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Abstract
VSMCs (vascular smooth muscle cells) play critical roles in arterial remodelling with aging, hypertension and
atherosclerosis. VSMCs exist in diverse phenotypes and exhibit phenotypic plasticity, e.g. changing from a
quiescent/contractile phenotype to an active myofibroblast-like, often called ‘synthetic’, phenotype. Synthetic
VSMCs are able to proliferate, migrate and secrete ECM (extracellular matrix) proteinases and ECM proteins. In
addition, they produce pro-inflammatory molecules, providing an inflammatory microenvironment for leucocyte
penetration, accumulation and activation. The aging VSMCs have also shown changes in cellular phenotype,
responsiveness to contracting and relaxing mediators, replicating potential, matrix synthesis, inflammatory
mediators and intracellular signalling. VSMC dysfunction plays a key role in age-associated vascular remodelling.
Cyclic nucleotide PDEs (phosphodiesterases), by catalysing cyclic nucleotide hydrolysis, play a critical role in
regulating the amplitude, duration and compartmentalization of cyclic nucleotide signalling. Abnormal alterations of
PDEs and subsequent changes in cyclic nucleotide homoeostasis have been implicated in a number of different
diseases. In the study published in the latest issue of Clinical Science, Bautista Niño and colleagues have shown
that, in cultured senescent human VSMCs, PDE1A and PDE1C mRNA levels are significantly up-regulated and
inhibition of PDE1 activity with vinpocetine reduced cellular senescent makers in senescent VSMCs. Moreover, in
the premature aging mice with genomic instability (Ercc1d/−), impaired aortic ring relaxation in response to SNP
(sodium nitroprusside), an NO (nitric oxide) donor, was also largely improved by vinpocetine. More interestingly,
using data from human GWAS (genome-wide association studies), it has been found that PDE1A single nucleotide
polymorphisms is significantly associated with diastolic blood pressure and carotid intima–media thickening, two
hallmarks of human vascular dysfunction in aging. These findings establish a strong relationship between PDE1
expression regulation and vascular abnormalities in aging.
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CVD (cardiovascular disease) remains the leading cause of mor-
bidity and mortality in the aging population. VSMCs (vascular
smooth muscle cells) play critical roles in arterial remodelling
with aging, hypertension and atherosclerosis. Under normal con-
ditions, VSMCs residing in the media of vessels are quiescent
with a very low turnover rate and insignificant secretory activ-
ity. These VSMCs are highly differentiated cells that possess
the contractile phenotype by expressing large amounts of con-
tractile proteins, and function principally to maintain vascular
tone. VSMCs exist in diverse phenotypes and exhibit phenotypic
plasticity, e.g. changing from a quiescent/contractile phenotype
to an active myofibroblast-like, often called ‘synthetic’, pheno-
type [1]. Synthetic VSMCs are able to proliferate, migrate and
secrete ECM (extracellular matrix) proteinases and other ECM
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proteins. In addition, they produce pro-inflammatory molecules,
providing an inflammatory microenvironment for leucocyte pen-
etration, accumulation and activation [2,3]. The aging VSMCs
have also shown changes in cellular phenotype, responsiveness
to contracting and relaxing mediators, replicating potential, mat-
rix synthesis, inflammatory mediators and intracellular signalling
[4,5]. VSMC dysfunction plays a key role in age-associated vas-
cular remodelling.

Cyclic nucleotide PDEs (phosphodiesterases), by catalysing
cyclic nucleotide hydrolysis, play a critical role in regulating the
amplitude, duration and compartmentalization of cyclic nucle-
otide signalling. PDEs constitute a superfamily of enzymes with
22 different genes and more than 100 different mRNAs grouped
into 11 broad families (PDE1–PDE11) on the basis of distinct
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Table 1 PDE1 family members
CaM, calmodulin; CaMKII, Ca2+/CaM-dependent protein kinase II; PDE, phosphodiesterase; PKA, protein kinase A.

PDE1 gene Variants
Substrates
(Km) [7]

Inhibitors
(IC50) [7,14]

Regulators
[7,36]

Expression in
VSMCs [14–16]

Roles in VSMCs
[14–16]

Association with
vascular diseases
[16,27]

PDE1A 1A1–1A14 cAMP:
∼112 μM;
cGMP: ∼5 μM

Vinpocetine:
∼10 μM;
IC86340:
∼0.4 μM

Ca2+/CaM; PKA Contractile:
cytosol; synthetic:
nucleus

Contraction,
growth, death

Increased in nitrate
tolerance; increased in
premature aging mice
(Ercc1d/−); single
nucleotide polymorphism
association with high blood
pressure and intima–media
thickening in humans

PDE1B 1B1–1B2 cAMP:
∼24 μM;
cGMP: ∼3 μM

Vinpocetine:
∼10 μM;
IC86340:
∼0.2 μM

Ca2+/CaM;
CaMKII

Only detected in
VSMCs of
monkeys and
baboons

Unknown Unknown

PDE1C 1C1–1C5 cAMP:
∼1 μM;
cGMP: ∼1 μM

Vinpocetine:
∼40 μM;
IC86340:
∼0.06 μM

Ca2+/CaM Contractile: none;
synthetic:
membrane and
cytosol

Growth, migration,
collagen

Induced in neointimal
VSMCs of rodent and
human vessels; increased
in premature aging mice
(Ercc1d/−)

structural, kinetic, regulatory and inhibitory properties. PDEs
are expressed in a cell/tissue-specific manner with only a few
enzymes expressed in any single cell type. PDE1 family mem-
bers are Ca2+/CaM (calmodulin)-stimulated PDEs encoded by
three distinct genes, PDE1A, PDE1B and PDE1C (Table 1). The
enzyme activity of all PDE1 isoenzymes can be stimulated up
to 10-fold by Ca2+/CaM in vitro as well as be modulated by
other kinases [6]. PDE1A and PDE1B isoenzymes hydrolyse
cGMP with much higher affinities than cAMP, whereas PDE1C
isoenzymes hydrolyse both cAMP and cGMP with equally high
affinity [7]. The unique Ca2+-stimulated property allows PDE1
members to function as important mediators in the cross-talk
between Ca2+ and cyclic nucleotide signalling [8]. In the vascu-
lature, PDE1 activity is primarily associated with VSMCs, but
not endothelial cells [9,10]. PDE1A is found in large vessels
from many different species [11–13] as well as in cultured VS-
MCs [14]. PDE1B is only reported in VSMCs from monkeys
and baboons [13,15]. PDE1C is detected in growing VSMCs in
culture and in vascular lesions, but not in normal medial VSMCs
[15,16]. These findings suggest that PDE1 expression is species-
and cell-phenotype-dependent.

Abnormal alterations of PDEs and subsequent changes in cyc-
lic nucleotide homoeostasis have been implicated in a number of
different diseases [17]. In the study published in the latest is-
sue of Clinical Science, Bautista Niño et al. [18] have shown
that, in cultured senescent human VSMCs, PDE1A and PDE1C
mRNA levels are up-regulated 11.6- and 9-fold respectively.
Inhibition of PDE1 activity with vinpocetine reduced cellular
senescent makers (such as p16 and p21) in senescent VSMCs.
Moreover, in the premature aging mice with genomic instabil-
ity (Ercc1d/−), impaired aortic ring relaxation in response to

SNP (sodium nitroprusside), an NO (nitric oxide) donor was
also largely improved by vinpocetine. More interestingly, using
data from human GWAS (genome-wide association studies), it
has been found that PDE1A single nucleotide polymorphisms
is significantly associated with diastolic blood pressure and ca-
rotid intima–media thickening, two hallmarks of human vascular
dysfunction in aging. These findings establish a strong relation-
ship between the regulation of PDE1 expression and vascular
abnormalities in aging. Although it was attempted to determine
the potential roles for PDE1 in vascular aging using vinpocetine
as a PDE1 inhibitor, the observed vinpocetine effects may not
be entirely mediated by PDE1 inhibition. This is because vin-
pocetine has several non-PDE1 targets, including Ca2+ channels
[19], IKK [inhibitor of NF-κB (nuclear factor κB) kinase]/NF-
κB [20], ROS (reactive oxidative species) production [21] and
MKP-1 (mitogen-activated protein kinase phosphatase-1) [22],
all of which may be also important in vascular senescence and
dysfunction. Other previous studies of PDE1A and PDE1C in
cultured VSMCs and animal models may also provide supportive
evidence.

The potential role of PDE1 in regulating vascular reactivity
and blood pressure has been implicated from a number of previ-
ous studies. It has been shown that vinpocetine increases cGMP
levels, accompanied by dilating rabbit and rat aortas in ex vivo
organ culture [23–27]. These data suggest that PDE1 is import-
ant in regulating cGMP signalling and smooth muscle relaxa-
tion. Most vasoconstrictors, such as noradrenaline (norepineph-
rine), AngII (angiotensin II) and ET-1 (endothelin 1), increase
intracellular Ca2+, which is thought to be the major mechanism
of vasoconstrictor-mediated smooth muscle contraction. cGMP
functions as a negative regulator of intracellular Ca2+ elevation
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and vasoconstriction [8]. It is therefore logical that vasoconstrict-
ors increase the activity of PDE1 via increased Ca2+, which then
decreases cGMP levels and promotes vasoconstriction. Indeed, it
has been shown that PDE1 activity is rapidly stimulated in rabbit
arterial strips and in cultured rat aortic VSMCs by Ca2+-elevating
reagents such as AngII [27–29], which is responsible for AngII-
mediated antagonism of ANP (atrial natriuretic peptide)-induced
cGMP accumulation [27]. The PDE1 isoenzyme is preferentially
PDE1A because PDE1B and PDE1C expression is negligible in
medial contractile VSMCs [15,16], and PDE1C deficient mice
do not have blood pressure changes [16]. In a rat nitrate tol-
erance model induced by continuous NTG (nitroglycerin), an
NO donor, infusion for 3 days, increased PDE1A expression and
activity was found in the tolerant rat aortas [27]. Vinpocetine
partially restored the vasodilatory sensitivity of tolerant vessels
to subsequent NTG exposure. It has been shown that a more
specific PDE1 inhibitor, IC86340, reduces basal blood pressure
(∼10–20 mmHg) in mice [30]. Collectively, these experimental
results suggest that PDE1A is important in regulating vascular
reactivity, which is consistent with the human GWAS showing
PDE1A association with blood pressure dysregulation reported
in a previous study [31] as well as in the study by Bautista Niño
et al. [18]. Owing to lack of a PDE1A-selective inhibitor, ge-
netically engineered PDE1A mice will be useful to understand
the function and underlying mechanism of the PDE1A isoen-
zyme in blood pressure regulation under normal and disease
states.

The regulation and function of PDE1 in VSMC prolifera-
tion/migration and intima–media thickening has also been pre-
viously investigated in vitro and in vivo. PDE1A localizations
appear to be VSMC phenotype-dependent. For example, it has
been shown that in VSMCs with the contractile phenotype both
in vitro and in vivo, PDE1A is predominantly cytoplasmic. In
contrast, PDE1A is expressed in the nucleus of synthetic VSMCs
in culture or neointimal lesions [14]. Cytoplasmic PDE1A ap-
pears to control the contractility of contractile VSMCs, whereas
nuclear PDE1A is critical for synthetic VSMC growth and sur-
vival [14]. PDE1A promotes VSMC proliferation through in-
creasing the protein stability of nuclear β-catenin, an essential
transcription modulator in cell proliferation [32]. These findings
are consistent with the GWAS showing a significant association
of PDE1A single nucleotide polymorphisms with carotid intima–
media thickness [31]. Experimental evidence has also revealed an
important role for PDE1C in pathological vascular remodelling.
It has been shown that PDE1C expression is almost not present in
contractile SMCs (smooth muscle cells), but drastically elevated
in synthetic SMCs in vitro as well as in neointimal lesions of an-
imal models and human disease vessels [15,16]. PDE1C knock-
out or PDE1-selective inhibitor significantly attenuates VSMC
growth/migration in vitro and injury-induced neointimal form-
ation in vivo [16,33]. More importantly, PDE1 inhibition sup-
pressed vascular remodelling of human saphenous vein explants
in an ex vivo organ culture model [16]. Mechanistic studies
revealed that PDE1C inhibits endocytosis/lysosome-dependent
degradation and thus increases the protein stability of growth
factor receptors, such as PDGFRβ (platelet-derived growth factor
receptor β) known to be important in pathological vascular re-

modelling [16]. In addition, PDE1C has also been shown to
be critical in regulating collagen homoeostasis by inhibiting
lysosome-dependent type I collagen protein degradation and thus
increasing collagen production in synthetic VSMCs [34]. PDE1
inhibitors may represent novel therapeutic agents for treating car-
diovascular diseases.

Taken together, the findings from previous studies and that of
Bautista Niño [18] strongly support the conclusion that PDE1A
and PDE1C induction/activation may play key roles in VSMC
pathogenesis associated with abnormal vascular reactivity and
intima–media thickening, via different molecular mechanisms. In
addition, the experimental evidence is also in line with the human
GWAS showing PDE1A association with blood pressure dysreg-
ulation and intima–media thickening reported by Bautista Niño
et al. [18]. Future studies are necessary to determine the caus-
ative roles and underlying mechanisms of PDE1A and PDE1C
in vascular aging using various in vitro and in vivo approaches.
Owing to the lack of PDE1 isoenzyme-selective inhibitors, de-
veloping genetically engineered aging mice with gain- or loss-
of-PDE1A or -PDE1C function will be useful. In addition, given
the fact that PDE1A and PDE1C are differentially expressed
and function in contractile and synthetic SMCs, a combina-
tion of targeting both PDE1A and PDE1C may have additive
or synergistic effects in treating vascular disorders. A series of
pan-PDE1 inhibitors, recently developed by Intra-Cellular Ther-
apies, Inc., are in pre-clinical development for treating schizo-
phrenia [35]. Thus PDE1 inhibitors may represent feasible thera-
peutic agents for treating cardiovascular diseases associated with
aging.
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