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Bacillus subtilis GXA-28 is a thermophilic strain that can produce high yield and high molecular weight of poly-�-glutamic acid
under high temperature. Here, we report the draft genome sequence of this strain, which may provide the genomic basis for the
high productivity of poly-�-glutamic acid.
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Bacillus subtilis strain GXA-28 (CCTCC M2012347) is a Gram-
positive, thermophilic, spore-forming bacterium with capa-

bility of high productivity of poly-�-glutamic acid under high
temperature, which was isolated from marine sands of Beihai,
Guangxi, China (1). Poly-�-glutamic acid or �-PGA is a promis-
ing biomaterial with wide application in industry, agriculture,
medicine, food, cosmetics, and wastewater treatment. Compared
with the laboratory strain of B. subtilis Marburg 168 (2), the strain
of GXA-28 can produce larger amounts of �-PGA. The yield of
�-PGA, which was obtained at 45°C after 22 h, increased by 2.27
and 10 times over that obtained at 37°C and 28°C, respectively.
Furthermore, the molecular weight reached 3.03 � 106, which
belongs to the range of ultra-high molecular weight (3). In order
to explore the biosynthesis mechanism of high yield and high mo-
lecular weight of �-PGA under high temperature, the genome of
GXA-28 was sequenced and released.

The genome of GXA-28 was sequenced by using a shotgun
strategy combining the Illumina HiSeq 2000 and Illumina MiSeq
platforms, which produced paired reads totaling 1,260 Mb with
300-fold coverage. All of the sequence data were processed and de
novo assembled into 13 contigs with an N50 of 1,100,410 bp, an N90

of 292,933 bp, and a maximum contig size of 1,156,606 bp using
SPAdes version 3.0 (4). Annotation was conducted by RAST (5),
RNAmmer (6), tRANScan (7), and BLAST against the RefSeq da-
tabase. The genome of GXA-28 is 4,261,421 bp with a G � C
content of 43.6%, containing 4,468 protein coding genes (CDSs),
71 tRNA genes, and 20 rRNA operons.

BLAST analysis of the genome sequence of GXA-28 against the
RefSeq database revealed that it provided a complete set of genes
related to �-PGA biosynthesis, including the glutamate racemase
genes yrpC and racE; the glutamate symport protein genes gltT
and gltP; the synthetase genes pgsBCAE; the depolymerase genes
pgdS, ywrD, and ggt; and the regulator genes comPA, degSU, degQ,
and swrA. It has been reported that the two-component system
(TCS) genes comPA and degSU were the key regulatory factors in
the �-PGA biosynthesis (8, 9). Interestingly, two temperature-

responsive TCS genes, vicKR and desKR, which are involved in the
regulation of the components of the cell wall/membrane and the
desaturation of membrane phospholipids, respectively, are found
in the genome of GXA-28. These may be associated with the high
productivity of �-PGA in GXA-28 under high temperature and
provided novel information on the �-PGA biosynthesis in Bacillus
species, although much evidence is needed to verify this.

The availability of the genome sequence of a thermophilic
strain GXA-28 provides us the opportunity to further understand
the genetic differences between Marburg 168 and GXA-28 that
affect �-PGA biosynthesis, to explain the genetic reasons for high
productivity of �-PGA in GXA-28 under high temperature, and to
get more genes that regulate or participate in the process of �-PGA
production.

Nucleotide sequence accession numbers. The whole-genome
shotgun project has been deposited at DDBJ/EMBL/GenBank un-
der the accession number JPNZ00000000. The version described
in this paper is version JPNZ01000000.
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