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Abstract: Fibrodysplasia ossificans progressiva (FOP) is an extremely rare heritable disorder
of connective tissues characterized by progressive heterotopic ossification in various skeletal
sites. It is caused by gain-of-function mutations in the gene encoding activin A receptor type I
(ACVR1)/activin-like kinase 2 (ALK2), a bone morphogenetic protein (BMP) type I receptor.
Heterotopic ossification is usually progressive leading to severe deformities in the trunk and
extremities. Early clinical diagnosis is important to prevent unnecessary iatrogenic harm or trauma.
Clinicians should become aware of early detectable skeletal malformations, including great toe
deformities, shortened thumb, neck stiffness associated with hypertrophy of the posterior elements of
the cervical spine, multiple ossification centers in the calcaneus, and osteochondroma-like lesions
of the long bones. Although there is presently no definitive medical treatment to prevent, stop or
reverse heterotopic ossification in FOP, exciting advances of novel pharmacological drugs focusing
on target inhibition of the activated ACVR1 receptor, including palovarotene, REGN 2477, rapamycin,
and saracatinib, have developed and are currently in clinical trials.

Keywords: fibrodysplasia ossificans progressiva; skeletal malformation; heterotopic ossification;
clinical trials

1. Introduction

Fibrodysplasia ossificans progressiva (FOP) is a severely disabling heritable disorder of connective
tissues characterized by progressive heterotopic ossification in the skeletal muscles, ligaments, tendons,
fascia, and aponeuroses, and malformations of the great toes. Painful recurrent episodes of soft tissue
swelling (flare-ups) precede to heterotopic ossification. Flare-ups usually begin in the first decade
of life, and several patients with FOP are misdiagnosed as having soft tissue tumors or aggressive
fibromatosis before the appearance of heterotopic ossification [1]. They sometimes undergo dangerous
and unnecessary diagnostic procedures that provoke heterotopic ossification formation leading to
permanent harm and lifelong disability [2]. Early clinical diagnosis and confirmatory genetic testing of
FOP are extremely important to prevent additional iatrogenic harm or trauma [3].

Heterotopic ossification throughout the body is progressive, and patient’s disabilities are
cumulative [4]. Currently, there are no definitive treatments for FOP; however, there has been
substantial recent interest in clinical trials for novel treatments for this specific disease. In this review,
we specifically describe various skeletal manifestations suggestive of FOP that can usually be seen before
the appearance of heterotopic ossification, to make clinicians aware of these early signs and symptoms
of FOP. We also discuss current therapeutic approaches for FOP based on molecular mechanisms of
this disease, especially focusing on pharmacological drugs that are currently on-going clinical trials
to evaluate their efficacy in FOP patients. Patients’ data presentation including photographs were
approved by the ethical committee from the author’s institution.

Biomedicines 2020, 8, 325; doi:10.3390/biomedicines8090325 www.mdpi.com/journal/biomedicines

http://www.mdpi.com/journal/biomedicines
http://www.mdpi.com
https://orcid.org/0000-0001-6271-1586
http://dx.doi.org/10.3390/biomedicines8090325
http://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/2227-9059/8/9/325?type=check_update&version=3


Biomedicines 2020, 8, 325 2 of 13

2. Epidemiology

The worldwide prevalence of FOP is reported to be approximately one in 2 million individuals,
with no ethnic, racial, or geographical predisposition [5]. Autosomal dominant transmission with
complete penetrance is established, but most cases arise as a result of a spontaneous new mutation [6].
Both genetic and environmental factors affect the phenotype of FOP. A study of monozygotic twins
demonstrated that congenital toe malformations were similar within the siblings, but progression of
heterotopic ossification varied greatly, suggesting that genetic factors seem to correlate to prenatal
development while environmental factors strongly influence postnatal progression of heterotopic
ossification [7].

3. Pathophysiology

FOP is caused by gain-of-function mutations in the gene encoding activin A receptor type
I (ACVR1)/activin-like kinase 2 (ALK2), a bone morphogenetic protein (BMP) type I receptor [8].
Approximately 97% of individuals with FOP carry the recurrent activating mutation (617G>A, R206H)
in the ACVR1/ALK2 gene, causing the substitution of a conserved residue in the GS domain of the
protein. There are a limited number of patients with other rare mutations in the same gene that may
show the unusual clinical features for FOP (FOP variants), most notably greater or lesser severity
of the great toe malformations [9,10]. BMPs induce heterotopic bone formation in skeletal muscle
in vivo and initiate the differentiation pathway through which myoblasts convert to osteoblastic cells
in vitro [11]. BMP receptors (BMPR) belongs to the TGF-β superfamily, and the BMP signaling is
initiated with an heteromeric receptor complex consisting of type I (BMPR-I) and type II receptors
(BMPR-II). The BMPR-II activates the BMPR-I by transphosphorylating their GS domain, leading
to intracellular signaling pathway through phosphorylated SMADs proteins. The mutated ACVR1
receptor may be constitutive active leading to aberrant signaling through the kinase receptor and
overactivation of the downstream SMAD1/5/8 signaling pathway. In addition, mutations appear to
change the signaling specificity of the ACVR1 receptor. The mutated receptor is hyper-responsive
to BMP ligands as well as responsive to non-osteogenic ligand, Activin A. Activin A can bind to the
mutant ACVR1 receptor and activate signaling through the SMAD1/5/8 pathway, although it does not
activate SMAD signaling when it binds to wild type ACVR1 receptors [12,13]. Dysregulation of BMP
signaling pathway is thought to trigger the formation of the ectopic chondrogenesis, osteogenesis and
joint fusion of FOP [14]. To date, all ACVR1 mutations evaluated for enhanced BMP signaling are
gain-of-function mutations [9,15].

4. Natural Clinical Course

Heterotopic ossification in FOP typically begins to form during the first decade of life, with sporadic
episodes of flare-ups in the axial skeleton, which are sometimes misdiagnosed as having soft-tissue
sarcoma or aggressive juvenile fibromatosis (Figure 1). Flare-ups may occur following a localized
invasion mechanism such as trauma, intramuscular injections that lead to bruising, and are occasionally
accompanied by sensations of warmth and pain. Traumatic injury and surgical intervention induce
explosive new bone formation in FOP. Flare-ups also occur without any causative factor and may even
be provoked by systemic inflammation from viral infections such as influenza. Heterotopic ossification
progresses in characteristic anatomic and temporal patterns, typically first occurring in the axial,
cranial, and proximal regions of the body and later in the appendicular, caudal, and distal regions [16].
Progressive heterotopic ossification throughout the body leads to deformities in the trunk and joint
contractures in the extremities (Figure 2). Oddly, the disease seems to spare some anatomical
locations, including the ocular muscle, tongue, cardiac muscle, and diaphragm. Arm function reflects
early decreases in the activity of daily living [17]. The process of heterotopic ossification is highly
individualized. Systemic ankyloses result in difficulty in walking and respiratory dysfunction as the
disease progresses in some patients. The patient’s age is correlated with functional disability evaluated
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by patient reports, as well as the volume of heterotopic ossifications [18]. Most patients are confined
to a wheelchair by the third decade of life, and require lifelong assistance in performing activities
of daily living [19]. Heterotopic ossification in the temporomandibular joint and surrounding areas
often results in trismus which interferes with eating and leads to severe weight loss. Heterotopic
ossification of the spine and thoracic cage may cause rigid fixation of the chest wall and respiratory
dysfunction. The median age at death is approximately 40 years, but the median estimated life
expectancy is 56 years [20]. Death often results from complications of thoracic insufficiency syndrome
or pneumonia [21]. The overall prognosis for this disease is considered poor.
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Figure 2. Whole body computed tomography imaging of 26-year-old male with FOP showing severe
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5. Skeletal Malformations

Individuals with FOP appear normal at birth, but there are a variety of congenital skeletal
malformations. Deformities of the great toes are well-known and are the most prevalent indicators of
this disorder. A shortened great toe and hallux valgus are characteristically found before the appearance
of heterotopic ossification. The tip of the great toe usually locates proximal to the distal interphalangeal
joint of the second toe. The degree of hallux valgus and shortening of the great toe varies among
the feet in gross findings (Figure 3). Radiologically, the proximal phalanx is consistently shortened
and sometimes shows triangular shape. The metatarsal bone is also shortened and sharpened to the
medial side, deviating the proximal phalanx laterally from the metatarsal axis [22]. Fusion between the
proximal and distal phalanx is observed with advancing age (Figure 4). Although the common ACVR1
mutation (R206H) shows a homogeneous phenotype of the great toes, several atypical mutations have
been identified in patients who showed normal-appearing great toes or severe truncation deformities
of digits [9,23,24]. BMPs exert an anti-chondrogenic effect on early limb bud mesenchymal cells [25].
The differences in genotype of the ACVR1 may be related to the strength of the anti-chondrogenic effect
on condensing mesenchymal cells via BMP signaling, leading to variety of phenotype in great toes.
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Figure 3. Gross appearance of the right foot in FOP patients from 18-year-old female (a), 10-month-old
male (b), and 7-year-old male (c). The degree of hallux valgus and shortening of the great toes
are variable.
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Figure 4. Anteroposterior radiograph of the right foot of 20-year-old female with FOP demonstrating
medially deviated metatarsal bone and fused proximal and distal phalanges.
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Stiffness of the neck is an important early clinical sign of FOP in infants and it can precede the
appearance of heterotopic ossification at that site. Crawling is often disturbed due to limited neck
extension. Radiologically, enlarged posterior elements of the cervical spine, including pedicles, laminae,
and spinous processes, are characteristic. Vertebral bodies are tall and narrow [26,27]. The cervical
spine often becomes ankylosed resulting from fusion of the facet joints early in life (Figure 5). Using the
chick embryos, genetically-engineered overexpression of BMP2/4 both dorsally and laterally to the
neural tube manifested combined phenotypes of hypertrophic spinous processes and large deletion
of the lateral and ventral parts of vertebral bodies [28]. Mesenchymal condensations at the paraxial
mesoderm in FOP, where BMP signaling is aberrantly activating, could be responsible for both enlarged
spinous processes and relatively tall vertebral bodies.
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dependent SMAD1/4 proteins prevented HoxD10 and HoxD13 from binding to DNA targets [32]. 
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Figure 5. Lateral radiograph of the cervical spine of a FOP boy at the age of 7 years showing hypertrophy
of the laminae and spinous processes and complete osseous fusions in facet joints and spinous processes
between C5 and C6.

Short thumb is another clinical feature of FOP. It is mainly due to shortening of the first metacarpal
bones. Quantitative radiological examinations demonstrated shortened distal phalanx relative to the
second metacarpal bone and disproportionate shortening of the first metacarpal bone [29] (Figure 6).
The thumb is the last digit in the autopod to form, and it is different from other digits in terms of
its relative position, shape, size, and number of phalanges. These unique thumb identities may be
attributed to the expression profile of HoxD genes, which are pivotal transcriptional factors regulating
limb patterning and growth [30]. HOXD10 to D13 genes are expressed in the future digit II-V area
in the autopod during the hand plate formation, whereas the sole expression of the HOXD13 gene
in the presumptive digit I area is of great significance [31]. Interestingly, BMP signaling-dependent
SMAD1/4 proteins prevented HoxD10 and HoxD13 from binding to DNA targets [32]. Mesenchymal
condensation and chondrocyte proliferation of the presumptive thumb area could be regulated by
direct interactions between BMP-induced SMADs and HoxD13. Dysregulated BMP signal transduction
during embryogenesis may cause the relative shortening of the first metacarpals and distal phalanges
of the thumb in FOP.
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Figure 6. Anteroposterior radiograph of the left hand of a FOP boy at the age of 11 months demonstrating
marked shortening of the first metacarpal bone.

We have demonstrated distinctive multiple ossification centers and plantar spurs in the calcaneus
in some FOP infants [33]. These findings were bilateral and symmetrical. Multiple (or punctate)
calcaneal ossifications are seen in early infancy, which evolved into double ossifications and finally
completely coalesced with age (Figure 7). Similar duplicate calcaneus is observed in an infant
with Larsen syndrome, which is caused by heterozygous mutations in the filamin B gene (FLNB).
FLNB mutant mice display ectopic mineralization in various cartilaginous elements, but those on a
Runx2 haploinsufficiency background show a completely or partially rescued phenotype, indicating
mutated FLNB interacts with Runx2-TGFβ-SMADs pathway [34]. Molecular interactions between
FLNB and SMADs signaling in skeletal morphogenesis may lead to similar phenotypes of ossifications
in the calcaneal region in Larsen syndrome and FOP. Calcaneal spurs are pedunculated and projected
posteriorly in early infancy, and they become sessile and finally smaller in size with age. The normal
calcaneal spur is morphologically indistinguishable from the late manifestation of the calcaneal spur in
FOP, but the early pedunculated appearance in FOP is not seen in the normal spur.
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Figure 7. Lateral foot radiographs of a FOP boy at 3 months of age (a) and 11 months of age (b).
Punctate multiple ossifications in early infancy gradually changed to double ossification centers.

Broad femoral necks with metaphyseal widening and osteochondroma-like lesions in the
metaphysis of the of the long bones are also early findings in FOP infants. In addition to
osteochondroma-like lesions, heterotopic ossification around the knee should not be misdiagnosed
as soft tissue tumor (Figure 8). Osteochondroma-like lesions are commonly observed in multiple
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hereditary exostoses, which is caused by mutations in EXT1, EXT2, or EXT3 genes, encoding tumor
suppressors and glycosyltransferases involved in the biosynthesis of heparan sulfate proteoglycans
(HSPGs) [35]. HSPGs bind to and modulate the activity of Indian hedgehog (Ihh), which is expressed
in prehypertrophic chondrocytes and regulates chondrocyte maturation, and the abnormal modulation
of the tightly regulated Ihh/parathyroid hormone related peptide (PTHrP)-negative feedback loop
has been proposed as a molecular model of osteochondroma formation in multiple hereditary
exostoses [36]. Constitutive active ACVR1 R206H mutation resulted in dramatic upregulation of Ihh at
the perichondrium and a delay in chondrocyte differentiation in a chicken limb bud model [37]. Thus,
osteochondroma formation in FOP could be mediated by disruption of the BMP/Ihh/PTHrP-negative
feedback loop at the perichondrium. These skeletal abnormalities suspicious of FOP in infants can
lead to early clinical diagnosis, confirmatory diagnostic genetic testing, and the avoidance of iatrogenic
harm or trauma.Biomedicines 2020, 8, x FOR PEER REVIEW 8 of 13 
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Figure 8. Anteroposterior (a) and lateral (b) knee radiographs of the FOP boy at the age of 5 years
showing heterotopic ossification at the distal thigh and osteochondroma-like lesions of the distal femur
and proximal tibia.

6. Managements and Treatments

There is presently no definitive medical treatment to prevent, stop or reverse heterotopic
ossification in FOP. Avoidance of trauma and prevention of injury remain the mainstays of therapy.
Surgical removal of heterotopic ossification often leads to significant recurrence and expansion of
ossification. Bracing for spinal deformity is ineffective [38]. Restriction of activity may be helpful to
reduce trauma, but compromise of independence may be unacceptable to patients as well as their
parents. Physical rehabilitation to maintain joint mobility may be harmful by provoking or exacerbating
lesions and it should be focused on enhancing activity of daily living through approaches that avoid
a passive range of motion exercises. Occupational therapy and vocational education consultations
may be useful. Overstretching of the jaw and intramuscular injections of local anesthesia should not
be attempted in dental care. A locked jaw sometimes necessitates surgery to avoid life threatening
complications. Since conductive hearing loss is common, children should have audiology evaluations
regularly. The management of FOP requires education of patients and caregivers, the use of medications
to settle inflammation and flare-ups, instructions to ensure proper oral care, and other compensatory
approaches that aid in rehabilitation [39].

The use of short-term high-dose corticosteroids is based on its potent anti-inflammatory effects [40].
It may help reduce the intense inflammation and tissue edema when they are used in an early stage of
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flare-ups. They can relieve but not completely resolve symptoms of flare-ups [41]. Corticosteroids are
most effective if used within the first 24 h of a new flare-up. The dose of corticosteroids is dependent on
body weight, and a recommended dose of prednisone for acute flare-ups is 2 mg/kg/day, administered
as a single daily dose for no more than 4 days. Corticosteroids should be used for treatment of
flare-ups that affect major joints, the jaw, or the submandibular area, and should not be used for
flare-ups that involve the back, neck, or trunk due to the long duration and recurring nature of these
flare-ups. Corticosteroids should not be used for long-term, and when prednisone is discontinued,
non-steroidal anti-inflammatory drugs (NSAIDs) or selective cyclooxygenase-2 (COX2) inhibitors may
be used for the duration of flare-ups, although there is no evidence that chronic treatment with these
drugs prevent flare-ups in FOP. Bisphosphonates have been used for the symptomatic management
of flare-ups in FOP, although concrete clinical data for these treatments are sparse [42]. Mast cells
could provide an important role for the pathology of heterotopic ossification in FOP [43]. Imatinib,
a tyrosine kinase inhibitor initially developed for chronic myeloid leukemia, has anti-proliferative
and immunomodulatory effects in mast cells. The administration of imatinib demonstrated positive
effects on decrease in the intensity of flare-ups in seven FOP patients who did not respond the standard
medications such as corticosteroids, NSAIDs, or intravenous bisphosphonates [44].

7. On-Going Clinical Trials for FOP (Phase 2 or Phase 3)

Several researches to develop therapeutic drugs have focused on target inhibition of the ACVR1
receptor, ACVR1 ligand, BMP intracellular signaling, and inflammatory triggers of disease activity.
Exciting advances in new therapeutic approaches for FOP have developed recently [45–47]. We highlight
novel treatment drugs that are currently on-going phase 2 or phase 3 clinical trials (Figure 9).
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Figure 9. Molecular targeting of therapeutic drugs on on-going phase 2 or 3 clinical trials.

Retinoid signaling is normally attenuated during chondrogenesis and exogenous retinoid agonists
can block chondrogenesis effectively and rapidly [48]. Agonists for retinoic acid receptors (PARα
or RARγ) experimentally inhibited chondrogenesis of heterotopic ossification in transgenic mice
model of FOP, and the RARγ agonists were far more effective [49]. One of the RARγ class drugs
is palovarotene, a highly specific RARγ agonist that has already been evaluated in another clinical
trial for α-1-antitrypsin-induced emphysema, and its safety profile has been well-characterized.
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Palovarotene inhibits heterotopic ossification and maintains limb mobility and growth in mice model
of FOP [50]. Palovarotene is also evaluated in another phase 2 trials for treatment of hereditary
multiple exostoses to suppress the formation of osteochondromas. Phase 2 clinical trials were
initiated in 2014 by Clementia Pharmaceuticals to evaluate the safety and efficacy of palovarotene
for treatment of FOP (Clinicaltrials.gov registration NCT02190747). The primary outcome was to
compare the volume of heterotopic ossification formation between treated patients and untreated
patients. Palovarotene decreased the percentage of FOP patients who develop heterotopic ossification,
the time to flare-ups resolution, and patient-reported pain. Phase 3 trial is currently in progress
(Clinicaltrials.gov registration NCT03312634). Palovarotene is a known teratogen that causes limb
malformations in the developing fetus and may decline growth in children [51]. Other potential risks of
palovarotene include pancreatitis, hearing and vision impairment, mouth ulcer, sensitivity to sunlight,
and dry skin. These adverse events are being monitored closely during the trials.

The R206H mutation causes the ACVR1 receptor to misinterpret activin A and generate a signal
as if BMP ligands are present [12]. The ACVR1 mutant mice developed more heterotopic ossification
throughout the skeleton when activin A was injected, and those treated with a blocking antibody
of activin A did not develop heterotopic ossification [48]. Activin A is, thus, an obligatory secreted
factor that is required for the initiation of heterotopic ossification in FOP, and the blocking of activin
A could prevent the formation of heterotopic bone. As a result of preclinical studies, REGN 2477
(garetosmab)—an antibody that binds to activin A and blocks its activity—is now in a clinical trial
to examine safety, tolerability, and efficacy on abnormal bone formation in adult patients with FOP
(Clinicaltrials.gov registration NCT03188666).

Activin A enhances the chondrogenesis of induced mesenchymal stromal cells derived from
FOP patients-derived induced pluripotent stem cells (FOP-iPSCs) via the aberrant activation of BMP
signaling in vitro, and induced endochondral ossification of FOP-iPSCs in vivo [52]. By using a
high-throughput screening system of small molecules to suppress activin A induced chondrogenesis,
Hino et al. demonstrated that mTOR signaling is a critical pathway for the aberrant chondrogenesis
of mesenchymal stromal cells derived from FOP-iPSCs and inhibited the heterotopic ossification of
multiple model mice, including FOP-ACVR1 transgenic mice and a heterotopic ossification model
utilizing FOP-iPSCs [53]. Rapamycin is a commonly-used immunosuppressant that exerts its biological
effect by inhibiting mTOR1 kinase activity. Heterotopic ossification was decreased after treatment with
rapamycin in mice model of FOP as well as FOP-iPSC-based heterotopic ossification model mice [54].
A phase 2 clinical trial for a 6-month randomized placebo-controlled study and subsequent open label
extension study is now opening in Japan (UMIN000028429). Primary endpoint for evaluating the
efficacy of rapamycin is based on objective physical function assessment using the Japanese version of
Health Assessment Questionnaire or Childhood Health Assessment Questionnaire.

Saracatinib, also known as AZD0530, is an investigational drug that was initially developed
as a potential treatment for patients with cancer. Saracatinib inhibits the serum activation of Id1,
which is a transcriptional factor mediated by Smad 1/5/8 phosphorylation, by direct inhibition of
BMPR-I kinase activity [55]. Other research also demonstrated that Saracatinib was effective at
suppressing the enhanced chondrogenesis of FOP-iPSCs and suppressed the heterotopic ossification or
bone formation in multiple FOP animal models [49]. A phase 2A proof of concept study including
a 6-month randomized placebo-controlled study and 12-month open label extension study using
historical data is proposed in the Netherlands, the United Kingdom, and Germany (Clinicaltrials.gov
registration NCT04307953).

8. Conclusions

Clinicians should become aware of early detectable skeletal malformations, including great toe
deformities, shortened thumb, neck stiffness associated with hypertrophy of the posterior elements
of the cervical spine, multiple ossification centers in the calcaneus, and osteochondroma-like lesions
of the long bones, to make an early diagnosis and prevent iatrogenic harm or trauma. Although
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there is presently no definitive medical treatment to prevent, stop or reverse heterotopic ossification
in FOP, exciting advances in novel therapeutic approaches using pharmacological drugs, including
palovarotene, REGN 2477, rapamycin, and saracatinib, have been developed and are currently in
clinical trials.
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