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Abstract
The fine-tuning of neuroinflammation is crucial for brain homeostasis as well as its immune response. The transcription
factor, nuclear factor-κ-B (NFκB) is a key inflammatory player that is antagonized via anti-inflammatory actions exerted by
the glucocorticoid receptor (GR). However, technical limitations have restricted our understanding of how GR is involved in
the dynamics of NFκB in vivo. In this study, we used an improved lentiviral-based reporter to elucidate the time course of
NFκB and GR activities during behavioral changes from sickness to depression induced by a systemic lipopolysaccharide
challenge. The trajectory of NFκB activity established a behavioral basis for the NFκB signal transition involved in three
phases, sickness-early-phase, normal-middle-phase, and depressive-like-late-phase. The temporal shift in brain GR activity
was differentially involved in the transition of NFκB signals during the normal and depressive-like phases. The middle-phase
GR effectively inhibited NFκB in a glucocorticoid-dependent manner, but the late-phase GR had no inhibitory action.
Furthermore, we revealed the cryptic role of basal GR activity in the early NFκB signal transition, as evidenced by the fact
that blocking GR activity with RU486 led to early depressive-like episodes through the emergence of the brain NFκB
activity. These results highlight the inhibitory action of GR on NFκB by the basal and activated hypothalamic-pituitary-
adrenal (HPA)-axis during body-to-brain inflammatory spread, providing clues about molecular mechanisms underlying
systemic inflammation caused by such as COVID-19 infection, leading to depression.

Introduction

A growing body of evidence suggests that inflammation has
a pathophysiological role in depression. During inflamma-
tory processes, nuclear factor-κ-B (NFκB) plays a major

role in cellular responses to a wide variety of stimuli. As a
counterpart, when glucocorticoid receptors (GRs) bind
glucocorticoids (GCs), they exert essential immunosup-
pressive and anti-inflammatory actions. Therefore, it has
been postulated that dysfunctional GR activity causes
depression, due to crosstalk problems between NFκB and
GR, as shown in our previous reports on dampened GR
activity [1]. In the study on their targeted transcripts,
however, the exact brain mechanisms of this crosstalk have
remained unresolved by jumbled gene expressions caused
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by different structures of their gene promoters [2, 3]. Indi-
vidual variation particularly induced by endpoint analysis is
another difficult barrier for crosstalk readings [4, 5].
Therefore, rather than attempting to investigate transcrip-
tional NFκB-GR, we focused on the longitudinal monitor-
ing of the signal NFκB-GR interplay using in vivo imaging
techniques.

Although transgenic reporter mice are an alternative
solution to the direct monitoring of biological processes
[6, 7], in vivo real-time monitoring of their activation has
been inaccessible, partly due to the difficulty in spatial
resolution, that could describe such events. Their clonal
ubiquity leads to poor special resolution and severely
impedes pinpoint monitoring of transcriptional activity.
Particularly, spacious bioluminescence is a major dis-
advantage in studying anatomical brain function in which
those functions can be attributed to different regions of the
brain or even the same cell type [8, 9]. Other strategies, such
as Cre-Lox recombination [10] and the non-viral gene
delivery system [11], also have unresolved problems with
bioluminescence. Herein, using pinpoint stereotaxic injec-
tion with improved lentivirus-based luciferase (Luc) repor-
ters, we identify the pinpoint dynamic activities of GR and
NFκB, allowing precise signal trajectories and timing of
NFκB-GR interplay.

We targeted the infralimbic prefrontal cortex (IL-PFC,
corresponding to the ventromedial PFC in humans) as a
representative anatomical brain region associated with
depression [12, 13]. The dermis was targeted as a repre-
sentative body region in which various aspects of the immune
system actively maintains skin homeostasis [13, 14]. We used
a lipopolysaccharide (LPS)-induced depressive mouse model
that shows time-dependent behaviors such as early symptoms
of sickness and late transient depressive-like behavior on a
short timescale [15]. Understanding the NFκB-GR interplay
during the behavioral outcomes helps to decipher the mole-
cular mechanisms underlying the etiology of inflammation-
associated depression.

Method summary

To monitor signal activity with the IVIS 200 imaging system
(PerkinElmer Company, Alameda, USA), ICR mice were
injected with one of the lentiviral reporters (NFκB-Luc2CP,
GR-Luc2CP, or elongation factor (EF)1α-Luc2CP, Supple-
mentary Fig. 1). Meanwhile, the cellular location of the signal
was determined through immunohistochemical staining in
which NFκB and GR signal activities were mainly detected in
NeuN+ neuronal cells in the IL-PFC (Supplementary Fig. 2).
[1, 16]. In the monitoring of NFκB and GR activities,
three bioluminescence experiments were performed to
investigate the LPS effect, the LPS effect on the RU486, or

adrenalectomy (Supplementary Fig. 3b–d). The average sig-
nal obtained from different animals injected with the EF1α-
Luc reporter was used as the reference for the normalization
of two signals. The BLI data from an individual mouse,
combined from three independent studies were analyzed by
one- or two-way analysis of variance (ANOVA) tests, and the
statistical significance between groups was determined by
Sidak’s multiple comparison test; otherwise, Student’s t-test
was used. Detailed materials and methods and associated
references are provided in the Supplementary Information.

Results

Distinguishing NFκB activation in the IL-PFC and
dermis by an improved NFκB-reporter

To monitor NFκB activity in vivo, first, we modified the
previous lentiviral-based GR-Luc reporter by replacing
5×GRE-AIEP with a 6×NFκB-TATA DNA fragment,
designated NFκB-Luc reporter (Supplementary Fig. 1a).
During the monitoring of NFκB activity by bioluminescent
signal image (BLI), however, we noticed that the reporter
was insufficient for monitoring NFκB activation in the IL-
PFC or the dermis (Fig. 1a, b). The temporal resolution of
the NFκB-Luc reporter, associated with the long half-life of
luciferase [17], hindered the accurate monitoring of NFκB
activation. Thus, we developed an improved NFκB-Luc2CP
reporter by replacing Luc with Luc2CP as in the previously
reported GRE-Luc2CP [16], expecting high temporal
resolution with increased intensity. The monitoring of
NFκB activity with this improved reporter showed clear
dermal NFκB activation at 2 h post-LPS; however, there
was still no NFκB activation observed in the IL-PFC
(Fig. 1c), which may be an in vivo evidence for different
responses of NFκB in the IL-PFC and dermis. This differ-
ence was confirmed by a qPCR assay demonstrating
decreased expression of NFκB-responsive genes (inter-
leukin-1β, granulocyte-macrophage colony-stimulating
factor; GM-CSF, and tumor necrosis factor; TNF α) (Sup-
plementary Fig. 4a, b). The lower NFκB response in the
IL-PFC compared to the dermis was also confirmed, as
evidenced by the left-shifted distribution of the 32 NFκB-
response gene expression (Supplementary M & M and
Supplementary Fig. 4c).

Tissue-specific NFκB activation in behavioral
outcomes

To exclude possible errors from intra-individual variations,
an NFκB dual-monitoring assay was performed on the IL-
PFC and dermis of the same subject up to 36 h post-LPS. As
shown by the BLIs (Fig. 1d) and NFκB profiles (Fig. 1e),
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Fig. 1 Different NFκB responses in the IL-PFC and dermis.
a Schematic illustrating an improved NFκB reporter for the monitoring
of dynamic transcriptional activity in a living mouse. Comparative
bioluminescent images (BLIs) of (b) NFκB-Luc or (c) NFκB-Luc2CP
reporter. NFκB activity was monitored by single-monitoring in the
IL-PFC or dermis after intraperitoneal injection of 1 mg/kg LPS.
d Representative BLIs of NFκB dual-monitoring by the NFκB-
Luc2CP reporter. e Individual NFκB profiles of the dermis (left panel)
and IL-PFC (right panel). The orange line represents the average
NFκB activity at each time point (n= 13). f Representative fluores-
cence images of microglia (top, scale bar= 10 μm) and quantification
of activated and resting microglia (bottom) in the IL-PFC.

Immunohistochemical staining with Iba1 and DAPI. Time course of
behaviors for (g) total distance moved in the OFT and (h) immobility
time in the FST with representative tracking paths. Data are repre-
sented as the mean ± standard error of measurement [n= 8/group,
except for 6 h post-LPS in the OFT (n= 7/group) and 36 h post-LPS in
the FST (n= 7/group)]. i The trajectories of the two NFκB activities.
Statistical significance was determined by Student’s t-test (*P < 0.05,
**P < 0.01, ***P < 0.001, ns= non-significant vs control). IL-PFC
infralimbic prefrontal cortex, Sick sickness behavior, Dep depressive-
like behavior, FST forced swimming test, OFT open field test, TDM
total distance moved.
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differential NFκB activation was verified. Two hours post-
LPS, dermal NFκB activity showed a clear peak, but no
activity was shown in the IL-PFC. Two-way ANOVA with
repeated measures (ANOVA RM) showed significant
effects of tissue (F1,24= 6.04, P < 0.05), time (F9, 216=
22.28, P < 0.001), and tissue × time interaction (F9,216=
5.52, P < 0.001). Sidak multiple comparison tests revealed
that the NFκB activity in the IL-PFC was significantly
lower than in the dermis at 2 h post-LPS (P < 0.001, mean
difference= 0.69). Meanwhile, during 8–12 h post-LPS,
NFκB was equally activated in both the IL-PFC and dermis
without significant difference (P > 0.05 at 8, 10, and 12 h).
Immunohistochemical (IHC) analysis with IL-PFC tissues
showed that activated microglial cells were also sig-
nificantly increased during the late-phase (Fig. 1f).

Open field test (OFT) and forced swimming (FST) were
performed at the indicated time points to elucidate sickness
and depressive-like behavioral links to signal activities,
respectively. Consistent with previous findings [18–20], the
LPS challenge induced time-dependent behavioral outcomes,
as shown an increase in OFT total distance moved (TDM)
that occurred over 1–6 h post-LPS (Fig. 1g) and a decrease in
FST immobility over 10–12 h post-LPS challenge (Fig. 1h).
The time-dependent behavioral outcomes appeared to be
associated with NFκB activation in a tissue-specific manner.
A comparative trajectory showed that dermal NFκB activation
correlated with the early-phase where increased TDM was
observed. In contrast, IL-PFC NFκB activation correlated
with the late-phase where decreased immobility was observed
(Fig. 1i).

Two faces of GR in the inhibition of NFκB activity

In the trajectory of dermal NFκB, we noticed a dis-
continuance during the middle-phase (Fig. 1i); this is likely
due to the inhibitory actions of GR on NFκB, as evidenced
by a dramatic increase in plasma CORT at 2 h post-LPS
(Supplementary Fig. 5a). To demonstrate this, we per-
formed dual monitoring of GR activity with the GRE-
Luc2CP reporter (Fig. 2a) [16]. Unlike the differences
shown in NFκB activation (Fig. 1e, i), GR activation
showed no difference between the IL-PFC and dermis
across all time points (Fig. 2b, c; tissue × time interaction:
F9,252= 0.93, P= 0.50), but significant GR activations were
observed (time: F9, 252= 42.11, P < 0.001) during the mid-
dle and late-phase. As expected, the trajectory of GR was
opposite to that of NFκB during the middle-phase, sug-
gesting that the middle-phase GR activation plays a key role
in modulating excessive inflammation upon binding to high
levels of GC. In contrast, it seems that late-phase GR
activity has no inhibitory action, as evidenced by similar
trajectories of GR and NFκB and consequent depressive-
like behavior (Fig. 2d).

The conflicting results of GR inhibitory action on NFκB
were corroborated by in vitro experiments with H19-7 cells.
TNFα treatment significantly increased GR and NFκB
nuclear translocations and their corresponding activities
(Fig. 2e, f), suggesting cytokine-induced GR activation.
Interestingly, both CORT and TNFα induced SC35-positive
speckles (Fig. 2g), implying involvement of transcriptional
mechanism in the TNFα-driven gene regulation as well as
CORT-driven gene regulation [21]. We also found that the
activated NFκB induced by TNFα was eradicated by the
high dose of CORT treatment (Fig. 2h). Accordingly, in
in vivo experiments with systemic LPS challenge, the
transient depressive-like behavior during the late-phase was
eliminated by CORT pre-treatment (Supplementary Fig. 6),
suggesting a restored inhibitory action by CORT [22–24].

Systemic blockade of GR activity leading to
activation of NFκB in the IL-PFC

Basal GR activity was blocked by RU486 before LPS
treatment, to determine if low GR activity is sufficient to
inhibit NFκB activity in the IL-PFC (Fig. 3a). As expected,
repeated single-monitoring assays showed that GR activity
was significantly reduced in the RU486-treated group
compared with the control group during the early-phase
(Fig. 3b; time × treatment: F9, 110= 6.78, P < 0.001, P <
0.001 at 4 and 8 h). Reversely, NFκB activity was sig-
nificantly increased (Fig. 3c; time × treatment: F9, 99= 8.34,
P < 0.001; P < 0.05 at 1, 2, 4, and 12 h). Depressive-like
behavior was also observed during the early and late-phases
(Fig. 3d, e).

The rebound of GR activation after RU486 clearance
seemed to be induced by cytokines, as shown in the late-
phase GR activity by LPS (Fig. 3b) because depressive-like
behaviors were measured during this phase. In line with this,
the rebound in GR activation was also observed in the RU486
experiments in ADX mice (Supplementary Fig. 7). In the test
of a direct GR involvement in the IL-PFC using RU486 brain
infusion, similar results of depressive-like behavior were
obtained without a dramatic increase in plasma CORT com-
pared to the LPS-treated group (Supplementary Fig. 8).
Meanwhile, there were dramatic CORT increases in RU486/
LPS i.p. injection, irrespective of the phase (Supplementary
Fig. 5b), as reported by previous studies [25–28].

Transcriptional links to NFκB-GR signal interplay

To gain transcriptional insight into the GR inhibitory action
on NFκB in the middle phase, PCR analysis was used to
investigate the negative correlation coefficients between
eight GR-specific genes known to inhibit NFκB signaling
[29–34] and 32 NFκB-response genes (Supplementary
Table 1). Of the eight GR-specific genes, GILZ expression

5090 Y.-M. Han et al.



significantly increased in the middle phase, but the other
genes did not (Supplementary Fig. 9a). This might have
resulted from individual variations due to mainly endpoint
analysis. Correlation analysis with the same individual mice
can increase statistics significance by reducing at least intra-
individual variability. As shown in Fig. 4a, the correlation
coefficient showed that the two GR-specific genes encoding
for ANXA1 (24.17%) and IκBα (39.27%) were mostly
negatively correlated. A time-lapse heat map with ten-time
points also showed a negative correlation coefficient mainly
in the ANXA1 and IκBα (Fig. 4b and Supplementary
Fig. 10), but unexpectedly negative correlations spread
across all periods. In an alternative analysis of four periods,
however, negative correlation coefficients with seven
NFκB-responsive genes were found primarily in the middle

phase (Fig. 4c). These negative correlations were mostly
converted to positive correlations by RU486 treatment
(Fig. 4d) in the middle phase. These results suggest that two
GR-specific genes, ANXA1 and IκBα, are involved in
protecting depressive-like behavior through inhibition of
NFκB during the body-to-brain inflammatory spread.

Effect of AAV-mediated gene silencing in the IL-PFC
on depressive-like behavior by LPS

We employed RNA interference to confirm the causative
association of ANAX1 or IκBα with the depressive-like
behavior. After candidate shRNAs were confirmed by
in vitro fluorescence and western bolt analyzes (Supple-
mentary Fig. 11), the right IL-PFC of mice were unilaterally

Fig. 2 Distinct GR involvement in the inhibition of NFκB activity.
a Representative bioluminescent images (BLIs) of GR dual monitoring
by the GRE-Luc2CP reporter. b Individual GR profiles of the dermis
(left panel) and IL-PFC (right panel). The orange line represents the
average GR activity at each time point (n= 15). c The trajectories of
the two GR activities, and (d) the trajectories of the NFκB and GR
activities in the IL-PFC. e Representative confocal images of nuclear
GR translocation by TNFα in H19-7 cells. The cells were stained for
GR (green) and p65 (red). f The effect of TNFα on NFκB and GR
activities. To evaluate the effects, H19-7 cells were infected with each
Luc2CP reporter and then incubated for 36 h in the presence of
the indicated doses of TNFα (n= 4/group for in vitro tests).

g Representative confocal images of nuclear GR translocation and SC-
35 as a nuclear speckle marker induced by CORT or TNFα treatment
in H19-7 cells. The cells were stained for GR (red) and SC-35 (green).
h The effects of CORT on NFκB activity. To evaluate the effects,
H19-7 cells were infected with NFκB Luc2CP reporter and then
incubated for 36 h in the presence or absence of the TNFα by the
presence of the indicated doses of CORT (n= 4/group for in vitro
test). Each signal activity was divided by an average of EF1α-Luc2CP
signals. Statistical significance was determined by Student’s t-test
(*P < 0.05, ***P < 0.001 vs control). IL-PFC infralimbic prefrontal
cortex; CORT corticosterone. Norm normal behavior; Dep depressive-
like behavior (color figure online).
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injected with AAV-scramble-shRNA, AAV-ANAX1-
shRNA, or AAV-IκBα-shRNA vectors. Four weeks later,
mice were i.p. injected with LPS and then the immobility in
the FST was analyzed at 4 h post-LPS. Similar to the
depressive-like behavior with RU486/LPS treatment, the
silencing of ANAX1 increased immobility at 4 h post-LPS
(Fig. 4e), indicating that ANXA1 is a key transcript in IL-
PFC for protection against neuroinflammation induced by
systemic LPS [35–37]. However, no change was found in
the mobility with IκBα knockdown mice (data not shown).
The different behavioral outcomes between ANXA1 and
IκBα may be due to the IL-PFC microenvironment with less
effective ANAX1 action that suppresses neuroinflammation
[38], or the insufficient IκBα knockdown with the unilateral
injection that affects behavioral change. Taken together, we
propose that the inhibitory action of GR on NFκB changes
over time in the body-to-brain inflammatory spread (Fig. 4f
and Supplementary movies 1, 2).

Discussion

This study is the first to monitor in vivo temporal NFκB and
GR activity to account for how the hypothalamic-pituitary-
adrenal (HPA)-axis modulates the immune system in the body

and brain [39, 40]. The middle and late GRs were differen-
tially involved in the inhibitory action on NFκB activity by a
systemic inflammatory challenge; upon binding to high levels
of GC, the middle-phase GR effectively inhibits NFκB,
whereas the late-phase GR has no inhibitory action. Experi-
ments with RU486 also revealed a cryptic mechanism that
basal GC plays a protective role in the early brain inflam-
matory assault. Furthermore, by assessing gene silencing in
the IL-PFC, we showed that ANAX1 plays an important role
during brain inflammatory adaptation [41, 42].

A notable finding in our study was the activation of
NFκB, which serves as a biological marker of the beha-
vioral outcome. The most difficult riddle in behavioral
research is linking signal activity with behavioral outcomes.
Particularly, the behavioral relevance of in vivo NFκB
activity is not well known. Our results of behavioral-
outcome-based NFκB transition demonstrated that body and
brain NFκB activation corresponded to sickness and
depressive-like behaviors, respectively. This suggests a
tissue-specific association with NFκB activation [43]. This
depressive-like association was corroborated using RU486
experiments, in which NFκB activation and consequent
depressive-like behavior appeared in the early phase.

Another finding was the temporal involvement of the GR
inhibitory action on NFκB. Given the inflammation and

Fig. 3 RU486 induced early brain NFκB activation and corre-
sponding depressive-like behavior. a Schematic illustrating repeated
analysis with single-monitoring in IL-PFC. b Individual GR profiles of
1 mg/kg LPS (left panel) and 10 mg/kg RU486+ 1 mg/kg LPS (right
panel). c Individual NFκB profiles of 1 mg/kg LPS (left panel) and 10
mg/kg RU486+ 1 mg/kg LPS (right panel). The orange line represents
the average GR activity at each time point (n= 12). Time course of

behavior for (d) immobility time in the FST. Data are represented as
the mean ± standard error of measurement [n= 8/group, except for 12
h post-LPS (n= 7/group)] (e) the trajectories of NFκB and GR
activities in the LPS/RU486-treated mice. Statistical significance was
determined by Student’s t-test (*P < 0.05 vs control). IL-PFC infra-
limbic prefrontal cortex, LPS lipopolysaccharide, FST forced swim-
ming test, Dep depressive-like behavior (color figure online).
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hypercortisolism observed in depressed patients [44, 45], it
is important to evaluate the impairment of the GR inhibitory
function on NFκB, a neurobiological mechanism for the
depressive disorder [1]. From the in vivo NFκB-GR tra-
jectory, we suggest that the HPA-axis plays a critical role in
the temporal ability of GR to inhibit NFκB activity. For
example, the middle-phase GR involved in normal behavior
has been shown to remarkably inhibit NFκB through GR
binding to high levels of CORT [46, 47]. In contrast, the
late GR involved in depressive-like behavior is considered
devoid of inhibitory as evidenced by the coexistence of GR
and NFκB activation in the late phase. The loss of inhibitory
action can be explained by GC resistance mediated by the
selective accumulation of GRβ protein induced by TNF-α
treatment [22]. However, we cannot rule out the possibility
of direct antagonism of NFκB by GR through
protein–protein interactions. This is because in vitro TNFα
treatment significantly increases GR nuclear translocation

and its corresponding activity [23, 24, 48, 49]. In addition,
TNFα-activated NFκB was abolished by treatment with
100 nM CORT in the H19-7 cells (Fig. 2g). This was
confirmed by in vivo experiment with i.p. CORT injection,
showing alleviated depressive-like behaviors in the late
phase (Supplementary Fig. 6).

We also discovered the latent role of the basal HPA-axis in
inhibitory action on NFκB activity by blocking GR activity
with RU486 pretreatment in the early phase. Clinical evidence
on the basal HPA-axis [50], knowing the psychiatric sig-
nificance of basal GR activity can help determine why the
basal HPA-axis is sometimes distorted, leading to stress-
related disorders, such as depression [51–53]. Thus, our study
may provide unique insights on how to direct the HPA-axis of
a depressed patient to cure the antidepressant-resistant
depression caused by neuroinflammation.

One challenge faced in this study was the readouts of
transcription results. The nonsignificant changes in the

Fig. 4 Transcriptional analysis of NFκB-GR interplay with qPCR.
a Percentages of correlation coefficient in NFκB-GR transcriptional
interplay. b Time-lapse heat map of the correlation coefficients of 32
NFκB-response genes with ANAX1 and IκBα (n= 8/group). Tem-
poral network connectivity of (c) LPS-treated mice (n= 8/group) and
(d) RU486/LPS-treated mice [n= 8/group except for 12 h post-LPS (n
= 7/group)] with four periods. Periods were grouped according to the
behavioral outcomes, and seven NFκB-responsive genes were selected
for a clear correlation with ANAX1 and IκBα in the middle phase. The

connecting lines are colored according to their correlation direction
and specificity, as in the insert. e Experimental procedure and
immobilization analysis of FST for AAV-based gene silencing in IL-
PFC. f Illustrations of the proposed model. GCs, glucocorticoids,
seven NFκB-responsive genes; CXC1, IL3, IL6, IL11, IL12, IL16, and
IL18. In correlation analysis, only the significant correlation coeffi-
cient (P < 0.05) of GraphPad Prism (GraphPad Prism software v7.04,
Inc.) was used. Statistical significance was determined by Student’s t-
test (*P < 0.05 vs control for immobility analysis) (color figure online).
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expression levels of GR-specific genes including genes
modulating GR activity (i.e., GR, SGK1, and FKBP5), were
expected to be upregulated during the middle phase; how-
ever, there were no changes except for GILZ expression.
This could be explained by the endpoint PCR analysis and
diverse transcriptional reactivity derived from various cells
in the IL-PFC. Nevertheless, other possibilities, such as the
decoupling of transcript expression and GR activity could
not be ruled out, as described in our previous study in which
fluoxetine had no effect on hippocampal GR protein
expression for GR activation [1]. Another challenge was the
different statistical significance between gene expression
and network analyzes. Although network analysis showed
negative correlation coefficients with ANXA1 and IκBα in
the middle phase, the gene expression levels were not
increased. This could be explained by the statistical rigor,
which could be performed using data from single indivi-
duals in the network analysis. The baseline is used as the
value of interest but is considered noise in gene expression
analysis. Also, similar values with gene expressions
between groups are expected to perform different functions
in the IL-PFC, particularly those with high individual var-
iation. Finally, we also encountered certain difficulties in
the readouts of transcriptional trajectory. The signal trajec-
tory obtained with the reporter was clearly visible; however,
it was difficult to obtain a clear trajectory with the GR
specific genes in qPCR analysis. This may have been
related to the different features of the detection method for
signals and transcripts. Signals were monitored in a long-
itudinal analysis with reporters based on simple consensus
sequences, generating a homogeneous trajectory. However,
the endogenous promoter of the target gene is composed of
various transcription factor (TF) binding elements [54, 55],
resulting in complex changes in the spatiotemporal
expression of the target gene [56]. Various cell types are
also involved in the diversity of gene expression [57, 58].
Naturally, the results of in vivo transcripts provide more
physiologically relevant information; however, as we
observed in our study, such data could increase the com-
plexity of interpreting the link between transcriptional out-
comes and behavioral phenotypes. The use of our reporter,
which removed this complexity, clarified signal links.

The controversial issue was the difference in the reading of
phenotypic outcomes in the same behavioral rodent test
between research laboratories. For example, the immobility of
FST has been widely used as a parameter to measure beha-
vioral despair and helplessness as a parameter [59]; however,
it has also been suggested as habituation [60, 61] or coping
with the inescapable stressor [62, 63]. This may be due to the
complex features of human depression patients [64, 65] and
thereby the lack of equivalence between animal models and
depression [66]. In addition, the parameters of behavioral
testing are known to be affected by strain, housing conditions,

animal handling [67]. In antidepressant studies, the immobi-
lity of FST using ICR mice has been demonstrated as a
depressive-like behavioral parameter, as evidenced by
decreased immobility by fluoxetine (Supplementary Fig. 12)
[64]. In contrast, OFT can be used to assess anxiety,
exploration, and locomotor activity. These phenotypic out-
comes can be discerned using different parameters such as the
mouse’s tendency to avoid the central areas as anxiety-like
behaviors [68] and total distance traveled in the OFT for a
parameter of motor activity that is interpreted as a sickness
behavior [69]. Nevertheless, caution should be exercised
when interpreting behavioral outcomes, as the parameters of
the behavioral test may be inaccurate or outdated, as sug-
gested by the de Kloet’ group [62, 63].

The inability to investigate GR phosphorylation is a
technical limitation; we could not analyze GR phosphor-
ylation due to the discontinuation of commercial antibodies.
Future studies should use antibodies for these two distinct
GRs, particularly within its N-terminus (S203 and S211)
[1, 70, 71]. Information on GR phosphorylation can provide
detailed information on the molecular mechanisms under-
lying GR activation and different inhibitory GR actions on
NFκB. Nevertheless, the technical strength of our study
emanates from the high temporal resolution of the Luc2CP
reporter, which allowed us to discern different NFκB
responses between the dermis and IL-PFC during the early-
phase. Analyzes using the reporters herein allow an inte-
grated interpretation of the efficacy of drugs without further
experimentation, such as the effects of RU486 on GR
activity in the brain. The reporters can also be applied to a
one-step drug assay, which is a simple method for testing
drug effectiveness in the brain and is best suited for con-
ceptual medical research.

In summary, this study sheds light on the role of the
HPA-axis as an origin of inflammation-related depression.
This information can be useful for guiding treatment by
providing insight into how antidepressant-resistant depres-
sion occurs in the dysfunctional HPA-axis of depressed
patients. Our in vivo signal-transition assay also provides a
technical framework to elucidate how abnormalities in
signaling pathways can lead to various psychiatry disorders.
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