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Abstract

The X chromosome is known to play an important role in many sex-specific diseases.
However, only a few single-nucleotide polymorphisms on the X chromosome have been
found to be associated with diseases. Compared to the autosomes, conducting association
tests on the X chromosome is more intractable due to the difference in the number of X chro-
mosomes between females and males. On the other hand, X-chromosome inactivation takes
place in female mammals, which is a phenomenon in which the expression of one copy of two
X chromosomes in females is silenced in order to achieve the same gene expression level as
that in males. In addition, imprinting effects may be related to certain diseases. Currently,
there are some existing approaches taking X-chromosome inactivation into account when test-
ing for associations on the X chromosome. However, none of them allows for imprinting
effects. Therefore, in this paper, we propose a robust test, ZXCII, which accounts for both
X-chromosome inactivation and imprinting effects without requiring specifying the genetic
models in advance. Simulation studies are conducted in order to investigate the validity
and performance of ZXCII under various scenarios of different parameter values. The simula-
tion results show that ZXCII controls the type I error rate well when there is no association.
Furthermore, with regards to power, ZXCII is robust in all of the situations considered and
generally outperforms most of the existing methods in the presence of imprinting effects,
especially under complete imprinting effects.

1. Introduction

The X chromosome has been found to play an important role in many complex diseases
(Ober et al., 2008; Wise et al., 2013). However, the development of methods for detecting
associations with X-linked markers has lagged behind that for autosomal markers due to
the complexity of the inheritance patterns of the X chromosome (Wise et al., 2013;
Schurz et al., 2019). One primary characteristic of the X chromosome in mammals is
that females have two copies of the X chromosome while males only have one, which
increases the difficulty of X-linked association studies (Clayton, 2009; Ziegler, 2009;
Loley et al., 2011). In addition, the phenomenon of X-chromosome inactivation (XCI) in
females may constitute a risk factor for diseases, which is defined as the expression silencing
of one of the two copies of the X chromosome in females. Thus, the X-chromosome gene
dosage in female XX cells equals that in male XY cells, namely dosage compensation (Chow
et al., 2005; Payer & Lee, 2008; Pessia et al., 2012). As such, the genetic effect of homozy-
gous females can be regarded as the same as that of hemizygous males under XCI. It has
been reported that most of the genes on the X chromosome are subject to XCI, while
only about 15% of X-linked genes escape from inactivation (XCI-E) (Carrel & Willard,
2005). Random X-chromosome inactivation (XCI-R) is the general process of XCI by
which one of the two copies of the X chromosome in each cell is randomly inactivated.
But the XCI patterns in some females may become skewed from that of the XCI-R in an
age- and tissue-dependent manner, and the same allele can be inactivated in more than
75% of cells in some cases (Migeon, 1998; Minks et al., 2008; Starmer & Magnuson,
2009; Wang et al., 2014), which is denoted by XCI-S for convenience.

At present, there are some association tests available for single-nucleotide polymorph-
isms (SNPs) on the X chromosome. Zheng et al. (2007) proposed six methods for testing
associations on the X chromosome by combining the genetic effects in females and
males. Among them, the allele-based tests ZA and ZmfA require the assumption of a
Hardy–Weinberg equilibrium (HWE), while the genotype-based methods ZC and ZmfG

are robust to departures from a HWE. Furthermore, note that all four methods mentioned
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above rely on the assumption that females and males have the
same risk alleles. Thus, two other methods (Z̃mfA and Z̃mfG)
were developed and are applicable to the situation in which
females and males have different risk alleles. On the other
hand, the six methods of Zheng et al. (2007) only consider
the information on XCI-E and do not take account of XCI,
which may lead to loss of power if XCI is present. Clayton
(2008) was the first to suggest that XCI should be considered
in X-chromosome association studies. Clayton’s methods (TA
and TAD) are equivalent to the score tests of generalized linear
models accounting for XCI-R and give the same codes for
homozygous females and hemizygous males. When the allele
frequencies of the same allele differ between the sexes, the
test statistics Ts

A, T
s
AD and SA, stratified by sex, have been pro-

posed by Loley et al. (2011) and König et al. (2014). In addition,
a software toolset XWAS (Gao et al., 2015) includes four tests
(FM01, FM02, FMF and FMS) based on logistic regressions.
However, those approaches only consider XCI-R and ignore
XCI-S. In order to simultaneously incorporate three biological
patterns on the X chromosome (XCI-E, XCI-R and XCI-S),
Wang et al. (2014) developed a maximum likelihood ratio
method. However, this method is time-consuming because it
is a permutation-based procedure for obtaining an empirical
P-value. Meanwhile, Chen et al. (2017) proposed a robust
method (Xcat) based on a generalized genetic model with the
approximate P-value being easily obtained. Recently, Wang
et al. (2019) proposed a robust test, Zmax, by taking account
of different dosage compensation patterns, which requires nei-
ther the assumption of a HWE nor the specification of under-
lying genetic models.

Imprinting is an epigenetic phenomenon that results in the
differential expression of paternal and maternal alleles (Falls
et al., 1999). Researchers have found evidence for the existence
of imprinting effects on some diseases, such as Angelman,
Beckwith–Wiedemann and Prader–Willi syndromes (Falls et al.,
1999; Dong et al., 2005; Ziegler & König, 2006; Wallace et al.,
2010). On the other hand, it is likely that imprinted genes on
the X chromosome are crucial to some diseases, such as
Turner’s syndrome (Donnelly et al., 2002; Loesch et al., 2005).
For some sex-specific diseases, such as autism, alleles on the
paternal chromosome seem to be preferentially expressed, which
is likely to explain why females are always less susceptible than
males (Skuse, 2000). Imprinting is generally detected through
testing for parent-of-origin effects (Hager et al., 2008). Thus, we
use the term ‘parent-of-origin effects’ instead of ‘imprinting
effects’ in the following sections. However, there is no method
available for taking parent-of-origin effects into account when
conducting association tests on the X chromosome.

Therefore, in this paper, we propose a robust method, ZXCII,
which is an extension of Xcat to the generalized linear model sim-
ultaneously accounting for imprinting and three biological pat-
terns (XCI-E, XCI-R and XCI-S) into X-chromosome
association tests without the need to specify the genetic models
on the X chromosome. We investigate the performance of the
proposed method and compare it with several existing tests
through extensive simulation studies. Simulation results show
that the proposed method controls the size well under all of the
scenarios considered when there is no association. Moreover,
with regards to power, ZXCII is robust in all of the situations con-
sidered and generally outperforms most of the existing methods
in the presence of imprinting effects, especially under complete
imprinting effects.

2. Materials and methods

For a candidate SNP on the X chromosome with the mutant allele
A and the normal allele a, there are four ordered genotypes for
female offspring: a/a, a/A, A/a and A/A, where the left (right)
allele of the slash is paternal (maternal). To distinguish the parent
of origin of the mutant allele A in heterozygous female offspring,
the information on their parental genotypes is required. With
regards to male offspring, there are only two kinds of genotypes,
a and A, which are maternal. Thus, we do not need to collect their
parental genotypes. Assume that Gf1 and Gf2 are the numbers of
allele A on the paternal and maternal X chromosomes in female
offspring, respectively, and Gm is the number of allele A on the X
chromosome in male offspring. The values of Gf1, Gf2 and Gm for
different genotypes in the offspring generation are shown in
Table 1. The disease status of an individual (female or male) in
the offspring generation is denoted by Y with 1 (0) representing
being affected (unaffected). In this paper, an affected daughter
together with her parents is called a case–parent trio and an
unaffected daughter together with her parents is considered as a
control–parent trio (Deng & Chen, 2001; Li et al., 2016).
Table 2 gives the genotype counts for the female offspring,
where nf is the total number of daughter–parent trios consisting
of rf case–parent trios and sf control–parent trios. The genotype
counts for the male offspring are also listed in Table 2, where
nm is the total number of males including rm cases and sm con-
trols. As such, there are nr = rf + rm cases and ns = sf + sm controls
in total. Therefore, the sample size is N = nr + ns = nf + nm. Let ϕf0,
ϕf01, ϕf10 and ϕf2 be the penetrances of genotypes a/a, a/A, A/a and
A/A in female offspring, respectively, and let ϕm0 and ϕm1 be the
penetrances of genotypes a and A in male offspring, respectively.
To test the association between the disease status Y and the SNP
under study, we make the following two assumptions, just like
Xcat (Chen et al., 2017): (1) in the presence of association
between the disease and the SNP, the generalized genetic model
is assumed to hold in female offspring with ordered penetrances,
either increasing (ϕf0⩽ ϕf01, ϕf10⩽ ϕf2) or decreasing (ϕf0⩾ ϕf01,
ϕf10⩾ ϕf2); and (2) the mutant allele in female offspring is the
same as that in male offspring.

A logistic regression model is proposed to describe the associ-
ation between the disease and the SNP in female offspring:

Logit (Pr(Y = 1|Gf 1, Gf 2, Xf ))

= b f 0 + b f 1Gf 1 + b f 2Gf 2 + b f 3Gf 1Gf 2

+ bTf Xf

, (1)

where βf0 is the intercept, βf1, βf2 and βf3 are the respective regres-
sion coefficients for Gf1, Gf2 and the interaction term Gf1Gf2, Xf is
a vector of covariates and bf is a vector of the regression coeffi-
cients for Xf. The estimates of these coefficients can be obtained
with the iteratively reweighted least squares method (Wood,
2006) using the glm function in R language (http://www.r-pro-
ject.org). The null hypothesis of no association between the
disease and the SNP in female offspring is Hf0∶βf1 = βf2 = βf3 = 0.
If at least one of these equations is not satisfied, then the associ-
ation exists, which indicates the alternative hypothesis (Hf1). Logit
(Pr(Y = 1|Gf1, Gf2, Xf)) outcomes for different genotypes in female
offspring are presented in the fourth column of Table 1. Thus,
under Hf1, the parent-of-origin effects at the SNP locus can be
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expressed by:

Logit (Pr(Y = 1|a/A, Xf ))− Logit (Pr(Y = 1|A/a, Xf ))

Logit (Pr(Y = 1|A/A, Xf ))− Logit (Pr(Y = 1|a/a, Xf ))

= b f 2 − b f 1

b f 1 + b f 2 + b f 3
, (2)

when Xf is fixed at the same level. For example, βf1 = βf2 represents
no parent-of-origin effects, while βf2 = βf3 = 0 denotes complete
maternal parent-of-origin effect and βf1 = βf3 = 0 indicates com-
plete paternal parent-of-origin effect. Moreover, we can use

g = 2×

[Logit(Pr(Y = 1|a/A, Xf ))+ Logit(Pr(Y = 1|A/a, Xf ))

−2× Logit(Pr(Y = 1|a/a, Xf ))]/2

Logit(Pr(Y = 1|A/A, Xf ))− Logit(Pr(Y = 1|a/a, Xf ))

= b f 1 + b f 2

b f 1 + b f 2 + b f 3
,

(3)

to measure the degree of inactivation under XCI in a similar way
to Wang et al. (2019). On the other hand, the difference between
βf3 and 0 can be interpreted as the deviation of the genetic model
from the additive one under XCI-E. To be specific, Table 3 gives
the explanations of the regression coefficients for several situa-
tions of XCI and XCI-E under no parent-of-origin effects (βf1 =
βf2 = β). βf1 = βf2 =−βf3 means XCI-S with γ = 2 representing
100% of the cells having the mutant allele active or a dominant
model under XCI-E. βf1 = βf2 = β and bf 3 = − 2

3b stand for
XCI-S with γ = 1.5, where 75% of the cells have the mutant allele
active. βf1 = βf2≠ 0 and βf3 = 0 correspond to XCI-R with γ = 1 or
an additive model under XCI-E. βf1 = βf2 = β and βf3 = 2β imply
XCI-S with γ = 0.5, where 25% of the cells have the mutant allele
active. βf1 = βf2 = 0 and βf3≠ 0 indicate XCI-S with γ = 0 repre-
senting that 100% of the cells have the normal allele active or a
recessive model under XCI-E. However, in the presence of
parent-of-origin effects, the explanation of the regression coeffi-
cients is more complicated, since parent-of-origin effects may
contribute to the XCI. For example, βf1 = 0.5 and βf2 = βf3 = 0
are indicative of the complete maternal parent-of-origin effect,
whereas γ is obtained to be 1 (suggesting XCI-R) in this case.
Therefore, XCI-R may be also caused by the complete maternal
parent-of-origin effect.

Recall that when the disease is associated with the SNP, the
generalized genetic model with ordered penetrances is assumed

to hold in female offspring. As such, we have

Logit (Pr(Y = 1|a/a, Xf )) ≤ Logit (Pr(Y = 1|a/A, Xf ))

≤ Logit (Pr(Y = 1|A/A, Xf ))

and

Logit (Pr(Y = 1|a/a, Xf )) ≤ Logit (Pr(Y = 1|A/a, Xf ))

≤ Logit (Pr(Y = 1|A/A, Xf ))

which are equivalent to 0⩽ βf1⩽ βf1 + βf2 + βf3 and 0⩽ βf2⩽ βf1 +
βf2 + βf3, respectively, with at least one inequality being strict.
Adding these two inequalities together, we get 0⩽ βf1 + βf2⩽ 2
(βf1 + βf2 + βf3) and thus βf1 + βf2 + 2βf3⩾ 0. Therefore, the alterna-
tive hypothesis becomes Hf1∶βf1⩾ 0, βf2⩾ 0, βf1 + βf2 + 2βf3⩾ 0,
with at least one inequality being strict, which can be expressed
in matrix form as follows:

Cbf =
1 0 0
0 1 0
1 1 2

⎛
⎝

⎞
⎠ b f 1

b f 2

b f 3

⎛
⎝

⎞
⎠ ≥ 0, (4)

where C =
1 0 0
0 1 0
1 1 2

⎛
⎝

⎞
⎠, bf =

bf 1

bf 2

bf 3

⎛
⎝

⎞
⎠, and 0 is a vector with

all of the elements being 0. To test for the association, we first
consider the following test statistics:

Z = (Z1, Z2, Z3)
T = (CÎ

−1
CT )−

1
2Cb̂f , (5)

where b̂f = b̂f 1, b̂f 2, b̂f 3

( )T
with b̂f 1, b̂f 2 and b̂f 3 being the

maximum likelihood estimates of βf1, βf2 and βf3, respectively.
Î is the empirical Fisher’s information matrix (Wood, 2006).

Under the null hypothesis of no association, Z1, Z2 and Z3 are
independent of one another and asymptotically have standard
normal distributions. Note that Cbf ≥ 0 leads to Z⩾ 0 under
Hf1, and we thus only calculate the right-sided P-values for Z1,
Z2 and Z3, respectively. Then, we combine them using the
Fisher’s method (Fisher, 1954). Thus, the test statistic for female
offspring can be constructed as:

QR
f = −2 ln (F(−Z1)F(−Z2)F(−Z3)), (6)

where Φ(⋅) is the cumulative distribution function of the standard
normal distribution. Under the null hypothesis, QR

f has an asymp-
totic χ2 distribution with degrees of freedom (df) being 6. As

Table 1. Values of Gf1, Gf2 and Gm for different genotypes in the offspring generation.

Female Male

Genotype Gf1 Gf2 Logit(Pr(Y = 1|Gf1, Gf2, Xf)) Genotype Gm

a/a 0 0 bf0 + bTf Xf a 0

a/A 0 1 bf0 + bf2 + bTf Xf A 1

A/a 1 0 bf0 + bf1 + bTf Xf

A/A 1 1 bf0 + bf1 + bf2 + bf3 + bTf Xf

Genetics Research 3



such, the P-value of QR
f is PR

f = 1− x26(Q
R
f ), where x26(·) is the

cumulative distribution function of the χ2 distribution with df
being 6.

For male offspring, we model the relationship between the dis-
ease and the SNP using a logistic regression as:

Logit(Pr(Y = 1|Gm, Xm)) = bm0 + bmGm + bTmXm, (7)

where βm0 is the intercept, βm is the regression coefficient for Gm,
Xm is a vector of covariates and bm is a vector of the regression
coefficients for Xm. When there is no association between the dis-
ease and the SNP, the null hypothesis for male offspring is Hm0:
βm = 0. Then, the test statistic for male offspring is

Zm = b̂m

Sb̂m

, (8)

where b̂m is the maximum likelihood estimate of βm and Sb̂m
is the

standard error of b̂m. Zm follows a standard normal distribution
under Hm0. When there are no covariates, Eq. (8) can be simpli-
fied to

Zm = n1/2m (rmsa − smra)

(nanArmsm)
1/2 (9)

as in Zheng et al. (2007) and Chen et al. (2017).
For combining the test statistics of female and male offspring,

we need to turn the P-value for female offspring (PR
f ) into a

Z-score, which is ZR
f = −F−1(PR

f ). Then, under the assumption
that the mutant allele in female offspring is the same as that in
male offspring, the combined test statistics ZR can be constructed
as follows:

ZR =
���������

nf
nf + nm

√
ZR
f +

���������
nm

nf + nm

√
Zm, (10)

where ZR
f and Zm are weighted by their respective proportions of

the sample size. Under the overall null hypothesis that there is no
association between the disease and the SNP in both female and
male offspring (H0 :Cbf = 0 and βm = 0), ZR is asymptotically
distributed as N(0, 1). Since the mutant allele is assumed to be
A, with the overall one-sided alternative hypothesis
H1 :Cbf ≥ 0 (with at least one inequality being strict) or βm > 0,
we only need to calculate the right-sided P-value of ZR when the
mutant allele is known in advance.

So far, we have only considered the situation when the mutant
allele is A. When the mutant allele is a, the overall alternative
hypothesis turns to be H1 :Cbf ≤ 0 (with at least one inequality
being strict) or βm < 0. Therefore, the corresponding test statistic
for female offspring is QL

f = −2 ln (F(Z1)F(Z2)F(Z3)), which
combines the left-sided P-values of Z1, Z2 and Z3, and the
P-value of QL

f is PL
f = 1− x26(Q

L
f ). Again, we combine the trans-

formed Z-score (ZL
f = −F−1(PL

f )) for female offspring and Zm for
male offspring to obtain the overall test statistic as:

ZL =
���������

nf
nf + nm

√
ZL
f +

���������
nm

nf + nm

√
(−Zm). (11)

ZL is asymptotically distributed as N(0, 1) under the overall null
hypothesis. With this H1, just like ZR, only the right-sided
P-value of ZL is needed when the mutant allele is known to be
a in advance.

However, we generally have no information on the mutant
allele before conducting the association studies. In this case, we
propose the test statistic as:

ZXCII = max ZL,ZR
( )

. (12)

Although ZL and ZR are obviously dependent on each other, note
that the components of Zt = (Z1, Z2, Z3, Zm)

T are independent of
each other, and the functions −ZL and ZR of Zt are non-
decreasing functions. Thus, the P-value of ZXCII can be

Table 2. Genotype counts for the single-nucleotide polymorphism on the X chromosome stratified by sex in the offspring generation.

Female Male

Group a/a a/A A/a A/A Total a A Total

Case ra/a ra/A rA/a rA/A rf ra rA rm

Control sa/a sa/A sA/a sA/A sf sa sA sm

Total na/a na/A nA/a nA/A nf na nA nm

Table 3. Explanation of the regression coefficients under no parent-of-origin effects.

Coefficients γ XCI XCI-E

βf1 = βf2 =−βf3 2 XCI-S (100% of the cells have the mutant allele active) Dominant model

bf1 = bf2 = b, bf3 = − 2
3b 1.5 XCI-S (75% of the cells have the mutant allele active) —

βf1 = βf2≠ 0, βf3 = 0 1 XCI-R (random XCI) Additive model

βf1 = βf2 = β, βf3 = 2β 0.5 XCI-S (25% of the cells have the mutant allele active) —

βf1 = βf2 = 0, βf3≠ 0 0 XCI-S (100% of the cells have the normal allele active) Recessive model

XCI = X-chromosome inactivation.

4 Yu Zhang et al.



approximately bounded by

2j− j2 ≤ Pr ZXCII . z( ) ≤ 2j, (13)

where ξ = 1−Φ(z) according to Owen (2009) and Esary et al.
(1967). Therefore, we can simply get the approximated P-value
of ZXCII by 2ξ.

3. Simulation study

3.1. Settings

We conduct a simulation study to investigate the size and power
of the proposed ZXCII method and compare it with the existing
ones. Notice that in Zheng et al. (2007), and Z̃mfA and Z̃mfG are
less powerful than the other four test statistics (ZA, ZC, ZmfA

and ZmfG) under the assumption that the mutant allele in females
is the same as that in males. Thus, in this simulation study, Z̃mfA

and Z̃mfG are excluded. Ts
A and FMS are also excluded because

they are asymptotically equivalent to ZC (Loley et al., 2011) and
ZmfG (Zheng et al., 2007; Gao et al., 2015; Wang et al., 2019),
respectively. On the other hand, the permutation-based method
in Wang et al. (2014) is excluded due to the intensive computa-
tions involved. Finally, we choose 14 methods (ZXCII, Zmax,
Xcat, SA, FM02, ZC, ZmfG, TA, TAD, Ts

AD, FM01, FMF, ZmfA and
ZA) for the comparison. The references for the selected methods
are listed in Table S1.

Note that most of the methods we compare do not consider
the covariates, such as Xcat, SA, ZC, ZmfG, TA, TAD, ZmfA and
ZA. Thus, we do not include any covariate for simplicity in this
simulation study and directly generate the genotype counts in
Table 2. Let pF and pM denote the frequencies of the mutant allele
A for females and males in the parental generation, respectively.
Under random mating, the genotype frequencies of a/a, a/A,
A/a and A/A for female offspring are gf 0 = (1− pM )(1− pF ),
gf 01 = (1− pM )pF , gf 10 = pM (1− pF ) and gf 2 = pMpF , respectively,
and the genotype frequencies of a and A for male offspring are
gm0 = 1− pF and gm1 = pF , respectively. Note that if random
mating holds in the parental generation, HWE holds in the off-
spring generation only under the assumption that the frequency
of the same allele in females and that of males are equal (Puig
et al., 2017). On the other hand, we consider the situation
where pF = pM = p but HWE does not hold in the female off-
spring. The corresponding frequencies of the four genotypes are
gf0 = (1− p)2 + ρp(1− p), gf01 = (1− ρ)p(1 − p), gf10 = (1− ρ)
p(1 − p) and gf2 = p2 + ρp(1− p), respectively, when the inbreed-
ing coefficient ρ≠ 0. Furthermore, the genotype frequencies for
male offspring are gm0 = 1− p and gm1 = p, respectively.

Note that the relationships among the penetrances and the

regression coefficients are
ff 01(1−ff 0)
(1−ff 01)ff 0

= ebf 2 ,
ff 10(1−ff 0)
(1−ff 10)ff 0

= ebf 1 and
ff 2(1−ff 0)
(1−ff 2)ff 0

= ebf 1+bf 2+bf 3 for a/A, A/a and A/A, respectively, for

female offspring and fm1(1−fm0)
(1−fm1)fm0

= ebm for male offspring. Thus,

genotype counts for female offspring in Table 2 can be generated

according to a quadrinomial distribution with probabilities (
gf 0ff 0

ff
,

gf 01ff 01

ff
,
gf 10ff 10

ff
,
gf 2ff 2

ff
) for cases and (

gf 0(1−ff 0)
1−ff

,
gf 01(1−ff 01)

1−ff
,
gf 10(1−ff 10)

1−ff
,

gf 2(1−ff 2)
1−ff

) for controls, where ϕf = gf0ϕf0 + gf01ϕf01 + gf10ϕf10 + gf2ϕf2
is the disease prevalence of females. Similarly, we can obtain
genotype counts for male offspring through a binomial

distribution with probabilities gm0fm0
fm

, gm1fm1
fm

( )
for cases and

gm0(1−fm0)
1−fm

, gm1(1−fm1)
1−fm

( )
for controls, where ϕm = gm0ϕm0 + gm1ϕm1

is the disease prevalence of males.
We consider various simulation settings. (pF , pM ) is taken to be

(0.15, 0.25), (0.20, 0.20), (0.25, 0.15), (0.25, 0.35), (0.30, 0.30) and
(0.35, 0.25). Then, under random mating, the corresponding allele
frequencies for females and males in the offspring generation are
(0.20, 0.15), (0.20, 0.20), (0.20, 0.25), (0.30, 0.25), (0.30, 0.30) and
(0.30, 0.35), respectively. When pF = pM = p = 0.2 and 0.3, we
set ρ =−0.05 and ρ = 0.05 for simulating the departure from
HWE. ϕf0 and ϕm0 are set to be 0.120. For simulating the size,
let all of the other penetrances be 0.120. When XCI exists, we sup-
pose ϕf2 = ϕm1 = 0.240. The values of γ under XCI with different
values of ϕf01 and ϕf10 are shown in Table S2. To investigate the
power, we first consider the situations where there are both XCI
and parent-of-origin effects: (1) (ϕf01, ϕf10) = (0.120, 0.240) (XCI
with γ = 1 and complete maternal parent-of-origin effect); (2)
(ϕf01, ϕf10) = (0.192, 0.216) (XCI with γ = 1.499 and incomplete
maternal parent-of-origin effect); (3) (ϕf01, ϕf10) = (0.144, 0.204)
(XCI with γ = 1.001 and incomplete maternal parent-of-origin
effect); (4) (ϕf01, ϕf10) = (0.132, 0.156) (XCI with γ = 0.492 and
incomplete maternal parent-of-origin effect); (5) (ϕf01, ϕf10) =
(0.240, 0.120) (XCI with γ = 1 and complete paternal
parent-of-origin effect); (6) (ϕf01, ϕf10) = (0.216, 0.192) (XCI
with γ = 1.499 and incomplete paternal parent-of-origin effect);
(7) (ϕf01, ϕf10) = (0.204, 0.144) (XCI with γ = 1.001 and incomplete
paternal parent-of-origin effect); and (8) (ϕf01, ϕf10) = (0.156,
0.132) (XCI with γ = 0.492 and incomplete paternal
parent-of-origin effect). Next, we take account of the scenarios
where XCI exists but there are no parent-of-origin effects with
ϕf01 = ϕf10 = ϕ: (1) ϕ = 0.240 (XCI with γ = 2); (2) ϕ = 0.204 (XCI
with γ = 1.503); (3) ϕ = 0.168 (XCI with γ = 0.935); (4) ϕ = 0.144
(XCI with γ = 0.500); and (5) ϕ = 0.120 (XCI with γ = 0).
Furthermore, we consider the situation where there is neither
XCI nor parent-of-origin effects, which is (ϕf01, ϕf10, ϕf2, ϕm1) =
(0.180, 0.180, 0.240, 0.180). The sample size N for each replication
is selected to be 1000, including nr = 500 cases and ns = 500 con-
trols. To investigate the effect of sex ratio, we fix the sex ratio in
the control group as sf : sm = 1:1, while it varies in the case
group as rf : rm = 3:2, 1:1 and 2:3. We use the significance level
α = 10−5, and the number of replications is fixed to be 106 and
104 for estimating the size and power, respectively. The definitions
of these parameters and the detailed biological meanings of the
situations we consider are provided in Tables S3 and S4,
respectively.

3.2. Size

Table 4 gives the estimated sizes of ZXCII, Zmax, Xcat, SA, FM02, ZC,
ZmfG, TA, TAD, Ts

AD, FM01, FMF, ZmfA and ZA under different
simulation settings when random mating holds in the parental
generation. From Table 4, we can see that ZXCII, Zmax, Xcat,
FM02, ZC, Ts

AD, FM01, FMF, ZmfA and ZA generally control the
size well, except that some of them produce a slightly conservative
size under some situations. The sizes of SA and ZmfG are inflated
when (pF , pM ) = (0.35, 0.25) and the sex ratio is 3 : 2, and they
stay close to the nominal level 10−5 for all of the other situations.
TA and TAD can have inflated size when (pF , pM ) is equal to (0.25,
0.15) and (0.35, 0.25), which may be caused by the different allele
frequencies between females and males in the offspring
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Table 4. Estimated size (× 10−5) under random mating at significance level α = 10−5 based on 106 replicates.a

pF pM Sex ratio ZXCII Zmax Xcat SA FM02 ZC ZmfG TA TAD Ts
AD FM01 FMF ZmfA ZA

0.15 0.25 3:2 0.3 0.7 0.8 1.0 0.7 1.2 0.8 0.4 0.7 1.0 0.6 0.5 1.0 0.9

1:1 1.0 1.0 1.1 1.1 0.6 1.0 1.4 0.4 0.9 0.9 1.1 0.6 1.0 1.1

2:3 0.2 0.8 0.4 0.6 0.5 0.9 0.4 0.4 0.6 0.5 0.6 0.4 0.5 0.8

0.20 0.20 3:2 0.4 0.8 0.9 1.3 0.5 1.1 1.2 1.0 1.2 1.1 0.9 0.5 1.1 0.8

1:1 0.7 0.8 0.6 0.8 0.8 0.5 0.9 0.8 1.2 0.7 0.5 0.4 0.8 0.8

2:3 0.5 0.9 0.3 0.8 1.0 0.8 1.0 1.2 0.9 0.7 0.8 0.5 0.9 0.9

0.25 0.15 3:2 0.3 0.7 0.2 0.8 0.9 0.7 0.8 2.9 1.5 0.6 0.6 0.4 0.5 1.2

1:1 0.2 0.5 0.7 1.1 0.3 0.8 0.9 1.5 0.7 0.6 0.7 0.8 0.5 0.6

2:3 0.7 0.9 0.9 0.8 0.9 1.1 1.1 2.5 2.1 0.6 0.8 0.6 0.9 1.2

0.25 0.35 3:2 1.4 1.0 1.1 1.1 0.9 1.2 1.1 0.9 0.9 1.3 0.9 1.1 1.1 1.6

1:1 0.5 1.0 1.0 0.8 0.8 0.7 0.9 0.6 0.7 0.9 0.9 0.7 1.4 1.3

2:3 0.7 0.7 0.7 0.4 1.0 1.1 0.9 1.2 0.9 0.6 0.4 0.6 0.6 1.2

0.30 0.30 3:2 1.0 1.0 0.8 1.0 1.2 1.0 1.3 1.0 0.5 0.7 0.8 0.4 0.9 0.7

1:1 0.6 0.7 0.3 0.6 0.7 0.4 1.0 1.1 0.2 0.6 0.7 0.2 0.8 0.9

2:3 0.7 0.9 0.8 1.2 0.6 0.7 0.8 0.6 0.9 0.2 1.0 0.3 1.1 1.0

0.35 0.25 3:2 1.2 1.6 1.2 1.7 1.6 0.9 1.7 2.1 1.7 0.4 1.1 0.8 1.1 1.3

1:1 1.3 0.9 0.7 1.4 1.2 0.9 1.6 2.1 0.8 0.4 1.2 0.7 1.2 1.2

2:3 0.4 0.8 0.5 0.5 1.4 0.7 0.7 1.7 1.1 0.4 0.6 0.5 0.6 1.1

aNumbers that are outside of the 95% confidence interval (0.38 × 10−5, 1.62 × 10−5) are highlighted in bold.
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generation. However, they have a well-controlled size under the
other situations. Table S5 reports the estimated sizes of different
methods when pF = pM = p but HWE does not hold in female
offspring. In addition, ZXCII, Zmax, Xcat, SA, FM02, ZC, ZmfG, TA,
TAD, Ts

AD, FM01 and FMF generally control the size well. ZmfA

and ZA can have inflated size when ρ = 0.05 and p = 0.30 since
the allele-based test relies on the assumption of HWE in females.

3.3. Power

To clearly illustrate the power results, we show the estimated
powers of ZXCII, Zmax, Xcat, SA, FM02, ZC and ZmfG with relatively
better performance in Figures 1–6 and Figures S1–S22, and those
of TA, TAD, Ts

AD, FM01, FMF, ZmfA and ZA with inflated size or
lower powers are displayed in Figures S23–S50. Figure 1 gives
the estimated powers of ZXCII, Zmax, Xcat, SA, FM02, ZC and
ZmfG against sex ratio under random mating when there is XCI
with γ = 1 and complete maternal parent-of-origin effect. It is
shown in Figure 1 that ZXCII has the highest power among all
seven methods. The powers of Zmax, FM02 and ZmfG are similar
to each other and are generally higher than those of Xcat, SA
and ZC. On the other hand, the powers are influenced by the
sex ratio. When the proportion of males in the case group gets lar-
ger (rf:rm changing from 3:2 to 2:3), the power of ZXCII becomes
smaller in Figure 1(a), while it remains nearly unchanged in the
other subplots of Figure 1, and the powers of Zmax, Xcat, FM02,
ZC and ZmfG are almost unchanged in Figure 1(a), while they
are larger in the other subplots. However, with the number of
males in the case group, SA is less powerful. It is also found

that all of the methods have higher powers with increasing allele
frequency (comparing the first row with the second row). Figure 2
displays the corresponding estimated powers when there is XCI
with γ = 1.001 and incomplete maternal parent-of-origin effect.
From Figure 2, we can see that the powers of ZXCII, Zmax, FM02

and ZmfG are very close to each other, which are generally larger
than those of Xcat, SA and ZC. Compared to Figure 1, the effect of
the sex ratio on ZXCII is greater as the power of ZXCII increases
with larger male proportion in the case group in the second
and third columns of Figure 2.

When there are XCI and no parent-of-origin effects under ran-
dom mating, the estimated powers of ZXCII, Zmax, Xcat, SA, FM02,
ZC and ZmfG with γ = 2, 0.935 and 0 are shown in Figures 3–5,
respectively. From Figure 3, ZmfG has the highest power in the
first row of Figure 3, while ZXCII is the most powerful in the
second row. In fact, the powers of ZXCII, Zmax, Xcat and ZmfG

are very close to each other, which are larger than those of
FM02 and ZC. SA has relatively good performance in the first
row of Figure 3, while it performs worse in the second row. In
Figure 4, we find that ZXCII generally has higher power than
Xcat, SA and ZC, although it has less power than Zmax, FM02

and ZmfG. Xcat is always the most powerful in all of the subplots
of Figure 5. In the first row of Figure 5, ZXCII, Zmax, FM02 and ZC
have similar powers, which perform much better than SA and
ZmfG. In the second row of Figure 5, ZXCII is more powerful
than the other five methods, except for Xcat. Furthermore, by
comparing Figures 3–5, we find that the powers get larger with
increasing γ-value. By comparing Figure 1 (complete maternal
parent-of-origin effect), Figure 2 (incomplete maternal

Fig. 1. Estimated powers of ZXCII, Zmax, Xcat, SA, FM02, ZC and ZmfG against sex ratio (rf : rm = 3:2, 1:1 and 2:3) under random mating when there is X-chromosome
inactivation with γ = 1 and complete maternal parent-of-origin effects. The simulation is based on 10,000 replicates with N = 1000, ϕf0 = ϕm0 = ϕf01 = 0.120 and
ϕf10 = ϕf2 = ϕm1 = 0.240. (a) pF = 0.15, pM = 0.25. (b) pF = 0.20, pM = 0.20. (c) pF = 0.25, pM = 0.15. (d ) pF = 0.25, pM = 0.35. (e) pF = 0.30, pM = 0.30.
( f ) pF = 0.35, pM = 0.25.
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Fig. 2. Estimated powers of ZXCII, Zmax, Xcat, SA, FM02, ZC and ZmfG against sex ratio (rf : rm = 3:2, 1:1 and 2:3) under random mating when there is X-chromosome
inactivation with γ = 1.001 and incomplete maternal parent-of-origin effects. The simulation is based on 10,000 replicates with N = 1000, ϕf0 = ϕm0 = 0.120,
ϕf01 = 0.144, ϕf10 = 0.204 and ϕf2 = ϕm1 = 0.240. (a) pF = 0.15, pM = 0.25. (b) pF = 0.20, pM = 0.20. (c) pF = 0.25, pM = 0.15. (d ) pF = 0.25, pM = 0.35. (e) pF = 0.30,
pM = 0.30. ( f ) pF = 0.35, pM = 0.25.

Fig. 3. Estimated powers of ZXCII, Zmax, Xcat, SA, FM02, ZC and ZmfG against sex ratio (rf : rm = 3:2, 1:1 and 2:3) under random mating when there is X-chromosome
inactivation with γ = 2 and no parent-of-origin effects. The simulation is based on 10,000 replicates with N = 1000, ϕf0 = ϕm0 = 0.120 and ϕf01 = ϕf10 = ϕf2 = ϕm1 = 0.240.
(a) pF = 0.15, pM = 0.25. (b) pF = 0.20, pM = 0.20. (c) pF = 0.25, pM = 0.15. (d ) pF = 0.25, pM = 0.35. (e) pF = 0.30, pM = 0.30. ( f ) pF = 0.35, pM = 0.25.
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Fig. 4. Estimated powers of ZXCII, Zmax, Xcat, SA, FM02, ZC and ZmfG against sex ratio (rf : rm = 3:2, 1:1 and 2:3) under random mating when there is X-chromosome inacti-
vation with γ = 0.935 and no parent-of-origin effects. The simulation is based on 10,000 replicates with N = 1000, ϕf0 = ϕm0 = 0.120, ϕf01 = ϕf10 = 0.168 and ϕf2 = ϕm1 = 0.240.
(a) pF = 0.15, pM = 0.25. (b) pF = 0.20, pM = 0.20. (c) pF = 0.25, pM = 0.15. (d) pF = 0.25, pM = 0.35. (e) pF = 0.30, pM = 0.30. ( f ) pF = 0.35, pM = 0.25.

Fig. 5. Estimated powers of ZXCII, Zmax, Xcat, SA, FM02, ZC and ZmfG against sex ratio (rf : rm = 3:2, 1:1 and 2:3) under random mating when there is X-chromosome
inactivation with γ = 0 and no parent-of-origin effects. The simulation is based on 10,000 replicates with N = 1000, ϕf0 = ϕm0 = ϕf01 = ϕf10 = 0.120 and ϕf2 = ϕm1 = 0.240.
(a) pF = 0.15, pM = 0.25. (b) pF = 0.20, pM = 0.20. (c) pF = 0.25, pM = 0.15. (d ) pF = 0.25, pM = 0.35. (e) pF = 0.30, pM = 0.30. ( f ) pF = 0.35, pM = 0.25.
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parent-of-origin effect) and Figure 4 (no parent-of-origin effects)
with γ being fixed close to 1 (XCI-R), the power of ZXCII becomes
smaller and smaller. Figure 6 plots the estimated powers of ZXCII,
Zmax, Xcat, SA, FM02, ZC and ZmfG against the sex ratio under ran-
dom mating when there is neither XCI nor parent-of-origin
effects. ZXCII has similar power to Xcat and FM02 in most situa-
tions. Zmax, SA and ZmfG always outperform the other methods,
while the power of ZC is always the lowest among those methods.
The relatively low power of ZXCII is due to no XCI and no
parent-of-origin effects.

The power results of ZXCII, Zmax, Xcat, SA, FM02, ZC and ZmfG

with γ = 1.499 and 0.492 under random mating and incomplete
maternal parent-of-origin effect are given in Figures S1 and S2,
respectively. When there are no parent-of-origin effects, Figures
S3 and S4 plot the estimated powers under XCI with γ = 1.503
and 0.500, respectively. The powers of these seven methods
under random mating and paternal parent-of-origin effects are
shown in Figures S5–S8. The results are similar to those under
maternal parent-of-origin effects, except that the powers of
ZXCII seem to be more strongly affected by the difference between
pF and pM under paternal parent-of-origin effects. For example,
the difference in power between Figure S5(c) and Figure S5(a)
is much larger than that between Figure 1(c) and Figure 1(a).

Figures S9–S22 present the powers under the simulation set-
tings where pF = pM = p but HWE does not hold in female off-
spring. The left column of each figure represents the powers
when ρ =−0.05, while the right column denotes the powers
when ρ = 0.05. When comparing the two columns of each figure
with the middle column in the corresponding figure under ran-
dom mating (ρ = 0), we find that the powers with ρ =−0.05, 0

and 0.05 have similar trends, while the powers slightly increase
as ρ changes from –0.05 to 0.05. This is probably due to the
increase of genotype frequency of A/A. Finally, Figures S23–S50
display the powers of the other seven methods (TA, TAD, Ts

AD,
FM01, FMF, ZmfA and ZA), which control the size less well or
have relatively low powers.

4. Discussion

In this paper, we propose a robust test, ZXCII, for testing associa-
tions between certain diseases and an X-linked SNP by simultan-
eously accounting for XCI and parent-of-origin effects. Our
proposed method is an extension of Xcat for the situation
where parent-of-origin effects have influence on the process of
XCI. Two reasonable assumptions are made for ZXCII, just like
Xcat (Chen et al., 2017): the generalized genetic model is
hypothesized for female offspring and the mutant allele in female
offspring is the same as that in male offspring. A good feature of
the proposed method that should be emphasized is that there is
no need to specify the patterns of XCI or parent-of-origin effects.
The simulation studies are conducted in order to investigate the
validity and performance of ZXCII under various scenarios of par-
ameter values. The simulation results demonstrate that ZXCII is
robust in all of the situations considered. It controls the size
well and generally outperforms most of the 13 existing methods
in power in the presence of parent-of-origin effects, especially
complete parent-of-origin effects, although it suffers from slight
loss in power when there are no parent-of-origin effects. Thus,
the proposed method is a preferred choice when we are not
sure whether or not there are parent-of-origin effects in practice.

Fig. 6. Estimated powers of ZXCII, Zmax, Xcat, SA, FM02, ZC and ZmfG against sex ratio (rf : rm = 3:2, 1:1 and 2:3) under random mating when there is neither
X-chromosome inactivation nor parent-of-origin effects. The simulation is based on 10,000 replicates with N = 1000, ϕf0 = ϕm0 = 0.120, ϕf01 = ϕf10 = ϕm1 = 0.180 and
ϕf2 = 0.240. (a) pF = 0.15, pM = 0.25. (b) pF = 0.20, pM = 0.20. (c) pF = 0.25, pM = 0.15. (d ) pF = 0.25, pM = 0.35. (e) pF = 0.30, pM = 0.30. ( f ) pF = 0.35, pM = 0.25.
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It should be noted that ZXCII is an extension of Xcat. We first
use the Fisher’s method to combine Z1, Z2 and Z3 in female off-
spring (denoted by Zf) and then obtain the proposed ZXCII by
weighting Zf in female offspring and Zm in male offspring,
while Xcat applies the Fisher’s method directly to incorporate
the test statistics for females and males (Chen et al., 2017). In
fact, we have used the other methods to directly combine the
test statistics for females and males, such as Fisher’s approach
used in Chen et al. (2017) and Stouffer’s method (Owen, 2009).
However, we find that ZXCII is optimal for most of the situations
considered. On the other hand, compared to Xcat, the regression-
based method allows us to adjust for covariates, which is another
potential advantage of the proposed method. According to the
simulation results (omitted here for brevity), we also found that
ZXCII and other methods are not applicable to the association
study for rare alleles. We may need to use the SKAT (Wu et al.,
2011) or the extensions of SKAT (Larson et al., 2019) for dealing
with this situation, which will be our subsequent work. In add-
ition, note that the proposed ZXCII is only suitable for qualitative
traits. If we want to analyse quantitative traits in future, we will
need to change the logistic regression to multiple linear regression
and conduct simulations to compare it with existing methods for
quantitative traits. Finally, just like Wang et al. (2014), in order to
simplify our model, we assumed that XCI-E is regarded as a bin-
ary variable to distinguish whether or not XCI is present.
However, many genes have been observed to be of ‘variable
escape’, with the levels of escape varying between individuals,
cells and tissues or over time. How to consider these variable
levels of XCI-E in our model will be our future work.

Supplementary material. For supplementary material accompanying this
paper visit https://doi.org/10.1017/S0016672320000026.
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