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Abstract

Background: Methylation of histone H3 lysine 79 (H3K79) by Dot1 is highly conserved among species and has
been associated with both gene repression and activation. To eliminate indirect effects and examine the direct
consequences of Dot1 binding and H3K79 methylation, we investigated the effects of targeting Dot1 to different
positions in the yeast genome.

Results: Targeting Dot1 did not activate transcription at a euchromatic locus. However, chromatin-bound Dot1
derepressed heterochromatin-mediated gene silencing over a considerable distance. Unexpectedly, Dot1-mediated
derepression was established by both a H3K79 methylation-dependent and a methylation-independent
mechanism; the latter required the histone acetyltransferase Gcn5. By monitoring the localization of a fluorescently
tagged telomere in living cells, we found that the targeting of Dot1, but not its methylation activity, led to the
release of a telomere from the repressive environment at the nuclear periphery. This probably contributes to the
activity-independent derepression effect of Dot1.

Conclusions: Targeting of Dot1 promoted gene expression by antagonizing gene repression through both histone
methylation and chromatin relocalization. Our findings show that binding of Dot1 to chromatin can positively
affect local gene expression by chromatin rearrangements over a considerable distance.

Background
Post-translational modifications of histone proteins are
intimately involved in regulation of gene expression [1].
Histone modifications can influence chromatin structure
either directly or via proteins that specifically recognize
the modified histones [1]. Methylation of histone H3
lysine 79 (H3K79) by Dot1 (also known as KMT4,
DOT1L, mDot1 and grappa) is a histone modification
that is highly conserved between species [2]. Several stu-
dies have linked Dot1 to gene activation. For example,
methylated H3K79 is predominantly located in euchro-
matic regions of the genome [2-8], and Dot1 has been
implicated in reactivation of tumor-suppressor genes
upon DNA demethylation [9]. Furthermore, in human
leukemias bearing chromosomal translocations at the

mixed lineage leukemia (MLL) or clathrin assembly lym-
phoid myeloid (CALM) genes, mistargeting of DOT1L
leads to transcript upregulation [10-13]. These leuke-
mia-associated fusion proteins recruit DOT1L to target
genes, with a concomitant increase in H3K79 methyla-
tion around the targeted site, upregulation of gene
expression, and subsequent development of leukemia
[10]. However, other studies have provided support for a
repressive function of DOT1L and H3K79 methylation
in mammals [14-18], and loss of Dot1 function has been
shown to lead to heterochromatin defects [16,19].
In yeast, ~90% of H3K79 is methylated by Dot1 [2].

Methylated H3K79 is mainly found in euchromatin, and
absent from heterochromatic regions such as telomeres
and the silent mating-type loci [2,3,6]. Loss of Dot1 activ-
ity leads to relocalization of Sir2, 3 and 4, the proteins
responsible for heterochromatin-mediated gene silencing
[2,7,20-28]. In addition, deletion of Dot1 affects histone
hypoacetylation and the ordered nucleosome positioning
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pattern found in repressive chromatin at yeast telomeres
[7,29]. These observations suggest that H3K79 methylation
prevents non-specific interactions of the Sir proteins with
euchromatic nucleosomes, thus promoting Sir protein
accumulation in heterochromatic regions [20,22]. The Sir
proteins in turn prevent methylation of H3K79 by Dot1 by
multiple mechanisms [26,27,30,31].
The idea that H3K79 may act as an anti-binding signal is

supported by the observation that binding of Sir3 to chro-
matin is negatively affected by methylation of H3K79
[2,7,25,27,32-36], and that the presence of Dot1 delays the
re-establishment of Sir3-mediated silencing of a previously
derepressed (and presumably H3K79 methylated) locus
[34,36]. Although Dot1 affects Sir protein targeting and
silencing of reporter genes, loss of Dot1 in otherwise
unperturbed cells has minor effects on overall gene
expression ([37,38] and our unpublished gene expression
profiling results). However, disruption of Dot1 in combi-
nation with the disruption of additional silencing pathways
results in more pronounced silencing defects in reporter
genes [24,25,39] and in the native silent mating-type locus
HMLa [25,34,40], indicating that the role of Dot1 in gene
silencing is masked by redundant pathways [24].
The direct and indirect effects of Dot1 on chromatin

organization and gene regulation [20,24,41] and the
redundancy of Dot1 with other pathways of silencing
has made it difficult to elucidate how Dot1 affects chro-
matin structure and function. In this study, we deter-
mined the direct effects of Dot1 and H3K79 methylation
by targeting Dot1 to defined places in the yeast genome.
Although such targeting can be considered as creating
an artificial site of action, this approach has been used
previously to identify activities associated directly with
the targeted protein and to clarify which of these activ-
ities are lost by mutant forms. This approach has been
crucial for studying histone modifiers, and provided the
first line of evidence that Set2, a histone methyltransfer-
ase associated with transcription, has repressive effects
on chromatin [42]. Although Dot1 did not act as a tran-
scriptional activator, it antagonized gene silencing, and
could do this from a distance. In our search for the
underlying mechanism, we identified a methylation-
dependent mechanism that affected Sir protein targeting
and a methylation-independent mechanism that
involved chromatin relocalization and the histone acetyl-
transferase Gcn5. Our findings show that Dot1 bound to
chromatin can positively affect gene expression in a
genomic region, partly by inducing chromatin rearrange-
ments over a considerable distance.

Results
Dot1 is a derepressor
The effect of local Dot1 binding and activity on gene
expression was investigated by fusing Saccharomyces

cerevisiae Dot1 to the Escherichia coli LexA protein and
targeting it to LexA operators (LexO), which were engi-
neered into euchromatic and heterochromatic regions of
the yeast genome (Figure 1A). In contrast to the known
transcriptional activator domain of Adr1, Dot1 and
LexA alone did not activate transcription of a promoter-
less euchromatic HIS3 gene (Figure 1B). Therefore,
Dot1 did not act as a transcriptional activator.
Next, Dot1 was targeted to heterochromatin, a place

where Dot1 is normally not bound [6,7]. In yeast, het-
erochromatin initiates at silencers of the silent mating-
type loci HMLa and HMRa, and at the telomeric
repeats, and can subsequently spread along the chromo-
some [20] in a discontinuous manner [43]. A telomeric
URA3 gene was used to report changes in chromatin
structure by a growth assay [44], allowing rapid screen-
ing for chromatin alterations. To examine whether Dot1
can block the spread of heterochromatin as a barrier, a
LexA-Dot1 fusion protein was expressed in a strain with
LexA operators in between a URA3 reporter and the
telomeric repeats (Figure 1A). In strains expressing
LexA alone or in strains lacking LexA operators, silen-
cing of URA3 was unaffected (Figure 1C). However, tar-
geting of Dot1 next to the telomeric repeats disrupted
silencing at telomere VIIL (Figure 1C). Thus, Dot1 acted
as a barrier at telomeres, which confirms previous find-
ings that targeted Dot1 can prevent ectopic spreading of
heterochromatin at a modified HMR locus [45]. Rpd3,
which was recently identified as a barrier protein
[46-48], also acted as a barrier (Figure 1C), whereas tar-
geting of several control proteins did not disrupt URA3
silencing (Figure 1D).
Because the effect of Dot1 in the barrier assay was

stronger than that of the known barrier protein Rpd3,
we examined possible additional effects of Dot1 in a so-
called ‘desilencing’ assay. For this purpose, LexA opera-
tors were introduced at the centromeric (distal) side of
the telomeric URA3 reporter (Figure 1A). Dot1 targeted
to the distal LexA operators disrupted silencing, whereas
targeted Rpd3 had no or small effects (Figure 1C). Pro-
teins that antagonize local heterochromatin formation
from a distance, but do not act as transcriptional activa-
tors of non-silenced genes are also referred to as desi-
lencing proteins [49]. Our results show that Dot1
counteracted URA3 silencing both in a barrier and in a
desilencing assay. We do not know whether barrier-
forming and desilencing functions of Dot1 stem from
the same activity. Based on these findings, we hence-
forth refer to Dot1 as a derepressor.
To further investigate the derepressor activity of Dot1

and to exclude possible telomere-looping effects [50],
Dot1 was targeted to a mating-type locus internal to the
chromosome, HMLa, in which the I-silencer element
was inverted to allow spreading of the Sir complex to
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the neighboring URA3 reporter (Figure 1E) [51]. In
addition, at this non-telomeric native locus, LexA-Dot1
disrupted silencing both in a barrier and a desilencing
assay and, importantly, did not affect URA3 silencing in
a strain without LexA operators (Figure 1E). Because
the distal LexA operators and the URA3 promoter are
1.7 kb apart from each other, Dot1 displayed derepres-
sor activity from a distance (Figure 1E). The changes
that we observed in the quantitative growth assays (and
URA3 expression by reverse transcriptase quantitative
(RT-q)PCR, see below) indicated that changes had
occurred in the silent chromatin domain around the
URA3 reporter gene.
We next investigated the mechanisms by which bound

Dot1 can affect a silenced domain. Chromatin immuno-
precipitation (ChIP) analysis showed that upon Dot1
targeting, Sir2 and Sir3 protein binding to telomeric
URA3 was reduced by two to three times (Figure 1F; see
Additional file 1) whereas global Sir2 and Sir3 expres-
sion was unaltered (Figure 1G). Therefore, at least part
of the loss of silencing mediated by Dot1 seems to origi-
nate from a decrease in Sir protein binding. Targeting of
a catalytically inactive Dot1G401R protein [2] did not
affect Sir protein binding (Figure 1F). We conclude that

Dot1-mediated methylation directly affects Sir mediated
chromatin and silencing from a distance, by antagoniz-
ing Sir complex binding.

Dot1 displays a methyltransferase-dependent and
-independent derepressor activity
To further determine the mechanism of chromatin dere-
pression, deletion mutants of Dot1 were generated
(Figure 2A). The N-terminal domain (Dot11-237) has
been implicated in chromatin binding [52]. The C-term-
inal domain (Dot1172-582) harbors the catalytic activity
and the acidic patch that binds to the basic patch on
the tail of histone H4 [26,27,52]. LexA-Dot1 fusion pro-
teins with an intact catalytic domain restored global
H3K79 methylation, whereas inactive Dot1 fusions did
not complement the dot1Δ (Figure 2B).
Unexpectedly, although targeting of the catalytically

inactive Dot1G401R did not alter Sir protein binding at the
telomere (Figure 1F), Dot1G401R did show derepressor
activity (Figure 2CD). This effect was not due to protein
overexpression alone, but acted in cis, because Dot1G401R

did not affect silencing of a reporter lacking adjacent
LexA operators (Figure 2D). To exclude the possibility
that the Dot1G401R protein formed a heterodimer with

Figure 1 Dot1 is a derepressor. (A) Targeting of LexA or LexA fusion proteins to LexA operators proximal to a promoterless HIS3 gene or a
telomeric URA3 gene. A telomeric URA3 reporter is silenced by the silencing complex (SirCx) that spreads from the telomeric repeats (TEL). LexA-
Dot1 was targeted to LexA operators between the telomeric repeats and URA3 in a barrier assay, and to LexA operators distal of the telomeric
repeats and URA3 in a desilencing assay. (B) Cells were plated in 10-fold serial dilutions on selective media with or without histidine.
Transcriptional activation of HIS3 leads to growth on media lacking histidine (strain L40). LexA alone is indicated with a dash. The transcriptional
activator domain of Adr1 was used as a positive control. (C) Barrier and desilencing assays of Dot1 and Rpd3 targeted to telomere VIIL (strains
NKI5128 and NKI5376). A strain without LexA operators (NKI5240) and LexA alone were used as controls. Cells were plated in 10-fold serial
dilutions on selective media (yeast culture; YC) with or without 5FOA. Cells that silence URA3 can grow on 5FOA media whereas cells that
express URA3 cannot. (D) URA3 silencing was not disrupted upon targeting of human Lamin C (pLexA-Lamin), a mutant form of human CyclinE
(R130A; pLexA-MCycE) or yeast Ecm5 (pLexA-Ecm5; NKI5128). (E) Barrier and desilencing assay of Dot1 at the HMLa mating-type locus with an
inverted I-silencer (HMLi; YQY10, YQY09). A strain without LexA operators was used as a negative control (YXB85-n). (F) Chromatin
immunoprecipitation (ChIP) using specific antibodies against Sir2 and Sir3 [24] was followed by quantitative PCR to determine binding to
telomeric URA3 and HMLa upon targeting of Dot1 or Dot1G401R (NKI5128). Average ChIP signals were normalized to input levels and Sir protein
binding at URA3 relative to HMLa was plotted (n = 2, +/- SE <). Similar results were obtained with an active (ACT1) reference gene (see
Additional File 1). (G) Immunoblot analysis of Sir2 and Sir3 protein levels in a strain expressing LexA, LexA-Dot1 or LexA-Dot1G401R (NKI5128).
Pgk1 was used as loading control.
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Figure 2 Dot1 is a methyltransferase-dependent and -independent derepressor. (A) Outline of Dot1 deletion mutants showing the N
terminus (white), the methyltransferase domain (black) and the H4 binding domain (grey). The G401R mutation (*) abolishes the catalytic activity
of Dot1. All fusion proteins contained LexA and a V5 tag at the N terminus. (B) Protein and H3K79 methylation levels of Dot1 mutants described
in (A) were determined in a dot1Δ strain lacking LexA operators (NKI5070). H3K79 methylation levels were determined of a wild-type strain or a
dot1Δ strain (NKI5376 and NKI5378) expressing LexA or LexA-Dot1. Protein expression and H3K79 methylation were determined by immunoblot
analysis using a V5 antibody and antibodies specific for H3K79 mono-, di- and trimethylation or the histone H3 C terminus. (C) Barrier (NKI5128
and NKI5129; left) and desilencing assay (NKI5376 and NKI5378; right) in the presence and absence of DOT1. Deletion of DOT1 results in reduced
silencing that could be bypassed at 37°C [24,25]. Both LexA-Dot1 and LexA-Dot1G401R were still able to disrupt URA3 silencing in a dot1Δ strain at
37°C, showing that derepressor activity does not require involvement of endogenous Dot1. Note that URA3 silencing is not completely lost in
dot1Δ at 30°C (NK5378). This is caused by enhancement of telomeric silencing by the TRP1 gene distal to URA3 (see Additional file 2A).
(D) Derepressor activity of Dot1G401R and Dot1 deletion mutants at telomere VIIL (strains NKI5240, NKI5128 and NKI5376). Serial dilutions as
presented before were quantified and plotted as bar graphs. (E) Derepressor activity of Dot1G401R and Dot1 deletion mutants at HMLa (strains
YXB85-n and YQY09). Growth on 5FOA observed for LexA-Dot1G401R, LexA-Dot1172-582 and LexA-Dot11-237 when targeted to LexA operators was
caused by colonies that were uracil auxotrophs, which most likely represent URA3 mutants. (F) Derepressor activity of Dot1 and Dot1 mutants at
the native chromosomes XIL, XVR and XVIL as described previously [82] (NKI2229, NKI2230 and NKI2231). (G) Dot1 and Dot1 mutants were
expressed in dot1Δ strains with or without LexA operators, expressing wild-type histone H3 or histone H3 with K79 mutated to arginine
(H3K79R), to determine whether K79 methylation is required for the methyltransferase-dependent derepressor activity (NKI6045, NKI6047, NKI6049
and NKI6051). Strains were grown at 37°C to enhance URA3 silencing.
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the catalytically active endogenous Dot1, we also targeted
Dot1G401R in a dot1Δ strain. Because deletion of DOT1
results in reduced silencing, the barrier and desilencing
assays were performed at 30 and 37°C, because high tem-
perature enhances silencing and bypasses the need for
endogenous Dot1 to silence URA3 [24,25]. Both LexA-
Dot1 and LexA-Dot1G401R were still able to disrupt
URA3 silencing in a dot1Δ strain at 37°C, showing that
derepressor activity does not require involvement of
endogenous Dot1 (Figure 2C).
To map the derepressor domain, we analyzed the

Dot1 deletion mutants. Interestingly, both the N-
terminal domain (Dot11-237) and the methyltransferase
domain (Dot1172-582) functioned as derepressors in both
the barrier assay and the desilencing assay at telomeres
and the HMLa locus (Figure 2D-E). However, a catalyti-
cally inactive methyltransferase domain (Dot1172-582
G401R) did not disrupt silencing (Figure 2D-E). Different
native telomeres and truncated telomeres can show dif-
ferent silencing properties, Sir protein binding, and
nucleosome positioning [29,53,54]. To test whether the
derepressor activity of Dot1 is a general property or is
restricted to the truncated telomere used here, LexA
operators and the URA3 gene were introduced at three
different native chromosome ends. Dot1 derepression
activity was very similar at truncated telomeres and at
native telomeres with or without a subtelomeric ‘Y’ ele-
ment (Figure 2F).
The only known substrate of Dot1 is histone H3K79.

To verify whether the methyltransferase-dependent
pathway was mediated by methylation of H3K79, we
replaced histone H3 by a H3K79R mutant and grew
strains at 37°C to partially suppress the URA3 silencing
defect in this mutant (Figure 2G) [55]. Targeting of
LexA-Dot1172-582 resulted in derepressor activity in the
presence of histone H3 but not in the presence of
H3K79R (Figure 2G). Together, our findings show that
Dot1 harbors two redundant derepressor mechanisms:
one methyltransferase-independent mechanism mediated
by the N terminus, and one mechanism mediated by its
methyltransferase activity towards H3K79.

Gcn5 is required for the methyltransferase-independent
derepression by Dot1
To further investigate the mechanisms of methylation-
dependent and -independent derepression by Dot1, we
examined the role of Gcn5. This histone acetyltransfer-
ase also displayed derepressor activity (Figure 3A), as
has been reported previously [46,49,56-58]. To test
whether Gcn5 and Dot1 are functionally related, their
derepression activities were measured in strains lacking
either endogenous Dot1 or Gcn5. Derepression by Gcn5
did not require Dot1 (Figure 3A). However, methyl-
transferase-independent derepression by Dot1G401R and

Dot11-237 was partially compromised in strains lacking
Gcn5 (Figure 3A). Furthermore, LexA-Dot1G401R did
not increase URA3 mRNA levels in gcn5Δ cells, whereas
catalytically active Dot1 proteins still showed strong
derepression (Figure 3B). This confirms the anti-silen-
cing character of H3K79 methylation. Together, our
results show that the methyltransferase-independent
derepressor activity mediated by the N-terminal domain
of Dot1 requires the presence of Gcn5. The role of
Gcn5 is most probably mediated by its catalytic activity
(see Additional file 2B), but Rsc4, a substrate of Gcn5
[59], was not required (see Additional file 2C). We
found that loss of Gcn5 did not affect normal activation
of URA3 (Figure 3C), but did lead to reduced expression
of the LexA-Dot1 fusion proteins (Figure 3D). However,
in the presence of Gcn5, low expression levels of LexA-
Dot1 were sufficient for derepression, showing that the
loss of Dot1-mediated derepression in the gcn5Δ strain
was not caused by reduced expression of the LexA
fusion proteins (Figure 3E). Finally, analysis of several
other histone modifiers associated with active chromatin
showed that the role in Dot1 derepressor activity is spe-
cific for Gcn5 (see Additional file 2(D, E)). Because the
loss of URA3 derepression is not complete in a gcn5Δ
strain, these experiments also indicated that another
pathway is involved in depression via the N-terminal
domain of Dot1.

Tethered Dot1 caused chromatin relocalization
To gain more insight into the possible methylation-
independent mechanisms through which Dot1 dere-
presses Sir-repressed genes, we investigated whether
Dot1 binding affected anchoring of the silenced telomere
to the nuclear periphery. In yeast and metazoans, hetero-
chromatin often clusters next to the nuclear envelope
[60-63]. This clustering and peripheral localization con-
tributes to heterochromatin establishment and mainte-
nance [64]. We monitored the localization of a native
telomere in living cells by microscopy, using a strain that
has telomere VIR tagged with an array of Lac operators
bound by green fluorescent protein (GFP)-LacI and telo-
meric LexA operators (Figure 4A). In a different strain,
we confirmed that targeting of Dot1 caused derepression
of a proximal URA3 reporter gene at telomere VIR
(Figure 4B). The GFP-LacI labeled telomere bound by
LexA was predominantly perinuclear (zone 1 as scored
by position relative to the nuclear periphery), whereas a
telomere bound by wild-type Dot1 had a significantly dif-
ferent localization, being more randomly distributed in
the nucleus (Figure 4CD). Therefore, the derepression by
Dot1 was accompanied by loss of perinuclear localization
of the heterochromatic region.
Similar to its effect on chromatin derepression (Figure 2),

the methyltransferase inactive LexA-Dot1G401R mutant also
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provoked the relocalization of telomere VIR away from the
nuclear envelope (Figure 4CD). By contrast, binding of a
catalytically active or inactive Dot1 protein lacking the N
terminus (Dot1172-582 and Dot1172-582 G401R) maintained
significant perinuclear enrichment, similar to that observed
in the presence of LexA alone (Figure 4CD). These results
show that chromatin-bound Dot1 can move a telomere
away from the periphery and, remarkably, that the methyl-
transferase activity of Dot1 is neither necessary nor suffi-
cient for this effect. Rather, the N-terminal domain is
required. Analysis of the role of Gcn5 in Dot1-mediated
telomere relocalization is complicated by growth defects
caused by deletion of Gcn5 in the strain background used.
However, by analyzing a different native chromosomal
locus, we found that Gcn5 could indeed promote relocali-
zation of a chromatin domain from the nuclear periphery

to the nuclear interior (see Additional file 3). These results
indicate that chromatin localization away from the nuclear
periphery by the N terminus of Dot1 may be mediated by
Gcn5.

Discussion
Dot1-mediated H3K79 methylation has been correlated
with both increased and decreased transcription in dif-
ferent organisms, yet it has been difficult to distinguish
global or indirect effects from local effects when inter-
preting dot1Δ loss-of-function mutations. This is even
more difficult in budding yeast, where the role of Dot1
in gene silencing appears to be masked by redundant
pathways [24]. Nonetheless, in our study we were able
to circumvent indirect effects by targeting Dot1 to
defined sites in the yeast genome and comparing the

Figure 3 Derepression by Dot1 requires the histone acetyltransferase Gcn5. (A) Derepressor activity of Dot1 and Gcn5 in a wild-type strain
(NKI5128 and NKI1088), a dot1Δ strain (NKI5129 and NKI6020) or a gcn5Δ strain (NKI5399 and NKI6018). Strains lacking endogenous Dot1 were
grown at 37°C to suppress the silencing defect, (see Figure 2C). We found that Gcn5 had a more prominent role in the barrier than in the
desilencing assay of Dot1. URA3 silencing in the dot1Δ strain at 37°C in the desilencing assay (NKI1088 background) was limited compared with
URA3 silencing in the dot1Δ at 37°C in the barrier assay (NKI1084 background), which is the result of the telomeric context (see Additional file
2A). (B) URA3 expression (n = 2 +/- SEM) was determined by reverse transcriptase-PCR and normalized to SIR3 expression, which is expressed at
similar levels as URA3 and at equal levels in wild-type cells and histone modifier mutants [24]. (C) WT, dot1Δ and gcn5Δ strains with a URA3 gene
at its endogenous euchromatic location were grown on media with or without uracil (BY4702, NKI3006 and NKI1107). Growth on media lacking
uracil requires activation of URA3 by Ppr1, which is not affected by the loss of Dot1 or Gcn5. (D) LexA, LexA-Dot1 and LexA-Dot1G401R were
expressed from a high copy 2 μ plasmid (used for all experiments described here) in a wild-type strain (GCN5; NKI5128) or a gcn5Δ strain
(NKI5399), and compared with wild type strains expressing LexA fusion proteins from a single-copy CEN (centromere sequences) plasmid. Each
LexA-tagged protein also contained a V5 tag, which was used for immunoblot detection. Pgk1 was used as loading control. (E) Barrier assay of
the LexA-tagged proteins expressed from the plasmids described in (D).
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resulting phenotypes with those of a strain that lacks the
target site. We found that Dot1 binding does not acti-
vate transcription in yeast, yet it antagonizes heterochro-
matin-mediated gene silencing. Furthermore, we found
that Dot1 does not simply act as a barrier to block the
spreading of heterochromatin, but actively derepresses
silent chromatin from a distal position. Because Dot1
behaved similarly in both the barrier and desilencing
assays, it seems likely that it acts in both assays through

a common mechanism. Moreover, the ability to dere-
press was not restricted to yeast Dot1, because similar
effects were obtained for human DOT1L when it was
targeted to a yeast telomere (see Additional File 4).
Separation-of-function alleles of Dot1 show that Dot1

derepresses by two redundant mechanisms. One
mechanism of derepression is mediated by H3K79
methylation, which has been shown in vitro to reduce
the affinity of chromatin for Sir3 [25,27,32,33,35]. Our

Figure 4 Tethered Dot1 disrupts telomere anchoring. (A) Telomere anchoring was measured in strain GA-1459. TEL VIR was visualized by
binding of a GFP-LacI fusion protein to the Lac operators (indicated by green boxes). Subnuclear position was scored relative to the nuclear
envelope tagged by a GFP-Nup49 fusion in approximately 100 to 300 nuclei. (B) Derepressor activity of targeted Dot1 at TEL VIR was measured
in strains NKI1117 and NKI1118. (C) Localization data are represented in bar graphs as the percentage of spots in one of three concentric zones
of equal surface. The dashed line at 33% corresponds to a random distribution. Spots observed in zone 1 represent telomeres localized to the
nuclear periphery. (D) Two different statistical tests were performed. First, we tested whether telomeres targeted with LexA fusion proteins
showed a random distribution over the three zones in the cell. Second, whether telomeres targeted with LexA-fusion proteins had a similar
distribution to that of telomeres targeted with LexA alone. A significant difference for each Dot1 protein could be identified in at least one of
the two tests. Asterisk indicates statistically significant differences (P < 0.05) from random telomere distribution (P(random)) or from telomere
distribution upon LexA targeting (P(LexA)). The number of cells analyzed is indicated by n.
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results provide direct evidence for competition between
H3K79 methylation and Sir protein binding in vivo. It
remains unclear, however, whether targeted Dot1 is suf-
ficient to derepress URA3, or whether it also requires
additional (non-targeted) Dot1 molecules activated by
elongating RNA polymerase. It is possible that initial
transcription events lead to the recruitment of the Paf1
elongation complex and subsequent ubiquitylation of
H2B. Both these processes would in turn stimulate the
methylation of H3K79 by Dot1 [6,65-70].
The second derepression mechanism, which does not

affect Sir protein binding, requires the histone H3 and
H4 histone acetyltransferase Gcn5. How might Gcn5
assist Dot1? The genetic requirement for Gcn5 suggests
that the Dot1 N terminus may recruit Gcn5 to sites at
which Dot1 is bound. However, we could not detect a
direct interaction between the two proteins by ChIP,
yeast two-hybrid, co-immunoprecipitation or in vitro
pull-down experiments with recombinant proteins. An
alternative possibility is that Gcn5 triggers derepression
through its global non-targeted histone acetyltransferase
activity [71,72]. One plausible scenario is that the tar-
geted N terminus of Dot1 alters local chromatin struc-
ture, allowing Gcn5 to acetylate histone tails to which it
might otherwise not have access because of the local
heterochromatic structure. Intriguingly, the interaction
between Dot1 and the basic patch on the histone H4
tail (which is also bound by Sir3 [26,27]) is not sufficient
to trigger methyltransferase-independent derepression,
as LexA-Dot1172-580 G401R, which lacks the N terminus
but still contains the C-terminal H4-binding domain,
failed to derepress (Figure 2). Indeed, we found that the
N terminus alone is sufficient for Dot1-mediated dere-
pression (Figure 2).
Several other factors have been identified that can act

as anti-silencers, although how they affect gene expres-
sion at a distance is unclear [49]. We explored potential
mechanisms through which Dot1 might derepress silen-
cing at a distance. In yeast, transcriptional regulators
typically do not function from downstream positions, but
act by binding to upstream activation sequences (UAS)
that are positioned within a few hundred base pairs from
the transcription start site [50,73]. This is in contrast to
gene regulation by enhancers (the UAS counterparts in
mammalian cells), which can act over longer ranges and
also from downstream positions [74]. Silencing in yeast is
highly sensitive to local Sir factor concentration, and is
therefore strongly enhanced by the recruitment of silen-
cers and silent domains to the nuclear envelope [75],
where Sir proteins accumulate in foci that colocalize with
clusters of yeast telomeres. Quantitative analysis of sub-
nuclear localization induced by Dot1 targeting suggests
that Dot1 contributes to derepression by promoting the

relocation of a domain away from the repressive environ-
ment at the nuclear periphery.
In budding yeast, the telomeres and the two silent

mating-type loci, HML and HMR, co-localize in four to
eight clusters at the nuclear periphery. Many Sir binding
sites are created by the binding of Rap1 to the telomeric
repeats and the anchoring of telomeres through both
yKu and Sir4, leading to the sequestration of Sir pro-
teins away from the rest of the genome [64,76]. Posi-
tioning a promoter or gene near the telomere (or indeed
anywhere at the nuclear envelope) in a strain that has
functional telomere anchoring facilitates stable gene
repression, as long as the targeted reporter contains Sir
nucleating elements, such as silencers or protosilencers
[61,77-79]. The relocation of a region bound by Dot1 is
likely to influence the subnuclear position of neighbor-
ing genes because chromatin is a contiguous compacted
fiber with limited flexibility, and this would explain why
tethered Dot1 functions as derepressor from a distance.
Loss of anchoring was achieved by targeting of the

activity-deficient Dot1G401R, suggesting that the methyl-
transferase-independent derepression described above
depends on or correlates with relocalization (Figure 4).
Interestingly, conditions that lead to telomere relocaliza-
tion (targeting of Dot1G401R) did not lead to detectable
changes in Sir protein binding (Figure 1F). Whether tar-
geting of a catalytically inactive Dot1 caused qualitative
changes in chromatin or small quantitative changes that
remained undetected by ChIP is still unknown.
Telomeric heterochromatin is anchored to the nuclear

periphery by two pathways, one of which is enhanced by
formation of silent chromatin, whereas the other
involves the DNA-end binding complex yKu [61].
Although the local H3K79 methylation mediated by tar-
geted Dot1 was able to disrupt Sir complex association
[27,32,33], it was not sufficient to cause loss of telomere
anchoring (Figure 1, 2, 4). This is most likely due to a
redundant anchoring pathway mediated by yKu, which
helps tether telomeres in the absence of Sir-mediated
repression [80].
The distal effects of Dot1-mediated H3K79 methyla-

tion on gene silencing are in line with observations that
yeast heterochromatin spreads in a discontinuous fash-
ion [43]. The establishment of silent chromatin domains
at yeast telomeres is determined by anti-silencing and
relay elements [29,54,81,82]. Therefore, one possibility is
that Dot1 bound at distal sites also disrupts the interac-
tion between such relay elements. We found that a
nourseothricin resistance (NatMX) gene cassette was
also able to disrupt gene silencing from a distal position
(see Additional file 2A), lending further support for the
notion that distal elements can influence silencing at tel-
omere proximal positions.
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Conclusions
Previous analyses showed that histone H3K79 methyla-
tion by Dot1 in euchromatin indirectly promotes hetero-
chromatin formation. In this paper, we show that at a
local level Dot1 can counteract heterochromatin forma-
tion by H3K79 methylation and chromatin relocaliza-
tion, which is in agreement with the observed loss
of silencing by very high overexpression of Dot1 [2,21,
27,83]. Together, these results suggest that Dot1 func-
tions as complex modulator of heterochromatin organi-
zation. The relative strength of the indirect and more
direct Dot1 activities, gene-specific characteristics, and
the contribution of other pathways of heterochromatin
formation will together fine-tune heterochromatin estab-
lishment and gene expression.
Human DOT1L also derepressed silent chromatin in

yeast (see Additional file 4). If human DOT1L plays
similar roles in mammals, mistargeting of DOT1L in
human leukemia might antagonize gene silencing or
repression, and thereby lead to higher gene expression
levels. Although the catalytic activity of DOT1L has
been shown to be required for leukemic transformation
and maintenance of the transformed state by MLL and
CALM fusion proteins in in vitro models, it is possible
that DOT1L collaborates with other euchromatic modi-
fiers such as Gcn5 to establish and maintain the altered
gene expression levels in human leukemias. Identifica-
tion of the molecular mechanisms of derepression by
human DOT1L will be crucial for understanding the
role of DOT1L in leukemias bearing MLL and CALM
fusion proteins.

Methods
Yeast strains and plasmids
The yeast strains and plasmids used in this study are
specified in the supplementary material (see Additional
file 5 Additional file 6. To obtain strains with a URA3
reporter for telomeric silencing, telomere VIIL was trun-
cated at ADH4 by integration of URA3-LexO3-TEL-VIIL
(three LexA binding sites; pVIIL-URA3-LexAS3-TEL
[84]), URA3-LexO2-TEL-VIIL (two LexA binding sites;
pVIIL-URA3-LexAS2-TEL [84]), URA3-TEL-VIIL (pAD-
H4UCA-IV [85]) or LexO10-URA3-TEL-VIIL (pT7 [86])
in an Y7092 background (NKI1084, NKI5070, NKI5072,
NKI5128, NKI5240, NKI5376, NKI5420, NKI5422).
A NatMX selection cassette was introduced by homolo-
gous recombination distal to the LexA operators in
NKI5376 (NKI1088; primers ADH4tINT1KO and
ADH4tINT2KO). Strain NKI1117 and NKI1118 were
generated by targeting the URA3-LexO3-TEL barrier
cassette from pVIIL-URA3-LexO3-TEL or the TRP1-
LexO10-URA3-TEL desilencing cassette from pT7,
respectively, to telomere VIR in strain BY4733, thereby
truncating the endogenous telomere. The cassettes were

amplified using primers URA3_TELVIRtr_F1 and
URA3_TELVIRtr_F2, respectively and URA3_TEL-
VIRtr_R1. A genomic region of TEL VIR was amplified
using primers TELVIR-3907_F and TELVIR-3463_R,
and subsequently fused to the reporter cassettes by
overlap PCR. Primers used to target TEL VIR are shown
in the primer list. A LexO5-URA3 desilencing cassette
was targeted to native telomeres of TEL XIL (NKI2229),
TEL XVIL (NKI2230) and TEL XVR (NKI2231) of strain
Y7092. A LexO5 region was amplified from plasmid pT7
using primers LUJ2 and DLU-11L-DF2 or DLU-15R/
16L-DF2. The URA3 gene was amplified from pURA3-
TEL VIIL using primers LUJ1 and BDUL-11L-R1 or
BDUL15R/16L-R1. The fragments were fused by overlap
PCR and targeted to position P2 (11L) or P1 (15R/16L),
as described previously [82]. Integrations were verified
by PCR using telomere-specific primers and by sequen-
cing of regions around the insertion site. Strains
NKI1043 and NKI6041-NKI6051 were derived from
UCC1369 [2]. UCC1369 was crossed with BY4727 to
remove silencing reporters and hhf1-hht1Δ::LEU2 was
replaced by hhft1-hht1Δ::HIS3 to obtain NKI6041.
URA3-LexO3-TEL VIIL or URA3-TEL VIIL was tar-
geted to telomere VIIL of NKI6041 to obtain NKI6042
or NKI6043, respectively. Subsequently, pMP9 was
replaced by pMP3 (H3, NKI6045 and NKI6047) or by
pFvl88 (H3K79R, NKI6047 and NKI6051) via a plasmid-
shuffle procedure. Strains harboring a gene-specific
knockout were made using the plasmids pRS400, pFvl99
and pFvl100.
Plasmid pFvL232 was made by amplification of the

PADH1-LexA fragment from pBTM116 using a three-
step PCR protocol (primers LexADot1V5P2 and Lex-
AV5P3) that resulted in the introduction of a V5 tag
(GKPIPNPLLGLDST). The appended NotI and SpeI
sites were used to clone the fragment into pRS425. Plas-
mid pFvL230 was made by performing several steps.
First, the full-length Dot1 open reading frame (ORF)
was amplified with primers that included a 5’ EcoRI site
and 3’ BamHI site to clone the Dot1 ORF into
pBTM116 and generate pFvL23. Using a three-step PCR
protocol, a V5 tag was inserted in between LexA and
Dot1 to generate PADH1-LexA-V5-Dot1 (primers LexA-
Dot1V5P2 and LexADot1V5P3), and the resulting PCR
fragment was cloned in pRS425 using the appended
NotI and SpeI sites. pFvL909 was generated by gap
repair of pFvL230 using double-strand oligonucleotides
to introduce an SV40 nuclear-localization signal (NLS)
(PKKKRKV) [87] and a unique NruI site. A Dot1G401R

mutant (pFvl908) was generated by oligo-mediated site-
directed mutagenesis on pFvL230. Deletion mutants of
Dot1 (pFvl905, pFvl913, pFvl901) were made by repla-
cing full length Dot1 in pFvL230 with PCR-amplified
Dot1 deletion fragments by cloning or by inserting the
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fragments into pFvL909 by gap repair to include the
SV40 NLS. Plasmid pIS001 was made by gap repair
using a G401R fragment of DOT1 and plasmid pFvL901
digested with BsaBI and NheI. Plasmids pFvL914 and
pFvL916 were generated by gap repair by co-transforma-
tion of the LexA-V5-Dot1 fragment from pFvL230 and
pFvL908 digested with BsrGI-XbaI and pRS315 digested
with AlwNI and EcoRI. Deletion of the N-terminal
domain disrupted a putative NLS. Although LexA has
been suggested to have nuclear-localization properties
[88], Dot1 mutants without an N-terminal domain were
fused to an NLS. Plasmids pFvL925 and pFvL927 were
made by PCR amplification of N-terminal fragments of
human Dot1 from pCDNA3B-FLAG-hDot1L and repla-
cement of yeast Dot1 in pFvL230 by gap repair. Plasmid
pFvL921 was made by amplification of the RPD3 ORF
from genomic DNA and replacement of Dot1 in
pFvL230 by gap repair. Plasmid pFvl250 was made from
a MORF-ECM5-HA-TAP plasmid (pYMR176) in two
steps. First, the URA3 marker was replaced with a LEU2
marker by gap repair using the AatII/PvuII LEU2 frag-
ment of pRS305. Next, the GAL1 promoter was replaced
by a 1.2 kb fragment containing the ADH1 promoter
linked to LexA-V5 (from pFvL230) and an upstream
hygromycin resistance (HphMX) marker (from
pFvL100) was inserted. Plasmids pRS400, pFvL99 and
pFvL100 were used for gene replacements by KanMX4
(kanamycin resistance), NatMX4 and HphMX4, respec-
tively. To generate pFvL99 and pFvL100, the PacI/BsmI
KanMX4 insert of pRS400 was replaced by the PacI/
BsmI insert of pAG25 or pAG32 [89], respectively. The
drug-resistance cassettes were amplified using the stan-
dard pRS primers [90].
Yeast growth and silencing assays were performed as

described [21]. To analyze gene expression of the URA3
reporter, strains were plated in 10-fold dilution series on
media with or without 5-fluoroorotic acid (5FOA),
which is toxic and inhibits growth when URA3 is
expressed [44]. Media for growth assays of strains
expressing a LexA-fusion protein lack leucine to select
for presence of the plasmid. Growth assays to analyze
HIS3 activation were performed on media lacking leu-
cine and histidine.

Protein analysis
Cell extracts were made as described previously using
glass beads and SUMEB buffer containing phenylmethyl-
sulfonyl fluoride (1 mmol/l), benzamidine (5 mmol/l),
pepstatin (1.5 mmol/l), leupeptin (2 mmol/l) and dithio-
threitol (1 μmol/l) [91]. Primary antibody incubations
were performed in Tris-buffered saline-Tween with 2%
dry milk. Primary antibodies used for immunodetections
were V5 antibody (R960-25; Invitrogen, Breda, The
NetherlandsH3, H3K79me1, H3K79me2 and H3K79me3

[21], PGK1 (A-6457; Molecular Probes, Breda, The
Netherlands).

Chromatin Immunoprecipitation
ChIP was performed as described previously [2]. Chro-
matin was sheared for 6 minutes with 30 second inter-
vals, using a Bioruptor (Diagenode). ChIP analyses were
performed with anti-H3 [21], anti-Sir2 (yN-19; Santa-
Cruz) and anti-Sir3 [2] antibodies coupled to magnetic
beads (Dynabeads; Invitrogen). ChIP DNA was quanti-
fied by real-time qPCR analysis using a commercial
master mix and thermal cycler (SYBR® Green PCR Mas-
ter Mix and ABI PRISM 7500; Applied Biosystems).
A standard curve was made from one of the input sam-
ples, which was then used to calculate the relative
expression of the other samples using 7500 Fast System
software. For primers, see Additional file 7.

mRNA quantification
RNA was extracted (RNeasy Kit; Qiagen), and cDNA
made by using reverse transcriptase (Super-Script II;
Invitrogen). RT-PCR fragments were separated on gels
and quantified using the TINA 2.09 software (Raytest).
Primers are described in Additional file 7. Gene expres-
sion profiling of a dot1Δ::KanMX strain derived from
BY4742 was performed as described previously [92].

Live imaging of telomere localization
For live imaging, yeast strain GA-1459 was used, which
has TEL VIR tagged with four LexA operators (LexO)
and an array of Lac operators (LacO), and expresses
GFP-LacI to visualize the LacO and GFP-Nup49 to tag
the nuclear periphery [93]. Cultures of GA-1459 con-
taining LexA plasmids were grown in synthetic med-
ium lacking leucine to a concentration of 0.2-0.4 × 107

cells/ml. For subnuclear position analysis, living cells
were imaged at 30°C on agarose patches containing
synthetic complete medium + 4% glucose as described
[93]. Stacks of 21 images of 0.2 μm step size were cap-
tured on a wide field microscope (Metamorph-driven
IX70; Olympus) equipped with a camera (Coolsnap
HQ; Roper Scientific Photometrics). The radial posi-
tion of tagged TEL VIR was assigned to one of three
concentric zones of equal surface in the focal plane
bearing the brightest GFP-LacI focus as described [93].
Nuclei in which the focus was detected in the three
top or bottom focal planes were excluded from the
analysis. A c2 test was used to determine if the mea-
sured frequency of TEL VIR position in zone 1 differed
from a random distribution using a 95% confidence
limit. A proportional analysis was used to measure
confidence values between two strains. For each strain,
nuclei from four to five independent cultures were
combined.
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Additional material

Additional file 1: Chromatin immunoprecipitation of Sir2 and Sir3
normalized to an actively transcribed gene. Chromatin
immunoprecipitation (ChIP) using specific antibodies against Sir2 and Sir3
[24] was followed by quantitative PCR to determine binding to telomeric
URA3 and ACT1 upon targeting of Dot1 or Dot1G401R (NKI5128). Average
ChIP signals were normalized to input levels and Sir protein binding at
URA3 relative to Sir protein binding at the actively transcribed ACT1 locus
was plotted (n = 2, +/- SEM).

Additional file 2: Characterization of the role of Gcn5 in
derepression by Dot1. (A) URA3 silencing was determined in strains
with a different genomic context at telomere VIIL. The indicated
numbers refer to the distance (kb) from the URA3 promoter. Strains from
top to bottom are NKI1084, NKI1087, NKI5376 and NKI1088. Gene
cassettes inserted on the centromeric side of URA3 could positively and
negatively affect URA3 silencing, supporting our observations that
silencing is not only determined by linear spreading from the telomeric
repeats but can also be influenced by distal sequences. This may help to
explain the observed differences in silencing between native telomeres
[82]. (B) Gcn5 or a catalytic inactive mutant (Gcn5F221A) [94] were
expressed together with LexA, LexA-Dot1 or LexA-Dot1G401R in a strain
lacking endogenous Gcn5 (NKI2214). Under these conditions, expression
of Gcn5F221A (and to a lesser extent the empty vector) resulted in slow
growth and reduced silencing (for example, see LexA alone). The
extremely small colonies on 5FOA plates precluded a reliable analysis of
the silencing phenotype. Despite the poor growth conditions of the
Gcn5F221A strain, the LexA-Dot1G401R protein consistently allowed colony
growth on 5-fluoroorotic acid media, whereas no colonies were
observed in the much better-growing GCN5 strain. This result indicates
that catalytic activity of Gcn5 may be required for derepressor activity of
LexA-Dot1 and LexA-Dot1G401R. (C) Rsc4 is acetylated by Gcn5 and
mediates some of the functions of Gcn5 [59]. A barrier assay with LexA-
Dot1 and LexA-Dot1G401R revealed that the Dot1 derepressor activity was
independent of Rsc4 acetylation at K25. (D) Barrier assays in strains
lacking the indicated gene. These strains were obtained by crossing the
strain containing the tagged telomere with strains of the yeast knockout
collection. None of the genes analyzed affected Dot1 derepressor
activity. The gcn5Δ strain was used as a control. (E) Barrier assay in strains
in which the indicated genes were deleted by homologous
recombination. Because set1Δ showed a silencing defect, derepression
was examined at 37°C.

Additional file 3: Gcn5 is required for relocalization of ARS1413 to
the nuclear interior by Gcn4. Subnuclear positioning of ARS1413 was
monitored in a strain harboring Lac operators next to the origin of
replication. The locus was visualized by binding of a GFP-LacI fusion
protein to the Lac operators (indicated by green boxes). Subnuclear
position was scored relative to the nuclear envelope visualized by a GFP-
Nup49 fusion in G1 and S phase cells. Localization data are represented
in bar graphs as the percentage of spots in one of three concentric
zones of equal surface. The dashed line at 33% corresponds to a random
distribution. Spots observed in zone 1 represent ARS1413 localized to the
nuclear periphery. The number of cells analyzed is indicated by n.
P values indicate whether the distributions over the three zones in the
cell were significantly different from a random distribution (see Figure 4).
ARS1413 showed a non-random distribution with bias towards the
nuclear periphery. Insertion of binding sites for the transcriptional
activator Gcn4 [95], which is known to recruit and require Gcn5 for its
function [96,97], changed the localization of ARS1413 to a more random
distribution. Deletion of Gcn5 suppressed the change in localization
caused by Gcn4 binding. These results suggest that recruitment of Gcn5
can stimulate the localization of a chromatin domain away from the
nuclear periphery. This is in line with the observed role of Gcn5 in
derepression of a silenced telomere by the N terminus of Dot1 (Figure
2), which is also involved in relocalization of a tagged telomere away
from the nuclear periphery (Figure 4).

Additional file 4: Human Dot1 has derepressor activity in yeast.
(A) Human DOT1L (1537 residues) consists of a N-terminal

methyltransferase domain homologous to the yeast methyltransferase
domain (hDot11-340), followed by a lysine-rich region that shows weak
homology to the N-terminal domain of yDot1 (hDot1318-430), and a large
domain of unknown function [52,98]. The catalytically active N-terminal
part of human DOT1L (LexA-hDot11-340), a part containing only the
lysine-rich region (LexA-hDot1318-430) and the combination of both
domains (LexA-hDot11-430) were fused to LexA-V5. (B) LexA-tagged
hDOT1L proteins were expressed in yeast cells. Protein expression and
histone methylation was analyzed as described in Figure 2. LexA fusion
proteins of hDot11-340 and hDot11-430 showed mono- and dimethylation
of H3K79 but no detectable trimethylation in yeast. (C) Barrier and
desilencing assays (NKI5128 and NKI5376) of LexA-tagged hDOT1L
proteins. In strains harboring LexA operators within telomeric
heterochromatin, the catalytically active hDOT1L protein showed robust
derepressor activity. Although the hDOT1L domain with weak homology
to the yeast N-terminal domain was required for the full derepressor
activity of hDOT1L (compare hDot11-430 with Dot11-340), the hDot1318-430

domain alone showed no detectable derepressor activity. These results
indicated that the lysine-rich region of human DOT1L is not sufficient for,
but contributes to, the derepressor activity in yeast of the conserved
methyltransferase domain of DOT1L. Because yeast cells lacking
endogenous Dot1 but expressing the hDOT1L methyltransferase domain
show no detectable trimethylation, these results also show that efficient
trimethylation of H3K79 is not required for derepression. This is in line
with previous observations, which showed that multiple levels of H3K79
methylation (that is, mono-, di- and trimethylation) can affect Sir3
binding and silencing [21,27].

Additional file 5: List of yeast strains used in this study.

Additional file 6: List of plasmids used in this study.

Additional file 7: Primer list.
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