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Proteomic signatures of 16 major 
types of human cancer reveal universal 
and cancer‑type‑specific proteins 
for the identification of potential therapeutic 
targets
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Abstract 

Background:  Proteomic characterization of cancers is essential for a comprehensive understanding of key molecu‑
lar aberrations. However, proteomic profiling of a large cohort of cancer tissues is often limited by the conventional 
approaches.

Methods:  We present a proteomic landscape of 16 major types of human cancer, based on the analysis of 126 
treatment-naïve primary tumor tissues, 94 tumor-matched normal adjacent tissues, and 12 normal tissues, using mass 
spectrometry-based data-independent acquisition approach.

Results:  In our study, a total of 8527 proteins were mapped to brain, head and neck, breast, lung (both small cell and 
non-small cell lung cancers), esophagus, stomach, pancreas, liver, colon, kidney, bladder, prostate, uterus and ovary 
cancers, including 2458 tissue-enriched proteins. Our DIA-based proteomic approach has characterized major human 
cancers and identified universally expressed proteins as well as tissue-type-specific and cancer-type-specific proteins. 
In addition, 1139 therapeutic targetable proteins and 21 cancer/testis (CT) antigens were observed.

Conclusions:  Our discoveries not only advance our understanding of human cancers, but also have implications for 
the design of future large-scale cancer proteomic studies to assist the development of diagnostic and/or therapeutic 
targets in multiple cancers.

Keywords:  Proteomic analysis, Data-independent acquisition, Tissue-enriched proteins, Cancer-associated proteins, 
Cancer therapeutic targets
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Introduction
Great efforts have been made to construct a comprehen-
sive genomic landscape of human cancers using large-
scale genomic data [1, 2]. These studies, particularly the 
Cancer Genome Atlas (TCGA) project, focus on the dis-
covery of the cellular origin and oncogenic processes of 
cancers [3–6]. These greatly advance our knowledge in 
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cancer biology, cancer screening and diagnosis, and also 
facilitate the development of targeted- and immuno-
therapies [7–9]. However, the expression of protein-
coding genes as well as the regulation of intracellular 
signaling networks is a dynamic and integrative process 
of genomic, transcriptomic, and translational events [10, 
11]. It is unclear to what extent of these molecular altera-
tions are translated into proteins. Previous studies have 
also shown proteome variations in different tissues [12–
14]. Therefore, a comprehensive proteomic-based analy-
sis of major cancer types can provide information beyond 
genomics and further aid in the discovery of molecular 
signatures in cancers to understand the functional conse-
quences of certain key genomic aberrations.

Recently, data-independent acquisition (DIA) of 
mass spectrometry (MS), also called Sequential Win-
dow Acquisition of all THeoretical fragment ion spectra 
(SWATH), has emerged as an alternative technology for 
proteomic analysis of biological samples to minimize the 
data-dependent acquisition (DDA)-based analytic limi-
tations, for instance, the stochastic nature of precursor 
ion selection and low sampling efficiency [15–19]. DIA 
is an unbiased methodology that allows peptide pre-
cursor ions divided into several consecutive windows 
during fragmentation resulting in a comprehensive frag-
mentation map of all detectable precursors for accurate 
quantification of the given sample. A recent study involv-
ing 11 institutions worldwide has demonstrated that 
DIA (SWATH-MS) is a fast, simple and reproducible 
method for large-scale proteomic quantitative analysis 
[17]. Other benefits of using DIA-MS based technology 
include requiring less quantity of clinical samples and 
providing sufficient proteome coverage with quantitative 
consistency and analytic accuracy [20, 21].

To facilitate and advance our understanding in human 
cancers from proteomic perspective, we extensively ana-
lyzed 16 major types of treatment-naïve primary human 
cancer (including cancerous and non-cancerous tissues) 
using DIA-MS. Our proteomic-based approach has char-
acterized major human cancers and identified universally 
expressed proteins as well as tissue-type-specific and 
cancer-type-specific proteins. Additionally, our study 
provides new insights into potential therapeutic and 
diagnostic targets.

Methods
Tissue sample acquisition
All tissue samples and associated clinical informa-
tion were obtained with approval from the Institutional 
Review Board of Johns Hopkins Medical Institution 
under informed consent. Tissue specimens were col-
lected from cancer patients diagnosed at Johns Hopkins 
Hospitals, whose tumors were untreated and underwent 

surgical resection. Each tissue sample had less than 
30  min of cold ischemia time after resection and was 
flash-frozen in liquid nitrogen. All cases were reviewed 
by the American Board of Pathology certified patholo-
gists to confirm the morphological diagnosis and tumor 
staging. Patients with prior history of other malignancies 
in the past 12 months, any systemic chemotherapy, endo-
crine or immune-related therapy, as well as prior radia-
tion therapy for any cancer type, were excluded from this 
study.

In total, 246 tissue samples of 16 cancer types from 
141 patients were collected for this study with an aver-
age age of 64 years (ranged from 27 to 92 years old). Our 
cohort had a relatively balanced sex distribution with 73 
males and 68 females. The pathological stage of cancers 
was classified according to the American Joint Commit-
tee on Cancer (AJCC) staging manual and World Health 
Organization (WHO) criteria [22]. Patients’ demograph-
ics, tumor histopathologic characteristics, and other 
clinical information are summarized in Additional file 2: 
Table S1.

Liquid chromatography tandem mass spectrometry (LC–
MS/MS) Analysis
The detailed procedure of protein extraction, trypsin 
digestion, and peptide desalting of tissue samples is 
described in Additional file 1: Supplementary Material.

The DIA-MS analysis was performed using a 
Q-Exactive HF-X mass spectrometer connected to an 
EASY-nLC 1200 system (Thermo Scientific, USA). All 
individual tumor, NAT and normal samples were resus-
pended in 3% ACN / 0.1% FA with indexed retention 
time (iRT) peptides (Biognosys, Zurich, Switzerland) 
adding into each sample according to manufacturer’s 
instructions for DIA MS analysis. About 1  μg of pep-
tides was loaded onto a 28-cm-long self-packed C18 col-
umn (1.9 μm/120 Å ReproSil-Pur C18 resin, Dr. Maisch 
GmbH, Germany) with an integrated PicoFrit emitter 
(New Objective, Inc., USA). Mobile phase flow rate was 
300 nL/min with buffer A (0.1% FA) and buffer B (0.1% 
FA, 80% ACN). A 120-min gradient was performed 
as follows: 2% B in 1  min, from 2 to 30% B for 94  min, 
increase to 60% B for 9 min, ramp to 90% B in 1 min, and 
held at 90% B for 5 min, then drop to 50% in 1 min, and 
held at 50% for 9  min. The full MS1 scan was acquired 
from a range of 400–1000 m/z at a resolution of 120, 000, 
followed by automatic gain control (AGC) set at 1 × 106 
and max injection time of 60 ms. For each DIA MS2 scan, 
the precursor mass range was 400–1000 m/z with a set of 
50 overlapping windows, followed by a 12 m/z fixed iso-
lation width, normalized collision energy (NCE) of 30%, 
and maximum injection time of 25  ms. The resolution 
and AGC were the same as the MS1 scan.
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Generation of Multi‑Cancer spectral library
A Multi-Cancer spectral library was generated by search-
ing DIA data of 246 individual samples and publicly avail-
able DDA data downloaded from Human Proteome Map 
[23] against the human protein sequences from UniProt/
Swiss-Prot (released on March 2018) appended with iRT 
peptide sequences via Pulsar algorithm embedded in 
Spectronaut Pulsar X (Biognosys, Zurich, Switzerland). 
The parameter settings for the database search were 
used as follows. Mass tolerance of MS1 and MS2 was set 
as dynamic with the correction factor of one. Fragment 
ions were selected from a range of 300 to 1800 m/z, and 
fragments per peptide were restricted from 3 to 6. A false 
discovery rate (FDR) was set as 1% to generate the final 
spectral library. Finally, a spectral library was configured 
to contain high-quality MS assays of 13,029 proteins and 
245,816 peptides.

Sample quality control
To evaluate quantification accuracy and data reproduc-
ibility, we measured the performance of one sample from 
our cohort at three different time points (three injections 
each time point)—in the beginning, in the middle, and at 
the end of the entire DIA-MS data acquisition for data 
quality control. The reproducibility was evaluated and 
computed using the coefficient of variations (CV) and 
pair-wise Pearson correlation among nine injections.

DIA data analysis
For the quantitative analysis of proteins across the 246 
tissue samples, DIA raw data files were first searched 
against the Multi-Cancer spectral library followed by the 
quantification via Spectronaut Pulsar X. Mass tolerance 
of MS1 and MS2 were set as dynamic with the correc-
tion factor of one. Source-specific iRT calibration was 
enabled with a local (non-linear) RT regression. Inter-
ference correction on MS2 level was enabled, and cross 
run normalization using the sample median was selected. 
All quantified proteins were filtered by a Q value cutoff 
of 0.01 (corresponded to an FDR of 1%). For downstream 
data analyses, we used proteins quantified (after sam-
ple assessment) in at least 40% of samples in individual 
cancer type, where missing values were filled in by either 
5% of the lowest intensity (> 100) in a sample if the pro-
tein quantified in less than half of the samples with the 
same tissue type, or averaged intensity minus 2 times the 
standard deviation (SD) of samples with the same tissue 
type.

Sample quantitative assessment
Each sample was assessed quantitatively, where sam-
ples in one cancer type were evaluated independently 

from other cancer types. A sample was qualified for the 
downstream analyses if it met at least three out of the five 
following criteria: (1) it had at least 50% of proteins quan-
tified; (2) it had a similar protein median relative to other 
samples; (3) its correlation with other samples (within the 
same tissue type) was above 0.6; (4) it had similar pro-
tein distribution relative to other samples with the same 
tissue type, and (5) it was grouped with other samples 
(same tissue type) in the principal component analysis.

Tissue‑enriched proteomic analysis
For the tissue-enriched proteomic analysis, the normal 
and tumor tissues were regarded as a single entity in each 
cancer type. Briefly, pair-wise tissue expression com-
parison was conducted on t test with p value adjusted 
via Benjamini–Hochberg and the log2 fold changes were 
used to measure the expression difference between tis-
sues. A protein was considered as enriched in a particular 
type of tissue if the expression difference > 4 folds with an 
adjusted p value < 0.05 compared with 70% of other tissue 
types. Biological processes of tissue-enriched proteins 
were based on Gene Ontology annotation via WebGe-
stalt [24].

Differential proteomic analysis
Differential proteome analysis between tumor and nor-
mal samples was conducted. t test was performed with 
p value adjusted via Benjamini–Hochberg and log2 fold 
changes were computed to determine differential abun-
dances of proteins between tumor and normal tissues 
for each cancer type. Proteins with fold change > 2 and 
adjusted p value < 0.05 were considered to be cancer-
associated proteins. Protein annotation (e.g., plasma 
proteins, secreted proteins) was given by Human Pro-
teome Atlas (HPA, version 19.3, https​://www.prote​inatl​
as.org/) [25]. Some cancer-associated proteins were 
further explored in HPA and Gene Expression Profiling 
Interactive Analysis (GEPIA, 2019 Release, http://gepia​
.cance​r-pku.cn/index​.html) [26] for their protein and 
mRNA expression levels as reported by these databases 
when feasible. The heat map was constructed using can-
cer-associated proteins that the expression values were 
transformed into Z score at the protein level. Four major 
protein clusters were generated using hierarchical clus-
tering. Biological processes of cancer-associated proteins 
in each protein cluster were based on Gene Ontology 
annotation via WebGestalt [24].

Druggable proteome analysis
Information of drugs and their targets was extracted 
using dbparser (R package version 1.1) from the XML 
file (version 5.1.5, www.drugb​ank.ca/) downloaded 
from DrugBank [27]. Potential drug targets were 

https://www.proteinatlas.org/
https://www.proteinatlas.org/
http://gepia.cancer-pku.cn/index.html
http://gepia.cancer-pku.cn/index.html
http://www.drugbank.ca/
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further mapped to UniProt [28], PhosphoSitePlus [29], 
Therapeutic Target Database (TTD) [30], Genomics 
of Drug Sensitivity in Cancer (GDSC) [31], and HPA 
to acquire additional information on whether the tar-
gets had drug response data, or they were receptors, 
kinases, or known cancer/FDA-approved/potential 
drug targets. Differentially expressed proteins in tumor 
tissues relative to normal tissues (fold change > 2 and 
adjusted p value < 0.05) overlapped with drug targets 
were further assessed. Cancer drug target candidate 
proteins were mapped to the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways via WebGestalt 
[24].

Cancer/testis antigens analysis
Information of cancer/testis (CT) antigens was down-
loaded from CTdatabase [32]. The database contains 
269 carefully curated CT antigens with literature-
derived information. CT antigens observed only in the 
current study were further analyzed.

Results
Experimental design and proteomic profiling of cancerous 
and non‑cancerous tissues
The main focus of the current study was to construct 
proteomic maps of 16 major human cancerous and 
non-cancerous tissues from a cohort composed of 
treatment-naïve primary tumor tissues (T), tumor-
matched normal adjacent tissues (NAT), and normal 
tissues (N) (Fig.  1a). The 16 major cancer types along 
with the number of samples for each and the short tag 
for each cancer type used in the study are as follows: 
head and neck squamous cell carcinoma (HNSC, T = 6, 
NAT = 6), brain glioblastoma, which is also called glio-
blastoma multiforme (GBM, T = 12), lung adenocarci-
noma (LUAD, T = 10, NAT = 10), lung squamous cell 
carcinoma (LUSQ, T = 8, NAT = 8), lung small cell car-
cinoma (LUSC, T = 6, NAT = 6), esophageal squamous 
cell carcinoma (ESCA, T = 7, NAT = 7), stomach adeno-
carcinoma (STAD, T = 9, NAT = 9), pancreatic adenocar-
cinoma (PAAD, T = 8, NAT = 8), colon adenocarcinoma 
(COAD, T = 11, NAT = 11), liver hepatocellular carci-
noma (LIHC, T = 8, NAT = 8), kidney clear cell renal cell 

Fig. 1  Overview of the clinical cohort and experimental workflow. a 16 types of treatment naïve primary human cancers (126 cancer samples, 94 
tumor-matched normal adjacent tissues, and 12 normal tissues). Cancer abbreviation annotation: GBM (glioblastoma multiforme), HNSC (head 
and neck squamous cell carcinoma), LUAD (lung adenocarcinoma), LUSQ (lung squamous cell carcinoma), LUSC (lung small cell carcinoma), ESCA 
(esophagus squamous cell carcinoma), STAD (stomach adenocarcinoma), PAAD (pancreatic adenocarcinoma), COAD (colon adenocarcinoma), LIHC 
(liver hepatocellular carcinoma), KIRC (kidney renal clear cell carcinoma), BLCA (bladder urothelial carcinoma), PRAD (prostate adenocarcinoma), 
BRCA (breast invasive carcinoma), OV (ovarian high-grade serous carcinoma), and UCEC (uterine corpus endometrial carcinoma). b Experimental 
workflow for generating DIA-MS-based proteomic data. c The number of proteins identified in each cancer type
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carcinoma (KIRC, T = 10, NAT = 10), bladder urothe-
lial cell carcinoma (BLCA, T = 11, NAT = 11), prostate 
adenocarcinoma (PRAD, T = 7, N = 7), breast invasive 
ductal carcinoma(BRCA, T = 5, NAT = 5), ovarian high-
grade serous carcinoma (OV, T = 7, NAT = 2, N = 5), and 
uterine endometrioid adenocarcinoma (UCEC, T = 4, 
NAT = 4). Patients’ clinical features, including age, gen-
der, race, tumor grade and pathological stage, as well 
as smoking status are summarized in Additional file  2: 
Table S1.

Proteomic profiles of all tissue samples were gener-
ated using DIA-MS analytic platform as shown in Fig. 1b. 
Briefly, proteins were extracted from each specimen fol-
lowed by trypsin digestion to obtain peptides, which 
were analyzed using a Q-Exactive HF-X mass spectrom-
eter. To perform the quantitative proteomic analysis, 
DIA raw files of all the samples were searched against a 
customized spectral library constructed using DIA data 
of individual samples combined with DDA data from the 
Human Proteome Map and quantified via Spectronaut.

To control longitudinal data reproducibility through 
the data acquisition, we performed the measurement 
of one sample set at the beginning, in the middle, and 
toward the end of the DIA-MS acquisition for data 
quality control (QC) (Additional file  2: Table  S1). We 
observed the median coefficient of variations (CV) of the 
proteins among triplications to be less than 10% (Addi-
tional file 1: Figure S1a). We also obtained Pearson cor-
relation coefficients above 0.90 among the injections 
(Additional file 1: Figure S1b), indicating high reproduc-
ibility of the DIA-MS workflow in the quantification of 
the DIA proteome data in this study.

Prior to downstream analyses, we evaluated the data 
quality of each clinical sample. Initially, a total of 246 
clinically annotated samples, including 129 tumor tissues, 
105 NATs, and 12 normal tissues, were included in our 
study. Two cases of the metastatic tumor were removed, 
which were initially considered as primary cancers (1 
paired tumor/NAT from LUAD and 1 paired tumor/NAT 
from STAD). By further quantitatively assessing the qual-
ity of the remaining 242 samples, ten samples (1 tumor 
from KIRC and 9 NATs comprised of 3 samples from 
PAAD and 1 sample each from ESCA, HNSC, LUAD, 
LUSQ, OV, and STAD) were excluded due to sample dis-
qualification (see method section for details) (Additional 
file 2: Table S1).

Overall, proteomic profiles of 232 samples, including 
126 tumors, 94 NATs, and 12 normal tissue samples were 
utilized for the comprehensive proteome characteriza-
tion of 16 major human cancers. A total of 8527 proteins 
were identified in which the average of 7505 proteins 
were identified for each cancer type (Fig.  1c). By com-
bining proteins quantified in at least 40% of the samples 

from each cancer type, 7947 proteins (i.e., quantifiable 
proteins) were used for downstream analyses (Additional 
file 3: Table S2). For simplicity, all the NATs and normal 
tissues referred to as normal tissues in the analyses.

Characterization of universally expressed proteins 
in different cancerous and non‑cancerous tissues
It is well known that housekeeping genes are a group 
of genes required in the maintenance of basic biologi-
cal functions of cells which are consistently expressed in 
almost all tissues and cells [33, 34]. Although genome-
wide profiling of housekeeping genes has been reported 
in various studies, expression profiles of such genes at 
protein-level are not available yet. Furthermore, it is 
unclear to what extent of these genes are transcribed 
and then translated into proteins, particularly in cancers. 
Therefore, we analyzed the expression patterns of quanti-
fied proteins in tumor and normal tissues.

Our data demonstrated that 3267 and 2436 proteins 
were quantified in more than 90% of tumor and normal 
tissues, respectively (Fig. 2a, Additional file 4: Table S3). 
Among these proteins, 2384 proteins were detected 
in both normal and tumor tissues (Fig.  2b, Additional 
file  4: Table  S3), which we considered these universally 
expressed proteins as housekeeping proteins and referred 
to as universal proteins in this study. Further analy-
sis indicated that the majority of these highly expressed 
housekeeping proteins belonged to certain intracellular 
groups, including cytoskeletal proteins, ribosomal pro-
teins, cytosolic proteins, and metabolic enzymes. They 
were also involved in the translational activity, RNA 
splicing and catabolism, protein synthesis, cell metabo-
lism, and energy generation (Fig. 2c).

Among the 2384 housekeeping proteins, we found 
1934 proteins corresponding to the housekeeping pro-
tein-coding genes in the Human Proteome Atlas (HPA, 
version 19.3) [25], Additional File 1: Figure S2b), such as 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 
beta-actin (ACTB), and beta-tubulin (TUBB) (Addi-
tional file  1: Figure S2a), demonstrated a high consist-
ency between our data and the transcriptomics results. 
Moreover, the majority of the housekeeping proteins 
were expressed at relatively similar levels across human 
cancerous and non-cancerous tissues as expected. For 
example, the actin-related protein 2/3 complex subunit 
3 (ARPC3), a protein participates in the regulation of 
nuclear actin polymerization and cytoskeleton compo-
nent [35] (Fig. 2d), and the thioredoxin like 1 (TXNL1), 
a protein involved in the protein disulfide oxidoreductase 
activity (Additional file 1: Figure S2c).

However, we also found that several housekeeping pro-
teins with various abundances across cancerous and non-
cancerous tissues. For example, the ring finger protein 20 
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(RNF20) is involved in protein metabolism and ubiquit-
ination; and its expression profiles were inconsistent and 
relatively low in the majority of tumor tissues compared 
to normal tissues (Fig. 2e). Nonetheless, our observation 
was consistent with the previous study, where RNF20 was 
associated with inflammation activities and down-regu-
lated in multiple cancers [36]. Thus, our findings not only 
correspond with the transcriptomics results but also sug-
gest a dynamic expression of housekeeping proteins in 
human cancers.

Identification of tissue‑enriched proteins
The expression of cellular proteins varies in different tis-
sues and organs, as well as in different physiological and 
pathological conditions [37]. To investigate the tissue-
enriched proteins, we performed a pairwise comparison 
of quantifiable proteins among 16 tissue types. The nor-
mal and tumor tissues from each tissue type were consid-
ered as a single entity. The protein profile of each tissue 
type was compared to those generated from others, and 
proteins with more than fourfold abundance changes (t 
test adjusted p value < 0.05) were considered as tissue-
type-enriched proteins.

A total of 2458 tissue-type-enriched proteins were 
identified (Additional file  5: Table  S4). The majority of 

these proteins were significantly enriched in one tissue 
type (1454 proteins, 59.15%), followed by two tissue types 
(720 proteins, 29.29%), three tissue types (238 proteins 
9.68%), and four or more tissue types (46 proteins, 1.87%) 
(Fig.  3a). The number of tissue-type-enriched proteins 
differed among the tissues. A large number of tissue-
type-enriched proteins were found in brain (777 pro-
teins), followed by the liver (535 proteins) and pancreas 
(348 proteins) (Fig.  3b). Previous studies have shown 
that proteins enriched in a particular tissue are typi-
cally related to specialized functions of that tissue [38]. 
Indeed, we observed that the majority of tissue-enriched 
proteins exhibited remarkable differences among the 
tissues (Additional file  1: Figure S3a). For example, the 
kallikrein-related peptidase 3 (KLK3), also known as 
the prostate-specific antigen (PSA), was significantly 
enriched in the prostate tissue compared to other tissues 
(Fig. 3c), whereas the surfactant protein B (SFTPB) was 
significantly enriched in the lung tissue relatively to oth-
ers (Additional file 1: Figure S3b). We also detected sev-
eral proteins that were highly enriched in breast, colon, 
ovary, and kidney, including stanniocalcin-2 (STC2), 
krueppel-like factor 5 (KLF5), single-strand selective 
monofunctional uracil DNA glycosylase1 (SMUG1), and 
PDZK1 interacting protein 1 (PDZK1IP1) (Fig. 3d).

Fig. 2  Proteome analysis of housekeeping proteins. a The number and percentage of protein quantified in tumor and normal tissues. b Proteins 
quantified in over 90% of normal and tumor tissues, where 2384 commonly observed proteins were considered as housekeeping proteins. c Gene 
ontology biological process analysis of the 2384 housekeeping proteins. d A relatively consistent expressional level of ARPC3 across tumor and 
normal tissues. e A fluctuated expressional level of RNF20 across tumor and normal tissues
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Besides proteins enriched in a particular tissue type, 
the proteomic patterns of three major tissue groups, 
namely digestive group (colon, stomach, esophagus, pan-
creas and liver), urinary group (bladder, prostate and kid-
ney), and gynecologic group (breast, uterus and ovary), 
also showed unique characterization in certain anatomic 
sites, where certain proteins were significantly enriched 
in one tissue group than in the other tissue groups 
(Fig. 3e, Additional file 5: Table S4 in). For instance, gas-
trokin-1 protein (GKN1) and hepatocyte nuclear factor 
4-alpha (HNF4A) were enriched in digestive group, spe-
cifically enriched in the stomach and esophagus (Addi-
tional file  1: Figure S3c) and colon and liver (Fig.  3d), 
respectively.

We further examined the biological processes of tissue-
type-enriched and tissue-group-enriched proteins based 
on Gene Ontology (GO) annotations (Additional file  5: 
Table S4). The brain was the tissue with the largest num-
ber of enriched proteins that the majority of the proteins 
participated in complex neurological functions, such as 
neurotransmitter regulation and transport, neuron and 
axon development, and synaptic signaling transduction. 
The liver is the tissue with the second largest number 

of enriched proteins, and most of the proteins were 
involved in fatty acid metabolism, lipid catabolic pro-
cess, steroid metabolism, and monosaccharide metabolic 
process, which were consistent with the metabolic func-
tions of the liver. We also found that proteins enriched 
in the lung tissue were mainly involved in the regula-
tion of the surfactant homeostasis, cytokine produc-
tion, and certain immune responses, whereas digestive 
group-enriched proteins were predominantly involved in 
enzymatic digestion, glucuronidation, and metabolic and 
biosynthetic process. Taken together, our results indicate 
that profiling tissue-enriched proteins can enhance our 
knowledge of their essential roles in maintaining tissue-
specific biological functions.

Signatures of cancer‑associated proteins
We compared the proteomic signatures of the tumor to 
normal tissues in individual cancer types to character-
ize cancer-associated proteins. The number of signifi-
cantly up-regulated and down-regulated proteins (fold 
change > 2, t test adjusted p < 0.05) in each cancer type is 
summarized in Additional file 6: Table S5. Based on our 

Fig. 3  Tissue-enriched proteome analysis. a Distribution of tissue-enriched proteins identified in one type of tissue and in multiple types of tissues. 
b The total number of proteins in different tissue types. c Expression levels of KLK3 across tumor and normal tissues. d Examples of tissue-enriched 
proteins in different tissue types. e Identification of unique group enriched and commonly enriched proteins in digestive, urinary, and gynecologic 
tissue groups
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analysis, we found a total of 6835 differentially expressed 
proteins in at least one cancer type.

Among the differentially expressed cancer-associated 
proteins, 40 proteins were significantly elevated in more 
than 40% of cancer types (Fig. 4a), of which 18 proteins 
were identified as plasma proteins, three were secretory 
proteins, four were transmembrane proteins, and 13 were 
enzymes. According to HPA and DrugBank [27], 17 of 
these proteins have potential clinical utilities as diagnos-
tic, prognostic markers, or therapeutic targets (Fig.  4b). 
Up-regulation of DEAD-box helicase 27 (DDX27), a 
member of DEAD-box RNA helicase superfamily, was 

found in most cancer types (Fig.  4c). This protein is 
involved in various biological processes, including ribo-
some biogenesis, translation, and RNA transport and 
metabolism [39]. Recent studies have also suggested its 
multifunctional role in carcinogeneses, such as involve-
ment in the colony-forming of gastric cancer cells, pro-
motion of colorectal cancer growth and metastasis, and 
the potential usage in the prediction of poor prognosis 
in gastric and colorectal cancer patients [40, 41]. We also 
found that the expression of PLOD1 and PLOD2, mem-
bers of procollagen-lysine, 2-oxoglutarate 5-dioxyge-
nase (PLOD) superfamily, was overexpressed in multiple 

Fig. 4  Proteomic analysis of cancer-associated proteins. a 40 commonly identified up-regulated proteins between tumor and normal tissues of 
each cancer type (median in red; log2 FC ≤ 1, adjusted p ≥ 0.05 in grey; log2 FC > 1, adjusted p < 0.05 in pink). b Common cancer-associated proteins 
annotated by HPA and their known clinical utilities. c Expression of DDX27 in tumor and normal tissues across different cancer types (tumor in 
yellow and normal in green). d Expression of PLOD1 and PLOD2 in tumor and normal tissues across different cancer types (tumor in red and normal 
in blue)
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cancer types (Fig. 4d). Both proteins play a critical role in 
mediating the formation of stabilized collagen cross-links 
and promoting tumor progression and metastasis [42]. 
By calculating the proportion of immuno-staining with 
high, medium, low, or not detected in different cancer 
types as reported by HPA, we found DDX27 and PLOD2 
showing medium to high tumor-specific staining in mul-
tiple cancer types (Additional file  5: Figures  S4a-b). We 
also observed the overexpressed mRNA level of DDX27 
and PLOD2 in various cancer types in Gene Expression 
Profiling Interactive Analysis (GEPIA) (Additional file 5: 
Figures  S4c-d). We found that our results were consist-
ent with HPA and TCGA (from GEPIA) indicating the 
potential of our data for providing additional informa-
tion in carcinogenesis. Besides DDX27 and PLOD2, we 
also found members of minichromosomal maintenance 
(MCM) superfamily, MCM2, MCM4 and MCM6, were 
up-regulated across diverse cancer types (Additional 
file  1: Figure S5) suggesting possible dysregulation in 
DNA replication and proliferation of cancer cells [43], 
which might contribute to the development of tumors in 
these cancer types.

Furthermore, we identified a subset of proteins which 
were uniquely overexpressed in certain cancer types 
(Fig. 5a, Additional file 6: Table S5). For example, andro-
gen receptor (AR) significantly elevated in prostate can-
cer compared with others, consistent with the known 
role of AR in prostate cancer development and dis-
ease progression. Similarly, we found that uroplakin 1B 
(UPK1B) was overexpressed in bladder cancer, indicating 
its unique role in bladder tumor development. The defen-
sin alpha 5 (DEFA5), an intestinal tissue-enriched pro-
tein, was specifically overexpressed in colon cancer. The 
interferon regulatory factor 4 (IRF4) was overexpressed 
in non-small cell lung cancer (NSCLC) including both 
lung adenocarcinoma and squamous cell carcinoma, but 
not in lung small cell carcinoma, indicating its potential 
role for the differentiation of NSCLC from small cell lung 
cancer.

To examine if any cancer-associated proteins poten-
tially functioned as cancer driver proteins, we mapped 
the cancer-associated proteins with 299 cancer driver 
genes selected from the comprehensive analysis of 
genomic data of cancers [1]. We found that 155 cancer-
associated proteins were products of cancer driver genes. 
Among these proteins, cyclin-dependent kinase 12 
(CDK12) and core-binding factor subunit beta (CBFB) 
were overexpressed in tumors, which were consist-
ent with their oncogenic role in certain types of can-
cer (Fig. 5b). We also noted that protein levels were not 
always parallel to the expression of their derived onco-
genes in carcinogenesis. For example, oncogene products 
of KRAS and dystrophin (DMD) proteins demonstrated 

reduced expressions in several cancer types, in spite of 
the up-regulated status of these oncogenes (Fig.  5b). 
Our findings suggested that proteomics data can provide 
unique information about cancer progression relative 
to genomic analysis. Other factors such as DNA meth-
ylation and transcriptional factors may also play criti-
cal roles in protein expression, which need to be further 
investigated.

Based on the differential protein expression levels 
between cancerous and non-cancerous tissues, four 
distinct protein groups (PG) were derived using super-
vised hierarchical clustering (Fig.  5c, Additional file  6: 
Table S5). Proteins in Protein Group 1 (PG-1) were highly 
expressed in most normal tissues including bladder, 
breast, lung, ovary and uterus. PG-2 proteins were up-
regulated in almost all tumor tissues. PG-3 proteins were 
highly expressed in brain and liver cancer with moder-
ate expression in normal tissues of the breast, liver, kid-
ney, and pancreas. PG-4 proteins were elevated in most 
cancer types, except for liver and kidney. Moreover, each 
protein group revealed different biological processes. 
PG-1 was mainly involved in cell adhesion and coagu-
lation, humoral immune response, and inflammation 
responses. PG-2 was associated with mRNA process-
ing, RNA splicing and catabolic process, ribonucleopro-
tein complex organization and localization. PG-3 was 
involved in the metabolic and biosynthetic processes, 
such as cellular amino acid, steroid and lipid, sulfur com-
pound, and monosaccharide. PG-4 focused on mito-
chondrial activity, granulocyte activation, and metabolic 
processes, such as tricarboxylic acid, ribonucleotide, fatty 
acid, and coenzyme (Additional file 6: Table S5).

Our data indicated that the reduced or elevated expres-
sion levels of cancer-associated proteins may contribute 
to the dysregulated cellular functions, tumor develop-
ment, and survival. Overexpression or loss of expression 
of such proteins may lead to the dysfunction of cancer 
cells and the overgrowth of tumors. These findings not 
only broadened the current knowledge of the expres-
sion patterns of cancer-associated proteins but also pro-
vided new insights into the fields of cancer biomarker 
discovery.

Profile of cancer‑related druggable proteome
Targeted cancer therapeutics utilize drugs that interfere 
with the functions of specific genes or proteins in dysreg-
ulated pathways to block the growth and spread of cancer 
[44]. The current era of targeted therapy and immuno-
therapy has led to the development of precision medi-
cine for cancer patients [45]. Currently, the US Food and 
Drug Administration (FDA) has approved 2358 antican-
cer drugs and 4501 anticancer drugs are in phase I/II/III 
investigation according to DrugBank [27]. We identified 



Page 10 of 15Zhou et al. J Hematol Oncol          (2020) 13:170 

Fig. 5  Characterization of cancer-associated proteins. a Uniquely expressed proteins in certain cancer types. b Expressions of oncoproteins in 
tumor and normal tissues for different cancer types. c A landscape of cancer-associated proteins in 16 cancer types with four major protein groups 
(PGs) determined via hierarchical clustering
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1139 protein targets corresponding to 1137 therapeutic 
drugs (including 912 FDA-approved drugs and 91 clinical 
investigational drugs, Additional file 7: Table S6). Among 
1137 therapeutic drugs, 1016 and 121 were categorized 
as small molecule drugs and biotech drugs in DrugBank, 
respectively (Fig. 6a). The 1139 drug target proteins were 
classified into membrane proteins (30.03%), cytoplas-
mic proteins (27.04%), secreted proteins (13.43%), and 
nuclear proteins (5.18%, Fig. 6b). By further explored the 
1139 drug targets in HPA, Genomics of Drug Sensitivity 
in Cancer (GDSC) [31], and Therapeutic Target Database 
(TTD) [30], we found that 67 were cancer drug targets in 
TTD, including the well-known Epidermal growth fac-
tor receptor (EGFR), Receptor tyrosine-protein kinase 
erbB-2 (ERBB2), and Serine/threonine-protein kinase 
mTOR (MTOR) (Additional file  7: Table  S6). We also 
mapped to 63 cancer-related FDA-approved drug targets 
in HPA and 18 proteins with drug response data in GDSC 
(Additional file 7: Table S6). In addition, we found 85 and 

72 potential drug targets were receptors as reported by 
UniProt [28] and/or kinases as reported by Phospho-
SitePlus [29], respectively (Additional file 7: Table S6).

To profile drug targetable candidate proteins, we used 
the following criteria for filtering: (1) proteins were drug 
targets of FDA-approved drugs and (2) the proteins were 
overexpressed in at least one cancer type with more than 
twofold increase in tumor tissues relatively to normal tis-
sues (t test adjusted p < 0.05). We identified 464 potential 
cancer drug target proteins (Additional file  7: Table  S6) 
with FDA-approved drugs. These protein candidates 
could be further classified into four functional catego-
ries for cancer therapy as follows: (1) proteins involved in 
well-recognized cancer-related pathways, such as PI3K-
Akt, ErRB, and NF-κB signaling pathways; (2) proteins 
related to cellular metabolism and oxidative stress reac-
tions, particularly the dysfunction in metabolic pathways 
for valine, alanine, glutamine and choline, and oxida-
tive stress of HIF-1 signaling pathway; (3) proteins that 

Fig. 6  Characterization of cancer-related druggable proteins. a Drug types according to the DrugBank. These drugs had targets identified in our 
proteomic data. b Cellular localization of identified druggable proteins. c Some identified drug targets with corresponding drugs in this study. d A 
model depicts the CDK2 and CDK4/6 regulating proliferation and apoptosis of tumor cells through retinoblastoma protein (RB) phosphorylation. 
e Elevated expression of cancer/testis (CT) antigens in tumor tissues in at least one cancer type compared to normal tissues. f A model shows the 
MAGEA4 vaccine for the inhibition of tumor cell proliferation
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participated in cancer development via microorganism 
infectious pathways, such as hepatitis B, human T-cell 
leukemia virus 1, and helicobacter pylori infections; and 
(4) proteins associated with cell adhesion and coagula-
tion including complement and coagulation cascades.

Among the potential druggable targets, we identified 
proteins such as EGFR, ERBB2, and poly (ADP-ribose) 
nuclear enzyme polymerase 1 (PARP1) (Fig.  6c, Addi-
tional file 7: Table S6). Both EGFR (also known as HER1/
ERBB1) and ERBB2 belong to the ERBB family proteins. 
The overexpression of EGFR or ERBB2 can promote the 
proliferation, migration, invasion, and angiogenesis of 
tumor cells, while suppress their apoptosis [46, 47]. By 
utilizing the tyrosine kinase inhibitors (e.g., gefitinib and 
erlotinib) or monoclonal antibodies (e.g., cetuximab and 
trastuzumab), they can inhibit the activities of EGFR/
ERBB2 to effectively suppress the tumor cell growth [48, 
49]. PARP1 is a nuclear enzyme, and plays a significant 
role in the maintenance of genome integrity, DNA repair 
and cell death [50, 51]. The clinical utility of PARP inhibi-
tors, such as Olaparib, Niraparib, and Rucaparib, have 
made great progress in targeting several cancer types, 
including ovarian, breast, and prostate cancer [52, 53]. 
Besides the proteins for targeted therapy, we also found 
certain chemotherapy drug targets. Irinotecan and 
topotecan are the anticancer chemotherapy drugs target-
ing the DNA topoisomerase 1 (TOP1), whereas paclitaxel 
and docetaxel target the apoptosis regulator Bcl-2 (BCL2) 
(Fig.  6c). Moreover, we discovered the drugs targeting 
cyclin-dependent kinases (CDKs), such as CKD2, CKD4 
and CKD6, which were overexpressed in several cancer 
types. It is reported that the CDK4/6 relate to the regu-
lation of the cell-cycle transition through retinoblastoma 
protein phosphorylation (pRb), while CDK2 contributes 
to the hyperphosphorylation of pRb and initiates DNA 
replication subsequently [54, 55] (Fig. 6d). Furthermore, 
a previous study showed the role of Rb phosphorylation 
in proliferation and apoptosis of tumor cells revealing 
the possibility of targeting Rb phosphorylation via CDK2 
inhibitors in colon cancer [13], whereas some CDK4/6 
inhibitors have been approved for the treatment of breast 
cancer [56]. Additionally, we also found some proteins 
potentially having anti-tumor properties, such as annexin 
A2 (ANXA2) and vascular cell adhesion molecule 1 
(VCAM1), but have not been used in cancer drug devel-
opment. The elevated expression of ANXA2 can contrib-
ute to the tumor progression in estrogen receptor (ER) 
negative breast cancer cell lines [57]; pancreatic tumor 
progression can be inhibited by blocking VCAM1 [58]. 
Our findings indicate that our data have the potential to 
aid the discovery and identify therapeutic drug targets 
for the treatment of cancers, which need further studies.

We further characterized candidate tumor antigens 
which were derived from non-mutated cancer/testis (CT) 
antigens. The DIA global proteomics data identified a 
total of 21 such CT antigens, whereas 20 of them were 
elevated in at least one cancer type with more than two-
fold increase in protein expression compared to normal 
tissues (Fig.  6d). One of the detected CT antigens, the 
sperm-associated antigen 1 (SPAG1) was up-regulated 
in breast and liver cancers, which was consistent with 
the HPA data (Additional file 1: Figures S6a-b). We also 
identified that MAGE family member A4 (MAGEA4) 
was highly expressed in lung and head and neck cancer 
(Additional file  1: S6c-d). Previous studies have proved 
that SPAG1 and MAGEA4 participate in the pathogen-
esis and progression of certain cancers [59, 60], indi-
cating their potential role as drug targets. In addition, 
SPAG1 and MAGEA4 are immunogenic proteins, where 
peptides derived from MAGEA4 significantly induced 
tumor-specific cytotoxic T cell response in  vitro and 
in  vivo in human esophageal cancer [61] and SPAG1-
induced humoral immune responses in certain cancers 
[62]. It is of note that for cancer patients whose tumor 
expressing MAGEA4 and MHC I, MAGEA4 vaccines can 
induce MAGEA4-specific immune responses to activate 
the CD4+ and CD8+ T cell resulting in the inhibition of 
tumor cell proliferation [63, 64] (Fig.  6f ). The usage of 
MAGEA4 vaccines have been investigated in several clin-
ical trials and provide new insights for vaccine develop-
ment in cancer immunotherapy.

Our study is able to characterize not only the protein 
signatures of drug targets, but also signatures of cancer-
related CT antigens for potential immunotherapy. These 
findings provide a new direction of applying proteomics 
in identifying potential tumor antigens for vaccine devel-
opment in cancer immunotherapy.

Discussion
In this study, cancerous and non-cancerous tissues of 
16 major cancer types were acquired by DIA-MS to cre-
ate a proteomic landscape of human cancers. To the 
best of our knowledge, this is the first study utilizing the 
DIA-MS technique for multiple human cancer tissues 
analyses. Our study has demonstrated that the DIA-MS 
technique could be effectively applied for characterizing 
global proteomics in large-scale clinical cohorts. Our 
study characterized the protein expression pattern across 
16 different types of cancers as well as profiled the con-
sistently expressed proteins, tissue-enriched proteins and 
anticancer targetable signatures, which offers the pos-
sibilities to investigate cancer-related cellular functions 
and discovery of cancer-specific proteins for potential 
diagnostic or therapeutic targets.
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We identified 2384 housekeeping proteins, of which a 
low variability in protein expression across cancerous 
and non-cancerous tissues was observed in proteins par-
ticipating in the basic biological and cellular activities, 
such as GAPDH, ACTB and TUBB. However, there were 
proteins with inconsistent expression patterns across dif-
ferent tissue types (e.g., RNF20). The fluctuation in the 
expression patterns of certain housekeeping genes across 
different tumor types is possible due to the alterations in 
microenvironment [65] as well as under certain patho-
logical conditions and diseases [66], especially in cancers 
[67, 68]. Thus, our findings are consistent with the previ-
ous studies and allow further investigation of the biologi-
cal roles of the housekeeping proteins in different tissues 
and cancers.

Previous study has shown that the differential expres-
sion profiles of tissue-enriched proteins are related to the 
maintenance of essential biological functions [38]. We 
found 2458 tissue-enriched proteins among diverse tis-
sues. Many of these proteins played critical roles in vari-
ous cellular functions. For example, proteins enriched in 
the brain were mainly involved in complex neurological 
functions, whereas the proteins enriched in the liver pre-
dominantly participated in metabolic functions.

In addition of housekeeping and tissue-enriched pro-
teins, we also identified 6835 cancer-associated proteins 
that could be classified into four different protein groups, 
demonstrating distinct biological functions in different 
cancer types. Several overexpressed proteins were iden-
tified in multiple cancers, indicating that they could be 
used for the development of clinical tests to distinguish 
cancer patients from healthy individuals. On the other 
hand, proteins uniquely overexpressed in particular can-
cer could be used as diagnostic markers to differentiate 
one cancer type from the rest. Furthermore, we observed 
a discrepancy between oncogenic alteration and protein 
abundance change among different cancer types, which 
indicated the necessity of integrative measurement of 
genomics and proteomics in precision medicine.

Importantly, we identified 464 potential drug targeta-
ble proteins including the targets for the FDA-approved 
drugs that were up-regulated in tumors relative to normal 
tissues, which could be divided into four major molecu-
lar functional categories in cancer therapy. Among the 
potential drug targets, we identified some well-known 
targets, including EGFR, ERBB2, and PARP1 as well as 
CDK2 and CDK4/6, which are related to the regulation of 
tumor cells development. Notably, we found several CT 
antigens that were recurrently overexpressed in tumors. 
These CT antigens are potential cancer-associated bio-
markers, which also play an immunogenic role in tumor-
specific cytotoxic T cell response and humoral immune 
responses as demonstrated by MAGEA4 and SPAG1 [61, 

62]. Thus, they could serve as potential targets for vac-
cine development in cancer immunotherapy.

Conclusions
In summary, our study demonstrated that the DIA-MS 
technique could be effectively applied for characterizing 
global proteomics in large-scale clinical cohorts. We pro-
filed a proteome-wide map of 16 major human cancers 
by identifying the housekeeping proteins, tissue-enriched 
proteins, cancer-associated proteins, and potentially 
druggable proteins, which were supplements for various 
genomic alterations. Our study provides an invaluable 
resource that may eventually enable further understand-
ing in the cancer development, exploring potential cancer 
biomarkers, and discovering new therapeutic approaches. 
Although our results are observational and limited by the 
sample size, we still find commonality and heterogeneity 
among different cancers, and they provide novel insights 
into human cancer proteomics and should be further 
investigated in cancer research.
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