs, thus potentiating the PDGF-BB-induced migration of ECs
and compensating for FGF2 merely as a mitogenic factor for ECs. Conversely, enhancing
PDGF-BB upregulates the expression of FGFR1 on VSMCs, which promotes the prolif-
erative effect of FGF2 on VSMCs. The interplay between these two factors increases the
density and disorder of the newly-formed vessel, making it more consistent with tumor
vessels’ properties [22]. Another example demonstrating the synergism of these angiogenic
factors is the PDGF-BB-PDGFR pathway involved in pericyte adhesion. Pericytes are cells
surrounding the monolayer of ECs, the affinity of which contributes to the integrity of the
basement membrane. A deficiency in pericytes is responsible for aberrant microvascular
formation. VEGF induces the secretion of PDGF-BB from ECs. Moreover, FGF-2 can upreg-
ulate PDGFR expression in mural cells. FGF2 and VEGF cooperate to enhance the mural
cell attachment to ECs by increasing the PDGFR expression in mural cells and PDGF-BB
secretion from ECs [77].

FGF8 subfamily members are also involved in angiogenesis. These factors promote the
proliferation and tube-forming ability of human umbilical vein endothelial cells (HUVECs),
exerting a direct role in HCC [26]. In HCC, FGF18 can be induced by Wnt/β-catenin and
secreted from HCC cells and HUVECs. FGF18 binds to its receptor FGFR3 and activates
downstream AKT and ERK signaling to mediate angiogenesis in HCC [78]. In addition,
FGFR3 promotes the proliferation and tube formation of HUVECs through monocyte
chemotactic protein 1 (MCP-1) [79]. In addition to modulating tumor cells and endothelial
cell activity, FGF8 subfamily members can mediate the tumor microenvironment function
by upregulating VEGF expression by stimulating myofibroblast DNA synthesis. In sum-
mary, aberrant FGF8/17/18 signaling participates in HCC angiogenesis in both a direct
and indirect way. Notably, FGF18 is detected in liver sinus endothelial cells, indicating that
it can stimulate endothelial cells through both autocrine and paracrine mechanisms [26,80].

FGF16 is also detected in human cardiovascular tissues [80]. HUVECs treated with
recombinant FGF16 were shown to have enhanced migration without enhancement of
proliferation. The same results were observed in the recombinant FGF18 treatment group.
A reasonable interpretation of this is that FGF16 and FGF18 only activate MAPK briefly,
rather than in a sustained way. The transient activation of MAPK by FGF16 and FGF18 is
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sufficient to enhance migration but not proliferation [80]. However, it is worth noting that
there has been no evidence proving the expression of FGF16 in the liver to date.

6. FGF/FGFR Signaling in Metabolism

FGF19, FGF21, and FGF23 regulate systematic metabolic homeostasis of nutrients and
minerals via their endocrine effects on multiple organs. FGF19 is a postprandial hormone
and exerts similar insulin roles, such as stimulating glycogen and protein synthesis and
inhibiting gluconeogenesis in the liver (Figure 2) [81]. FGF19 is also involved in the regula-
tion of BA metabolism, which is closely associated with several liver diseases [19,65,82]. In
contrast, FGF21 is a fasting-induced hepatokine and is partly comparable to glucagon, in-
ducing a transformation to catabolic metabolism through binding to β Klotho-FGFR1c [16].
FGF23 is secreted from osteocytes as a response to phosphate intake [83]. FGF23 is involved
in the metabolism of several minerals, including phosphate, sodium, calcium, vitamin
D, and PTH [83–85]. These three metabolic FGF subfamilies regulate a wide range of
metabolic procedures, and the disruption of homeostasis may result in various diseases. In
this chapter, we will discuss metabolic FGF-associated liver damage and HCC.

Figure 2. The regulation of FGF19 and FGF21 on liver metabolism. FGF19 is a feeding-response
hormone and stimulated followed by increasing bile acid and FXR activation. In turn, FGF19
suppresses the expression of CYP7A1 to inhibit bile acid synthesis. Other than that, FGF19 exerts
metabolism roles like insulin, such as stimulating glycogen and protein synthesis and inhibiting
gluconeogenesis. FGF19 mainly binds to FGFR4 and β-klotho in the liver. On the contrary, FGF21 is
a fasting-induced hepatokine and is partly comparable to glucagon, inducing a transformation to
catabolic metabolism through binding to βKlotho-FGFR1c.

6.1. FGF19

Bile acid is synthesized in the liver and secreted into the small intestine as a critical
component of the bile, where it aids in the digestion of fat and lipid nutrients. However,
excessive concentrations of bile acids can induce liver damage and even the malignant
transformation of hepatocytes [86]. Additionally, increasing cellular cholesterol impairs
lysosomal function and results in accumulation of autolysosomes, impairing hepatic au-
tophagy and contributing to hepatocyte injury [87]; that is, the homeostasis of bile acid
and cellular cholesterol is crucial to a healthy liver. The farnesoid X receptor (FXR) is the
primary sensor of bile acid and inhibits bile acid synthetic metabolism to maintain BA
at a biosafe concentration. In this process, FGF15/19 is the central effector in the FXR-
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induced feedback inhibitory loop of bile acid synthesis. After feeding, an increasing flux
of bile acid enters the intestine, leading to the activation of FXR followed by an increase
in FGF15/19. FGF15/19 inhibits cholesterol 7α-hydroxylase (CYP7A1), which is the key
and speed-limited enzyme of bile acid metabolism, forming the inhibitory feedback loop
of bile acid synthesis [80]. Apart from the regulation of CYP7A1, FGF19 also stimulates the
relaxation and refiling of the gallbladder to regulate BA synthesis [88].

6.2. FGF21

Unlike other FGFs, FGF21 has no effect as a mitogen but exerts critical roles in reg-
ulating glucose and lipid metabolism. FGF21 mediates fatty acid oxidation and keto-
genesis in response to starvation through a peroxisome proliferator-activated receptor
(PPAR) α-dependent mechanism [89]. Although FGF21 is mainly produced by the liver,
adipocytes are the principal targets of FGF21, where FGFR1c and βKlotho are both highly
expressed [16]. FGF21 targets the white adipocytes to stimulate glucose uptake, ketoge-
nesis, and lipolysis and engages in thermogenic regulation through targeting the brown
adipocytes [90,91]. To expand FGF21 metabolic functions from the fat issue, FGF21 up-
regulates expression of adiponectin, which is an adipokine secreted by adipocytes, to
systematically mediate pleiotropic metabolic benefits in the endocrine mode [91]. FGF21
protects liver function and attenuates hepatic pathology caused by various long-term or
short-term nutritional challenges, such as a ketogenic diet and alcohol, an obesogenic
diet, methionine, a choline-deficient diet, and a high fructose diet [89,92–95]. For example,
when treated with a high-fat diet, FGF21 KO mice showed increasing liver pathology in
16 weeks and severe fibrosis or even HCC in 52 weeks, which was not observed in control
WT mice [93].

7. FGF/FGFR and Tumor Metastasis

Metastasis is an important characteristic for distinguishing malignant tumors from
benign tumors. It is the end phase of cancer progression and accounts for more than
90% of cancer mortality. The separation of malignant cells from the primary lesion is
the first step of metastasis. In this process, these cells undergo a transition from an
epithelial to a mesenchymal phenotype, namely, EMT, which enables them to disperse
from the original focus. These free cells then infiltrate locally, break through the basement
membrane, and finally enter the circulation as metastatic circulating tumor cells, finding
suitable sites to resettle. FGF2 and FGF19 have been proven to be associated with the
EMT process during HCC development. Signals transmitted from FGF19/FGFR4 can
phosphorylate and activate GSK3β and promote β-catenin translocation into the nucleus,
where it functions as a transcription factor, suppressing the expression of several key
genes in the Wnt pathway [96]. More evidences have appeared recently. Small surface
antigens (SHBs) are a component of the hepatitis B surface antigen, making it the most
abundant HBV virus in the serum of HBV patients. Infecting SHBs induces endoplasmic
reticulum stress, leading to the expression and autocrine activity of FGF19. Secreted
FGF19 targets FGFR4 and mediates the EMT progression of HCC by upregulating the
expression of several EMT-associated transcription factors, such as ZEB1, snail, slug, and
twist, by activating JAK2/STAT3 signaling [97]. FGF2 is considered a critical mediator
of EMT in numerous cancers, such as bladder cancers, breast cancer, and HCC [98–100].
When the HCC cell lines LH86 and Huh7 are treated with FGF2, both show changes
associated with EMT, such as an increase in vimentin, fibronectin, and collagen I levels,
and a decrease in E-cadherin levels [100]. FGF1 has also been reported to regulate the
EMT of HCC. Both HepG2 and SMMC-7721 cells show EMT associated protein expression
changes and enhanced invasion when treated with the FGF1 plasmid [101]. As a functional
target of miR-188-5p, FGF5 promotes the migration and invasion of SMMC7721 cells by
activating H-Ras-p-ERK, while the downregulation of FGF5 expression shows the opposite
results [49]. FGF9 binds to FGFR3 IIIb or IIIc and enhances cell line migration by inducing
gaps in monolayers of blood or lymphatic endothelium, similar to tumor invasion into the
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circulation. Furthermore, treatment with recombinant FGF9 significantly enhanced HCC
migration [32]. Moreover, FGF9 can regulate the HSC cell lines’ migration by creating an
inflammatory microenvironment in NAFLD mice, contributing to liver fibrosis and HCC
development [35]. All these lines of evidence illustrate that multiple FGFs can have roles
in HCC migration. The blockage of these pathways shows promise for tumor control.

8. FGF/FGFR and Drug Resistance

HCC is a cancer with high molecular heterogeneity cancer with plenty of potential
oncogenic drivers but no clear addiction loops, making the acquired resistance of targeted
tyrosine kinase a different problem. With an increasing number of preclinical trials sup-
porting the therapeutic effects of FGF/FGFR in HCC, the role of FGF/FGFR in acquired
resistance has been identified and cannot be ignored. For example, FGF8 induces resistance
to EGFR inhibitors by upregulating the expression of yes-associated protein 1 (YAP1) and
EGFR [28]. FGF9 may also participate in sorafenib resistance. Treatment of rFGF9 interferes
with sorafenib’s effects on HCC cells via JNK pathway activation [33]. Genomic profiling
has also revealed that the enrichment of FGFR1 and its downstream AKT signaling are
responsible for acquired sorafenib resistance [102]. Although FGF19 amplification may
indicate a complete response to sorafenib as discussed above, the FGF19/FGFR4 axis
contributes to sorafenib resistance. The depletion of both FGF19 and FGFR4 increases
the sensitivity of tumor cells to sorafenib, resulting in enhanced apoptosis and decreased
viability. Ponatinib, which is a third-generation multitarget kinase inhibitor, can block
FGF19/FGFR4 signaling and reverse sorafenib sensitivity [103]. Hatlen et al. [104] discov-
ered mutations in the gatekeeper and hinge-1 residues on FGFR4, which induced resistance
to BLU-554 directly since it destroys the specific covalent interaction sites between BLU-554
and FGFR4. These discoveries allow us to better understand the mechanism underlying
acquired drug resistance and show promise for further personalized and targeted therapies.

9. Targeting FGF/FGFR

The development of drugs targeting FGFR has involved multiple target kinase in-
hibitors, pan-FGFR inhibitors, irreversible inhibitors, and reversible inhibitors. Addition-
ally, an increasing number of medications with novel toxicity profiles are appearing. This
chapter summarizes the progress of FGFR monotherapy and combination intervention.

9.1. Multitarget Kinase Inhibitors

Multitarget kinase inhibitors target a series of growth factor receptors that share
a high structural similarity in their tyrosine kinase domains. Lenvatinib, for example,
targeting several kinases including VEGFRs, FGFR1-4, PDGFRα, RET, and KIT, has been
approved as a frontline treatment alternative to sorafenib for patients with advanced-stage
HCC [105,106]. Compared to sorafenib, lenvatinib has more potent activity against VEGF
receptors and the FGFR family [1]. The effect of lenvatinib was not inferior to that of
sorafenib on the overall survival of patients with unresectable HCC and showed significant
benefits in all observed secondary endpoints, including progression-free survival (PFS),
the objective response rate (ORR), and time for progression (TTP) [106]. A 2019 meta-
analysis concluded that lenvatinib was more favorable for HBV-positive HCC patients
than sorafenib, which was immensely valuable since HBV infection is one of the primary
etiologies of HCC [107]. Higher serum FGF19 levels were associated with a better response
to lenvatinib. The rate of FGF19 baseline in the objective response (OR) and non-OR groups
was 2.09 vs. 1.32 at four weeks and 2.19 vs. 1.40 at eight weeks, respectively, showing the
clinical response predictive value of circulating FGF19 in early HCC patients [108].

Regorafenib is an FDA-approved oral multikinase inhibitor. The main targets of rego-
rafenib include VEGFR1-3, PDGFR-β, FGFR1, KIT, RET, and B-RAF. Regorafenib prolonged
the median survival time of HCC patients to 10.6 months (7.8 months for a placebo) and
significantly reduced the risk of death of sorafenib-resistance patients [109]. Regorafenib
and cabozantinib exhibited the best PFS and OS benefits and are preferable in refractory
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HCC patients compared to other agents [110]. These drugs have now been applied in
second-line treatment to help HCC patients who show failure after first-line intervention.
Considering the promising effects of kinase inhibitors and immune blockade in various
cancers, the combination of nivolumab and regorafenib in HCC is being investigated in a
clinical trial (ClinicalTrials.gov Identifier: NCT04170556).

TSU-68(SU6668, also known as orantinib) is an oral multiple RTK inhibitor that targets
VEGFR2, PDGFR-β, and FGFR, with endothelial cells as its primary target. In phase I/II
trial, 8.6% of patients with advanced HCC showed responses to TSU-68, and the median
overall survival of all patients was 13.1 months. TSU-68 showed preferable clinical benefits
and satisfying safety profiles for patients with HCC, including those who have impaired
liver function [111]. Later, a phase II trial of TSU-68 combined with TACE was conducted,
but there were no statistically significant effects [112].

There are many other multitarget kinase inhibitors approved for various cancers,
such as ponatinib for chronic myeloid leukemia [113], nintedanib for progressive fibrosing
interstitial lung diseases [98], and idiopathic pulmonary fibrosis [114,115]. Although
multikinase inhibitors may benefit patients with complementary function among different
pathways, the on-target toxicity profile of VEGFR is a barrier for long-term treatment.
Therefore, an increasing number of selective inhibitors are needed to improve HCC therapy.

9.2. Pan-FGFR Inhibitors

JNJ-42756493 (also known as erdafitinib) was approved in the USA in 2019 to treat
urothelial carcinoma with specific FGFR2 or FGFR3 alterations [116]. The ORR of JNJ-
42756493 is 42% (consisting of 3% CR and 39% PR). Serious adverse effects, including eye
disorders (10%), were observed in 41% of patients. Additionally, 68% and 53% of patients
experienced dosage interruptions and dose reductions, respectively [117]. A phase I/II
clinical trial of JNJ-42756493 in advanced HCC has been conducted, but the data have not
yet been published (ClinicalTrials.gov Identifier: NCT02421185).

AZD4547 is an oral selective small molecular inhibitor of FGFR1-3 (IC50 = 0.2, 2.5, and
1.8 nmol/L) but showed significant weaker effects on FGFR4 (IC50 = 165 nmol/L) and much
lower selectivity towards VEGFR, IGF2, CDK2, and p38, showing good selectivity among
these kinomes [118]. AZD4547 has antitumor effects by inhibiting receptor phosphorylation
and the following FRS2, PLCγ, and MAPK pathways, but does not influence kinase insert
domain receptor (KDR)-driven carcinogenesis [118]. Multiple clinical trials of AZD4547
are ongoing to test its safety, efficiency, and biomarker value in solid tumors, lymphomas,
or myelomas, such as the study of AZD4547 in patients with FGFR1- or FGFR2-amplified
tumors or tumors with other genetic changes (ClinicalTrials.gov Identifier: NCT01795768,
NCT04439240).

BGJ398 (also known as infigratinib) is widely studied in advanced urothelial carcinoma
and intrahepatic cholangiocarcinoma (ICC). The response rate of BGJ398 was 25.4% for
patients with advanced urothelial carcinoma and 14.8% for those with ICC, which was
favorable compared with those of other novel therapies [119,120]. Patients with FGFR3
mutants were more likely to respond to BGJ398, which may partly be explained by the
high specificity of BGJ398 for FGFR3. In advanced urothelial carcinoma, the most frequent
AE (advance effect) was hyperphosphatemia (46.3%) [119]. For patients with ICC, the
most frequent AE was hyperphosphatemia, followed by fatigue and stomatitis [120]. In
general, these AEs were manageable and reversible. There have been no statistics on
BGJ398, AZD4547, or other pan-FGFR inhibitor treatments for HCC in clinical trials, which
are needed. BGJ398 also showed strong antitumor activity in an HCC patient-derived
tumor xenograft (PDX) model expressing high FGFR2 and FGFR3 with acquired sorafenib
resistance. This treatment blocked the FGF/FGFR pathway, interfered with the cell cycle
and tumor migration, and promoted vascular normalization. However, further clinical
trials are required to verify its efficacy and safety in HCC [121].

It is puzzling that most pan-FGFR inhibitors have strong affinities for FGFR1-3 while
sparing FGFR4. Simultaneously, most of the adverse effects of pan-inhibitors can be due to
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FGFR1-3 on-target dose-dependent toxicities. For example, hyperphosphatemia is a typical
adverse event of FGFR1-3 inhibition. Patients treated with this pan-FGFR need to be under
strict supervision for the blood phosphate concentration and receive intervention measures
if necessary. Additionally, a low specificity for FGFR4 makes it ineffective on FGFR4-driven
tumors, which has been discussed above as the most potent oncogenic signaling in HCC.
FGFR4-selected inhibitors have thus been discovered to relieve the negative reactions and
strengthen the blockage of FGFR4-induced HCC.

9.3. FGFR4 Inhibitors

As discussed above, FGF4 shares a high sequence identity with FGFR1-3. The discov-
ery of the poorly conversed cysteine at position 552 (Cys552) suggests one of the feasible
ways to develop selective inhibitors of FGFR4 [122]. Cys552 is located in the mid-hinge
region of the ATP binding site of FGFR4, while it is tyrosine in FGFR1-3 in the same area.
Cysteine replacement by tyrosine at this position makes a difference in the ATP-binding
pocket size and covalent interaction properties [122]. Based on the character of Cys552 in
FGFR4, BLU-9921, BLU-554, H3b-6527, and FGF401 are disclosed one after another.

9.3.1. Irreversible Inhibitors

BLU-9931 is the first selective small molecule for FGFR4. By covalently binding with
Cys552 of FGFR4 selectively and irreversibly, BLU-9921 effectively inhibited the enzyme
activity of FGFR4s (IC50 = 3 nmol/L) while weakly inhibiting that of FGFR1-3 (IC50 = 591,
493, and 150 nmol/L) [123]. BLU-554 (also known as fisogatinib) is the optimized product
of BLU-9931. This molecule is still being investigated in a phase I study for the treatment
of advanced HCC. The phase I trial of BLU-554 noted that most of the AEs of BLU-9931 are
manageable and acceptable with a maximum tolerated dose (MTD) defined as 600 mg once
daily for advanced HCC patients. The median duration of the response was 5.3 months (95%
CI, 3.7-not reached) (ClinicalTrials.gov Identifier: NCT02508467) [65]. The concentration of
serum FGF19 was also associated with the BLU-554 response. The overall response rate of
BLU-554 in FGF19-positive HCC was 17% (11 of 66 patients) and 0% (0 of 32 patients) for
FGF19-negative HCC [124].

H3B-6527 also showed a difference between FGFR1-3 and FGFR4, and the IC50
values differ by a thousand times (IC50 values of 0.32, 1, 29, and 1.0 and 1.06 nM). A
phase I trial of H3B-6527 in advanced HCC is now recruiting (ClinicalTrials.gov Identifier:
NCT02834780) [125].

Although irreversible inhibitors have highly selective characteristics, they may not
achieve optimal effects due to the high synthesis rate of FGFR4 [122]. Irreversible covalent
binding may have side effects by forming covalent compounds with off-target proteins,
with or without hyperreactive cysteines [126]. Furthermore, recent studies have noted that
the resynthesis rate of FGFR4 is high [122]. Therefore, a complete and continuous drug
intervention is essential to achieving maximum antitumor efficacy. Irreversible inhibitor
side effects and the need for sustained drug function are pushing investigators to identify
inhibitors that can show ongoing effects during anti-FGFR4 therapy.

9.3.2. Reversible Inhibitors

FGF401 (also known as roblitinib) is a reversible covalent inhibitor, displaying more
than a 100-fold selectivity for FGFR4 compared to FGFR1-3. This drug has an increased
target residence time of 4.5 h [122]. FGF401 exhibits potent antitumor activity in HCC
with aberrant FGF19 overexpression [127]. Novartis pharmaceuticals sponsored a clinical
trial of FGF401 from 2014 to 2020. This study aimed to test the maximum tolerated
dose and/or recommended phase II dose and efficacy of FGF401 as a monotherapy or in
combination with PDR001 in HCC patients positive for FGFR4 and KLB (ClinicalTrials.gov
Identifier: NCT02325739). This study has been completed but conclusive data have not
been published, and the phase II part of the FGF401 + PDR001 combination was halted due
to commercial reasons. FGF401 also performed well in HCC with an FGFR mutation at the
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gate-keeper (V550M and V550L) and hinge-1 (C552) residues, which is the main reason for
acquired BLU-554 resistance [103]. This drug showed no difference in the binding manner
between FGFR4WT, FGFR4V550M, and FGFR4 V550L and possessed comparable inhibitory
effects for both wild type and FGFR4V550M and FGFR4 V550L mutants (IC50: 6 nM for
FGFR4WT, 13 nM for FGFR4V550M, and 9 nM for FGFR4V550L) [126]. These observations
indicate that FGF401 may be able to overcome drug resistance.

9.4. Combined Therapy

Immune checkpoint inhibitor (ICI) therapy, especially programmed cell death protein
1 (PD-1) and programmed cell death ligand 1 (PD-L1), has shown strong efficacy in the
treatment of malignant diseases and is gradually becoming the mainstream in antitumor
therapy. The combination of the anti-PD-1 antibody and an antiangiogenic agent has
shown potent synergistic effects, which may be due to the close correlation and dependence
between tumor angiogenesis and microenvironment suppression [128]. The formation
of leaky nascent cells inhibits the infiltration of T cells and the maturation of dendritic
cells (DCs) while recruiting Tregs and myeloid-derived suppressor cells (MDSCs) in the
microenvironment [128]. Hypoxia also induces the transformation of tumor-associated
macrophages (TAMs) from an immune stimulatory M1-like phenotype towards an immune
inhibitory M2-like phenotype. This immunosuppressive tumor microenvironment can
be reprogrammed by the application of antiangiogenic agents, such as VEGF [129]. In
turn, interferon-γ (IFN-γ) secreted from activated T cells can promote the normalization
of angiogenesis. Multiple preclinical studies have demonstrated the efficacy of such a
combination [130]. There are several associated trials currently recruiting (Table 2). It is
highly anticipated that new strategies can improve the survival and response rates of HCC
in the future.

Table 2. Ongoing trials of FGF/FGFR targeted therapies for HCC.

Drug Drug Target Conditions Status Phase NCT Number

Regorafenib VEGFR1–3, PDGFR, RAF
kinase, FGFR1–2 HCC Not

recruiting Phase 2 NCT04476329

BLU554 FGFR4 HCC Active, not
recruiting

Active, not
recruiting NCT02508467

H3B-6527 FGFR4 HCC Recruiting Phase 1 NCT02834780

Regorafenib + Nivolumab VEGFR1–3, PDGFR, RAF
kinase, FGFR1–2 + PD-1 HCC Recruiting Phase 1

Phase 2 NCT04170556

Pembrolizumab + Lenvatinib PD-1 + VEGFR1–3,
PDGFR, FGFR1–4, RET

Liver Transplant
Complications;
HCC Recurrent

Recruiting Not
Applicable NCT04425226

Durvalumab + Lenvatinib PD-L1 + VEGFR1–3,
PDGFR, FGFR1–4, RET

Liver carcinoma;
Liver Transplant;

Complications
Recruiting Not

Applicable NCT04443322

Camrelizumab + Lenvatinib PD-1 + Multitarget kinase
inhibitors HCC Recruiting Phase 1

Phase 2 NCT04443309

Lenvatinib + Toripalimab VEGFR1–3, PDGFR,
FGFR1–4, RET + PD-1 HCC Recruiting Phase 2 NCT04368078

Lenvatinib + TACE versus
Sorafenib + TACE

VEGFR1–3, PDGFR,
FGFR1–4, RET

HCC;
Tumor Thrombus Enrolling Phase 4 NCT04127396

10. Conclusions and Future Perspectives

Liver cancer was the sixth most frequently diagnosed malignancy and the fourth
leading cause of cancer death worldwide in 2018, with hundreds of thousands of people
dying annually [113]. HCC accounts for 75–85% of primary liver cancer and is the most
common type. Thus far FGF/FGFR signaling has shown promising outcomes in HCC
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intervention. However, inhibitors targeting FGF/FGFR have not completely solved the
challenge faced by other agents, such as acquired resistance and patients’ selective response.
The addition of diverse disciplines would improve the efficacy in targeting FGF/FGFR in
HCC, such as structural biology. Specific binding dependent on the molecular structures
of FGFs/FGFRs is essential for the activation of FGF signaling. Commonly, individual
FGFs can bind to multiple FGFRs with differential binding affinities, activating several
downstream signaling pathways to varying degrees. These signaling pathways affect the
occurrence and development of HCC in diverse ways. Advances in structural biology have
enabled us to gain more information about the structures of FGFs/FGFRs and the key fac-
tors responsible for their specific binding and subsequent signaling pathway transduction.
These findings provide a potential strategy for precisely targeting FGFs/FGFRs to suppress
their roles in HCC from a structural perspective.

Management of the administration of nonselective TKIs, selective inhibitors of pan-
FGFR to FGFR4 inhibitors, and even reversible covalent FGFR4 inhibitors is important.
Given that irreversible or reversible-covalent inhibitors are still in early clinical trials, their
safety remains unclear. To address this, researchers need to identify more inhibitors based
on a deeper understanding of the FGFR-specific target effects and toxicity profiles and the
mechanism of carcinogenicity and resistance. The combined application of FGFR and other
drugs is also the next research direction, in relation to kinase inhibitors, immunotherapy,
checkpoint inhibitors (CPIs), and antivascular therapy. Together with these interventions,
cotargeting the FGFR pathway may overcome the emergence of inevitable resistance
mechanisms with single-targeted agents and provide more durable responses to treatment.
Targeting FGFR is a promising strategy in the treatment of HCC patients.
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