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ARTICLE INFO ABSTRACT
Keywords: Background: Activation of the Hedgehog signaling pathway is linked to the initiation and devel-
Hedgehog opment of human hepatocellular carcinoma (HCC). However, its impact on clinical outcomes and
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the HCC microenvironment remains unclear.

Methods: We performed comprehensive analyses of Hedgehog pathway genes in a large cohort of
HCC patients. Specifically, we utilized univariate Cox regression analysis to identify Hedgehog
genes linked to overall survival, and the LASSO algorithm was used to construct a Hedgehog-
related gene pattern. We subsequently examined the correlation between the Hedgehog pattern
and the HCC microenvironment employing the CIBERSORT and ssGSEA algorithms. Furthermore,
Tumor Immune Dysfunction and Exclusion (TIDE) algorithm and the anti-PD-L1 treatment
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dataset (IMvigor210) are used to evaluate the clinical response of the Hedgehog pattern in pre-
dicting immune checkpoint inhibitors.

Results: We found that the Hedgehog activation score (HHAS), a prognostic score based on 11
Hedgehog genes, was significantly associated with HCC patient survival. Patients exhibiting high
HHAS experienced markedly reduced survival rates compared to those with low HHAS, and
HHAS emerged as an independent prognostic factor for HCC. Functional enrichment analysis
unveiled the association of the HHAS phenotype with functions related to the immune system,
and further investigation demonstrated that HCC patients exhibiting low HHAS displayed
elevated levels of anti-tumor immune activation in CD8" T cells, while high HHAS were linked to
immune escape phenotypes and increased infiltration of immune suppressive cells. In addition, in
the Immune Checkpoint Inhibitor (ICI) cohort of IMvigor210, patients with higher HHAS had
worse ICI treatment outcomes and shortened survival time, indicating that the HHAS is a useful
indicator for predicting patient response to immunotherapy.

Conclusions: In summary, our study offers valuable insights for advancing research on Hedgehog
and its impact on tumor immunity, which provides an opportunity to optimize prognosis and
immune therapy for HCC.

1. Introduction

Liver cancer, specifically hepatocellular carcinoma (HCC), represents a significant and often fatal malignancy affecting the
digestive system. Globally, it ranks as the second most prevalent cause of cancer-related fatalities [1]. Despite the established effec-
tiveness of surgical removal, liver transplantation, and local ablation for early-stage HCC [2], the occurrence of recurrence remains
high, affecting up to 70% of patients within five years. Unfortunately, there is currently no accompanying therapy available to address
this issue [3].

The progression of HCC involves an intricate process frequently linked with the presence of liver cirrhosis, where repeated
inflammation and fibrinogenesis predispose the liver to dysplasia and HCC transformation [4]. Notable etiological factors involve
chronic hepatitis B or C infections, resulting in cirrhosis and the malignant transformation of hepatocyte due to persistent inflam-
mation and viral-induced injury [5]. Furthermore, chronic liver injury and inflammation in conditions such as nonalcoholic steato-
hepatitis and alcoholic steatohepatitis may also contribute to liver fibrosis, subsequently progressing to cirrhosis and, ultimately, HCC
[6]. Mechanistically, the Wnt/p-catenin pathway [7], and notably, the Hedgehog pathway [8] are increasingly recognized for their
involvement in the initiation and development of HCC. Consequently, a comprehensive understanding of the pathogenesis is crucial, as
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Fig. 1. Molecules and their interactions in Hedgehog signaling pathway.
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it can help in the identification of reliable prognostic biomarkers that could potentially offer significant benefits to HCC patients during
treatment.

A classic and conserved system, the Hedgehog signaling pathway plays a crucial role in maintaining embryonic development and
the functionality of various adult tissues and organs. During tumorigenesis, abnormal Hedgehog activation contributes to the ma-
lignant transformation, progression, resistance, and metastasis of multiple solid tumors, including hepatocellular carcinoma [9-12].
Additionally, a research teams from The Cancer Genome Atlas Research Network have conducted extensive data analysis on genomic
mutations, DNA methylation epigenetic changes, RNA expression, and protein expression in 363 cases of hepatocellular carcinoma
from around the world [13]. They revealed intriguing associations, including the discovery of a significant role for the Sonic Hedgehog
pathway (Shh pathway). Abnormal activation of this pathway was identified when p53 mutations, DNA methylation, and viral
integration coincided. The Shh pathway was activated in approximately half of the HCC samples, providing new insights into its
previously not fully understood role in liver cancer. Therefore, we selected the Hedgehog signaling pathway as the focal point of our
research with the anticipation of uncovering its significant value in HCC prognosis.

As shown in Fig. 1, the Hedgehog (Hh) signaling pathway alternates between ’off” and an ’on’ states to finely control an intra-
cellular signaling cascade that directly affects the Gli transcription factors [14-17]. When the Hh ligand is not present, Gli proteins
within the cytoplasm are cleaved, producing a truncated version that translocates to the cell nucleus to inhibit the transcription of
target genes. Conversely, Hh binding to the Patched (PTC) receptor on the cell’s surface stabilizes the Gli proteins, enabling them to
maintain their full-length, transcriptionally active form. This, in turn, promotes the expression of genes that are dependent on
Hedgehog signaling. Multiple researches demonstrated that the key signaling molecules, such as PTCH1, SMO, GLI1/2/3, are
frequently overexpressed in malignant tissues, serving as significant biomarkers for progression and prognosis [11,18]. The Hedgehog
pathway is linked to specific functions of both the innate and adaptive immune systems [19]. Nevertheless, its role in the immune
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Fig. 2. Selection of Hedgehog genes associated with prognosis in HCC. (A) Flowchart of the analysis process in this study. (B) 57 Hedgehog
genes significantly associated with survival (P < 0.05) were identified through univariate regression analysis. (C) The protein-protein interaction
(PPI) network shows the correlation among the Hedgehog genes associated with prognosis.
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response remains unclear and its association with liver cancer immunity and prognosis still requires further investigation.

Considering the pivotal role of the Hedgehog signaling pathway in tumor growth, we proposed a prognostic modeling in HCC based
on the biological function of Hedgehog-related genes. The analytic workflow is summarized in Fig. 2A. The proposed prognostic model
could provide a comprehensive analysis of the immune infiltration state and prognostic improvement in HCC patients, which makes it
a promising diagnosis pattern for HCC and guide immunotherapy for clinical patients.

2. Materials and methods
2.1. Data Collection and processing for HCC patients

Obtained RNA-seq data (FPKM) and clinical information for 375 HCC patient tissues, along with 50 normal tissues from The Cancer
Genome Atlas (TCGA)-LIHC cohort in the TCGA database (https://portal.gdc.cancer.gov/projects/TCGA-LIHC). For external valida-
tion, we collected RNA-seq data and related clinical details for 243 and 115 HCC patients from the International Cancer Genome
Consortium (ICGC)-LIRI-JP and GSE76427 cohorts in the ICGC and (Gene Expression Omnibus) GEO databases, respectively. Table 1
presented the clinicopathologic characteristics HCC patients from these three cohorts. To reach the final gene expression values, we
first removed data with gene expression values of 0, and used the average RNA expression value for multiple values. For the tran-
scriptional profile in TCGA or ICGC, the downloaded normalized FPKM values or normalized read count were log2(data+1)-trans-
formed for further analyses. To address batch effects in the GEO microarray data, we applied the "sva" package in R [20] for
elimination. Subsequent data normalization was performed by the "limma" package in R [21], and the normalized data were also
log2-transformed for further analyses. In addition, we downloaded a geneset of the Hedgehog signaling pathway from the Reactome
Pathway Database (see Supplementary Table 1).

2.2. Identification hedgehog genes associated with prognosis

We utilized a univariate Cox regression analysis for the identification of prognostically relevant genes within the Hedgehog gene
set. Subsequently, we performed protein-protein interaction (PPI) investigation to explore hub genes involved in HCC using the
STRING database (version 12.0).

2.3. Consensus clustering analysis

To characterize HCC subgroups exhibiting comparable gene expression patterns, we performed consensus analysis using the
ConsensusClusterPlus R package [22]. We used a maximum cluster number of 6, 100 repetitions, a subsample rate of 80%, clusterAlg
="hc", and innerLinkage = "ward.D2’. We visualized the clustering results with the "pheatmap" package (https://CRAN.R-project.org/
package=pheatmap). Statistical analysis of the clinical characteristics of HCC subgroups was conducted using R software, and the
findings were depicted using the "ggplot2" package (https://CRAN.R-project.org/package=ggplot2).

2.4. Immune scoring

To evaluate immune level in various HCC subgroups, we utilized the xCell algorithm in the R package "immunedeconv" [23] for
immune cell score analysis. The “immunedeconv” integrates six advanced deconvolution algorithms, including CIBERSORT, EPIC,
xCell, TIMER, MCP-counter, and quanTIseq, each having undergone systematic benchmark testing. Among them, the xCell algorithm is
categorized under marker gene-based approaches, relying on specific gene sets that indicate distinct cell types. This approach enables

Table 1
149 genes of the Hedgehog pathway.

Hedgehog pathway Gene

ADAM17% ADCY1 ADCY10 ADCY2 ADCY3 ADCY4 ADCY5 ADCY6 ADCY7 ADCYS8
ADCY9 ARRB1 ARRB2 BOC BTRC CDC73" CDON" CSNK1A1* CUL1* CUL3"
DERL2 DHH DISP2 DYNC2H1" DZIP1 EFCAB7* ERLEC1 EVC EVC2 FUZ
GAS1 GAS8 GLI1 GLI2 GLI3 GNAS* GPC5 GPR161 GRK2 GSK3B*
HHAT HHIP IFT122 IFT140 IFT172° IFT52" IFT57 IFT88 IHH INTU*
IQCE" ITCH KIF3A® KIF7 MKS1* NOTUM NUMB OFD1 0s9 P4HB
PRKACA PRKACB* PRKACG PRKARIA PRKAR1B PRKAR2A" PRKAR2B PSMA1* PSMA2 PSMA3"
PSMA4 PSMA5* PSMA6 PSMA7" PSMAS8* PSMB1 PSMB10 PSMB11 PSMB2" PSMB3
PSMB4 PSMB5* PSMB6 PSMB7 PSMBS8 PSMB9 PSMC1*® PSMC2 PSMC3 PSMC4"
PSMC5* PSMC6" PSMD1* PSMD10*" PSMD11° PSMD12" PSMD13" PSMD14" PSMD2* PSMD3
PSMD4 PSMD5* PSMD6" PSMD7* PSMD8 PSMD9* PSME1 PSME2 PSME3* PSME4*
PSMF1 PTCH1 RBX1* RPGRIP1L® RPS27A SCUBE2 SEL1L SEM1 SHH SKP1°
SMO SMURF1 SMURF2* SPOP* SPOPL SUFU SYVN1 TTC21B TUBA1A TUBA1B*
TUBA1C* TUBA3C" TUBA3D TUBA4A*® TUBB1 TUBB2A TUBB2B TUBB3 TUBB4A TUBB4B"
TUBB6" TULP3* UBA52 UBB* UBC ULK3 vcp? WDR19 WDR35

@ the genes associated to overall survival.
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the independent quantification of each immune cell type by analyzing marker gene expression levels in complex samples. We used the
“pheatmap” of R package to generate an expression heatmap. We extracted immune checkpoint-related gene expression values from
HCC transcriptome data and utilized the "ggplot2" package to display the expression status of these genes. The Tumor Immune
Dysfunction and Exclusion (TIDE) analysis were employed to forecast potential responses to immune treatment.

2.5. Developing and validating a hedgehog scoring model in HCC patients

Employing the least absolute shrinkage and selection operator (LASSO) algorithm, we narrowed down the scope of differential
genes. Using the LASSO Cox regression model coefficients, we constructed a Hedgehog scoring model for HCC patients. The Hedgehog
score calculation formula is as follows: Hedgehog score= (Coefficient of mRNA1 * mRNA1 expression level)+ (Coefficient of
mRNA2*mRNA2 expression level)-:----+ (Coefficient of mRNAn*mRNAn expression level). Using the median Hedgehog score as the
criterion, we categorized HCC patients into groups characterized as high-risk and low-risk patients. We generated Kaplan-Meier
survival curves for the Hedgehog scores to evaluate survival differences between groups utilizing the "survival" package in R
(https://CRAN.R-project.org/package=survival). We utilized the "timeROC" package in R [24] to produce receiver operating char-
acteristic (ROC) curves, assessing the predictive accuracy of the Hedgehog scoring model. Prognostic significance in HCC patients was
examined through the application of univariate and multivariate Cox regression analyses, considering clinical factors such as age, sex,
race, and TNM stage, along with the Hedgehog score. We used the “forestplot” of R package (https://CRAN.R-project.org/
package=forestplot) to plot the P-values and 95% confidence intervals of each variable. External cohorts (ICGC-LIRI-JP and
GSE76427) were used to validate the stable of Hedgehog scoring model.

2.6. Mutation analysis

HCC mutation data was obtained from the TCGA online database, and mutation information was extracted. Patients with HCC were
grouped based on their Hedgehog score, and a waterfall plot was generated using the "maftools" package [25] in R to visualize the
mutation landscape for each Hedgehog score group.

2.7. Correlation analysis of hedgehog score with TME

Differential gene expression analysis between high-risk and low-risk groups in the TCGA cohort was conducted through the "limma"
package in R. The cutoff value was set to log2|fold change| > 1, and the false discovery rate (FDR) was <0.05. Functional enrichment
analysis involved utilizing GO analysis on the differentially expressed genes (DEGs). The Immune, Stromal, and Estimate scores were
determined through The ESTIMATE algorithm, which estimates stromal and immune cells in malignant tumor tissues using expression
data. Using CIBERSORT, the relationship between the high-risk and low-risk groups was explored based on the candidate gene features
and the abundance of each immune cell type. The "gsva" R package [26] was utilized for single-sample gene set enrichment analysis
(ssGSEA).

Table 2
Clinicopathologic characteristics HCC patients.
TCGA-LIHC ICGC-LIRI-JP GSE76427
No. of patients 365 243 115
Age (%)
<45 42(11.5%) 5(2.1%) 7(6.08%)
>45 323(88.5%) 238(97.9%) 108(93.92%)
Gender (%)
Female 119(32.6%) 61(25.1%) 22(19.13%)
Male 246(67.4%) 182(74.9%) 93(80.87%)
Grade (%)
Grade 1 55(15.1%) NR NR
Grade 2 175(47.9%) NR NR
Grade 3 118(32.3%) NR NR
Grade 4 12(3.3%) NR NR
unknown 5(1.4%) NR NR
Tumor Stage (%)
I 170(46.6%) 36(14.8%) 55(47.83%)
I 84(23.0%) 110(45.3%) 35(30.43%)
I 83(22.7%) 76(31.3%) 21(18.26%)
v 4(1.09%) 21(8.6%) 3(2.61%)
unknown 24(6.6%) 1(0.87%)
Survival status
OS days (median) 556 780 423.4
Censored (%) 126(34.5%) 44 (18.1%) 23(20%)

NR: not reported.
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2.8. Immune therapy prediction analysis

The tumor immune dysfunction and exclusion (TIDE) score served as the metric to evaluate the predictive capability for potential
immune therapy responses in hepatocellular carcinoma (HCC). We leveraged the clinical cohort IMvigor210 to evaluate the predictive
efficacy of distinct Hedgehog score groups in immune therapy. Through the Kaplan-Meier method, we conducted a comparative
analysis of survival differences between the two Hedgehog score groups within the immune therapy cohort.

2.9. Statistical analysis

All the aforementioned analytical procedures were executed in R version 4.2.2. Distribution of clinical features was evaluated using
the chi-square test, yielding corresponding p-values. Kaplan-Meier curves were subjected to log-rank test for obtaining p-values.
Significance between two sample groups was assessed using the Wilcoxon test, while the Kruskal-Wallis test was employed for
evaluating significance between three sample groups. Unless explicitly stated otherwise, significance was attributed to a p-value less
than 0.05.

3. Results
3.1. Hedgehog signaling-related genes profiling identified three HCC clusters

A total of 149 genes related to Hedgehog signaling pathway were obtained from Reactome Pathway Database (Table 2). Through
univariate Cox regression analysis, 57 survival-associated genes were identified. (Fig. 2B). Further analysis of protein-protein in-
teractions revealed that UBB, PSMD14, and PSMA3 had the strongest gene interaction relationships, indicating that these genes may be
critical targets for HCC prognosis (Fig. 2C). Utilizing the 57 prognosis-related genes associated with the Hedgehog signaling pathway,
consensus clustering analysis was performed on HCC patients within the TCGA dataset. The results showed that when K = 2 or 3, the
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Consensus Cumulative Distribution Function (CDF) Delta area was the largest (Fig. 3A). When K = 3, the boundaries between the
clusters were more distinct (Fig. 3B). Principal Component Analysis (PCA) confirmed the effective classification of HCC patients into
three subgroups. Cluster 1 comprised 210 samples, Cluster 2 had 109 samples, and Cluster 3 included 51 samples (Fig. 3C). Fig. 3D
shows the heatmap of Hedgehog signaling-related gene expression in the three subgroups, with most genes showing high expression in
Cluster 3. Furthermore, an examination of the clinical significance of Hedgehog-related subgroups revealed that patients in Cluster 3
exhibited a markedly lower survival rate compared to those in Cluster 1 and Cluster 2 (P < 0.00001, Fig. 3E). Furthermore, we
examined the correlation between the three subgroups and clinical features (Fig. 3F-H). The findings indicated a significantly higher
proportion of T3+T4 stage, G3+G4 grade, and Stage II + III samples in Cluster 3 compared to Cluster 1 and Cluster 2. Conversely, the
proportion of T1 stage, G1 grade, and Stage I samples was notably lower in Cluster 3 than in Cluster 1 and Cluster 2. These results
suggest that the Hedgehog gene activation subtypes associates with the worse HCC prognosis and advanced HCC. Additionally, we
further analyze the association between activation angiogenic factors (angiopoietin-1 (ANG1) and angiopoietin-2 (ANG2)), cyclins
(cyclin D1(CCND1) and cyclin B1 (CCNB1)), anti-apoptotic genes (FAS) with Hedgehog pathway. Our results, as depicted in Sup-
plementary Fig. 1, reveal that, relative to Hedgehog inactivation patients, those with Hedgehog pathway activation exhibit significant
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Fig. 4. Immune infiltration levels and immune therapy response analysis among three Hedgehog subgroups. (A) Heatmap of immune cell
scores analyzed by the Xcell algorithm. (B) Heatmap of immune checkpoint-related gene expression. (C) Prediction of immune checkpoint inhibitor
response based on the Tumor Immune Dysfunction and Exclusion (TIDE) algorithm for Hedgehog molecular subtypes. The upper table displays the
number of samples with predicted immune responses in different groups, and the lower plot shows the distribution of predicted immune response
scores in different groups. Different colors represent expression trends in different samples. *p < 0.05, **p < 0.01, ***p < 0.001, where the asterisks
indicate the level of significance (*p). Significance among the three sample groups was determined by the Kruskal-Wallis test. (For interpretation of
the references to color in this figure legend, the reader is referred to the Web version of this article.)
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increases in Ang-1, Ang-2, CCND1, CCNBI1, and FAS expression levels. This suggests that Hedgehog pathway activation may enhance
angiogenesis, cell cycle progression, and reduce apoptosis, thus promoting disease progression in liver cancer.

3.2. Hedgehog-signaling related molecule subtypes correlates to the immune microenvironment

Xcell algorithm were applied to assess variations in the tumor microenvironment (TME) across distinct Hedgehog clusters. Our
findings demonstrated that Cluster 3 exhibited significantly increased expression of immune-suppressive cells, including T cell CD4 "
Th2, T cell CD4" memory, and mast cells, while Cluster 2 showed significantly elevated expression of endothelial cells, hematopoietic
stem cells, and granulocyte-monocyte progenitors (Fig. 4A). The vital function of immune checkpoint molecules lies in suppressing
immune responses and fostering tumor immune escape within the immune system [27]. In our exploration of immune checkpoint gene
expression across the three subgroups, Cluster 3 exhibited significant elevations in CD274, CTLA4, HAVCR2, PDCD1, PDCD1LG2, and
TIGIT (Fig. 4B), suggesting a higher level of immune suppression. Furthermore, the response of the three subtypes to immune
checkpoint inhibitors was predicted using the Tumor Immune Dysfunction and Exclusion (TIDE) algorithm [28]. Significantly higher
TIDE scores were observed in Cluster 3 compared to the other clusters. The response rate to immune checkpoint inhibitors in Cluster 3
was notably lower at 11.76%, a statistically significant difference from the other two groups (Cluster 1: 28.43%, Cluster 2: 41.28%).
(Fig. 4C). These findings imply that immune-suppressive cells and immune checkpoint genes within the tumor microenvironment
could contribute to the unfavorable prognosis observed in Cluster 3.

3.3. Development a Distinctive hedgehog gene Signature for HCC

In the pursuit of a multi-gene prognostic score model, we implemented the LASSO regression algorithm to refine the selection of
Hedgehog genes. A total of 11 Hedgehog genes were ultimately included in the prognostic model construction, with a minimum
lambda value of 0.0442. The calculation formula for the Hedgehog activation score (HHAS) was as follows:

HHAS=(0.0035)*CUL1+(0.1641)*IFT172+(0.0141)*PRKAR2A+(0.112)*PSMA3+(0.0271)*PSMA7+(0.1285)*PSMB2-+
(0.0847)*PSMB5+(0.3073)*PSMD1+(0.0121)*PSMD13+-(0.0966)*PSMD14+(—0.2054) *UBB.

According to the median HHAS (Fig. 5A), HCC patients from the TCGA dataset were divided into high-HHAS group (n = 182) and
low-HHAS group (n = 183). As the HHAS increased, the number of deaths in HCC patients also significantly increased, and the survival
time was significantly shortened (Fig. 5B). The PCA plot showed good differentiation between two HHAS populations (Fig. 5C). The
Kaplan-Meier curve unveiled a markedly decreased overall survival rate for patients in the low-HHAS group as opposed to those in the
high-HHAS group (Fig. 5D, P = 9.4215e-08). Assessing the prognostic performance of the HHAS using the time-varying ROC curve
revealed that, at 1 year, the area under the curve (AUC) was 0.723, at 3 years it stood at 0.706, and at 5 years, it reached 0.721
(Fig. 5E), indicating that the HHAS had a high prognostic predictive ability. Conducting univariate and multivariate regression an-
alyses underscored the autonomy of Stage and HHAS as pivotal prognostic factors in HCC patient outcomes. The independent sig-
nificance of both Stage and HHAS in predicting patient prognosis was established through these analyses (Fig. 5F). By analyzing the
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Fig. 5. Development of a prognostic model based on the Hedgehog genes associated with patient outcomes. (A) HCC patients were stratified
into high-HHAS and low-HHAS groups based on the median risk score. (B) Distribution of the survival status of HCC patients based on HHAS. (C)
Principal component analysis plot for different HHAS groups. (D) Kaplan-Meier (KM) survival curves for the HHAS model in the TCGA dataset, with
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identify independent prognostic factors for HCC patients. (G) Distribution of Grade staging between high-HHAS and low-HHAS groups. (H) Dis-
tribution of Stage staging between high-HHAS and low-HHAS groups.
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relationship between the HHAS distribution and different pathological stages of HCC patients, we found that the HHAS of G4 stage was
significantly different from that of G1 and G2 stages (Fig. 5G), and the HHAS of Stage III was significantly different from that of Stage I
(Fig. 5H), indicating that HHAS was closely related to tumor prognosis and progression.

3.4. The HHAS model exhibits robust prognostic prediction ability

The HHAS model was further validated using two independent external datasets. Similarly, according to the median HHAS, HCC
patients in the ICGC-LIRI-JP and GSE76427 cohorts were precisely categorized into high- and low-HHAS groups (Fig. 6A and F). With
an elevation in HHAS levels, there was a notable reduction in the survival time of HCC patients within both cohorts. The increase in
HHAS demonstrated a significant correlation with a decrease in the survival duration among patients in both study groups (Fig. 6B and
G). PCA plots also demonstrated the precise stratifying power of the HHAS model (Fig. 6C and H). Illustrated in Fig. 6D and I, the
overall survival rate exhibited a substantial decline among high-HHAS patients when compared to their low-HHAS counterparts
(ICGC-LIRI-JP cohorts, P = 0.0001406; GSE76427, 9.88e-06). Survival prediction metrics for the ICGC-LIRI-JP cohort demonstrated
AUCs of 0.697, 0.713, and 0.701 at 1, 2, and 3 years, respectively (Fig. 6E). Similarly, in the GSE76427 cohort (Fig. 6J), the AUCs stood
at 0.787, 0.7762, and 0.78 for the same respective time points. These findings affirm the robust survival prediction capabilities of the
HHAS model, suggesting its applicability in forecasting HCC prognosis.

3.5. High HHAS patients have increased TP53 mutation rates

Delving deeper into our investigation, we scrutinized somatic mutations among HCC patients with varying HHAS levels. High-
lighted in the results is a greater proportion of patients with mutations in the high-HHAS group as opposed to the low-HHAS group
(79.21% vs. 73.6%) (Fig. 7A-B). The high-HHAS group exhibited a significantly higher proportion of TP53 mutations compared to the
low-risk group (37% vs. 22%). Conversely, the low-risk patients exhibited a notably higher prevalence of CTNNB1 mutations
compared to the high-risk group (30% vs. 21%). In addition, patients with TP53 mutations in the high-HHAS group had multiple
mutation types, including frameshift insertions, nonsense mutations, frameshift deletions, and missense mutations. Implying a po-
tential association, these findings indicate that the elevated incidence of TP53 mutations might contribute to the adverse prognosis
observed in the high-HHAS group.

3.6. Immunosuppressive-related cells Selectively activate in high HHAS patients

In the cluster model, we performed GO functional enrichment analysis, revealing that DEGs among HHAS subgroups were pre-
dominantly enriched in immune-related biological processes, immunological synapse formation, like establishment of T cell polarity,
and dendritic cell apoptotic process (Fig. 8A). These results suggest that the HHAS may be influenced by immunogencity. Imple-
menting the ESTIMATE algorithm, we evaluated immune-related scores in HCC patients sourced from the TCGA database. Our
investigation unveiled a noteworthy decline in the immune score, stromal score, and estimate score within the high-HHAS group
compared to the low-HHAS group (Fig. 8B). This signifies that the high-HHAS group demonstrated a comparatively lower abundance
of immune cells and stromal cells. Subsequent to this, an evaluation of the correlation between the HHAS model and TME features was
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undertaken. Employing the CIBERSORT algorithm, an analysis of tumor-infiltrating immune cell (TIC) subtypes was conducted,
resulting in a landscape comprising 21 immune cells in the HCC samples (Fig. 8C). Multiple TICs were associated with the HHAS
(Fig. 8D). In comparison to the high-HHAS group, the low-HHAS group demonstrated a higher ratio of anti-tumor immune cells,
specifically CD8" T cells and M1 macrophages. This difference underscores the distinct immune profiles between the two HHAS
subgroups. Conversely, the high-HHAS group showed a higher proportion of immune-suppressive cells, such as Tregs when compared
to the low-HHAS group. This observation implies the existence of an immune-suppressive microenvironment in the high-HHAS group.
Utilizing the ssGSEA algorithm, an exploration of the correlation between the HHAS model and immune cells, along with immune-
related pathways, was carried out. The outcomes unveiled significantly lower scores for anti-tumor immune cells, including B cells,
CD8™ T cells, and tumor-infiltrating lymphocytes, within the high-HHAS group compared to the low-HHAS group (Fig. 8E). This aligns
with the results obtained through the CIBERSORT algorithm. Ultimately, diminished scores were observed for immune-related
pathways in the high-HHAS group, encompassing the HLA pathway, Inflammation-promoting, T cell co-stimulation, and Type 1/1I
IFN Response. These results further support that the HHAS model can affect the activity of TME in HCC, which may also contribute to
the variety clinical outcome.

3.7. HHAS model forecasts response to immune checkpoint inhibitor (ICI) treatment in HCC

Given the vital role of the HHAS in shaping the TME, we used the TIDE database to further predict its ability to mediate tumor
immune evasion. Our findings indicated a substantial elevation in both TIDE scores and Exclusion scores within the high-HHAS group
(Fig. 9A-B), while the Dysfunction score was the opposite (Fig. 9C), indicating a lower response to ICI treatment in the high-HHAS
group. Furthermore, the response rate of ICI treatment was assessed in the anti-PD-L1 treatment group (IMvigor210). Notably, in-
dividuals exhibiting high HHAS displayed a markedly reduced response rate to Inmune Checkpoint Inhibitors (ICI) in comparison to
those with low HHAS (Figs. 9D and 27.43% vs 17.81%). This observation emphasizes the potential impact of HHAS on the effectiveness
of ICI treatment. The effectiveness of ICI treatment was significantly correlated with the HHAS (Fig. 9E). In addition, it was observed
that patients with higher HHAS manifested notably diminished overall survival rates in comparison to those within the low-HHAS
group (Fig. 9F). These results underscore the potential of the HHAS model in forecasting immunotherapy response, indicating its
valuable role in guiding strategies for ICI treatments.

4. Discussion

The Hedgehog pathway is pivotal in liver development, injury repair, and carcinogenesis [29]. Current studies have exhibited that
inhibiting Hedgehog expression can suppress cancer-associated stromal stem cell-driven ovarian tumor immune evasion and
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immunotherapy resistance [30], highlighting the Hedgehog signaling pathway as a potential target for cancer immunotherapy. Herein,
our study conducted an integrated analysis of the Hedgehog signaling genes’ correlation with clinical outcome and immune micro-
environment feature. By quantifying the expression of survival-associated Hedgehog genes, we identified three distinct Hedgehog
clusters with cluster 3 exhibiting significant associations with poor prognosis and immunosuppressive TME. Furthermore, a tumor
prognosis prediction system, HHAS, was formulated to evaluate the Hedgehog pattern of individual HCC cases based on 11 Hedgehog
genes. Patients with low HHAS exhibited a higher ratio of CD8" T cell effector factors and better immunotherapy response, while high
HHAS patients demonstrated significant associations with adverse clinical outcomes, high TP53 expression, increased enrichment of
immunosuppressive cell.

Our comprehensive study revealed for the first time that alterations of the Hedgehog pathway can serve as important molecular
subtypes for HCC. With Hedgehog pathway alterations, 57 Hedgehog-related genes associated with prognosis can stratify patients into
three distinct subgroups, including Hedgehog activation (Cluster 3), Hedgehog inactivation (Cluster 2), and moderate Hedgehog
activation (Cluster 1). Studies conducted previously have demonstrated that the Hedgehog pathway serves as a key mediator of
pancreatic cancer [31] and prostate cancer [32] development. Herein, our study also showed that Hedgehog activation subtype
frequently occurs in advanced-stage HCC patients. Additionally, our results also Hedgehog pathway activation exhibit significant
increases in Ang-1, Ang-2, CCND1, CCNB1, and FAS expression levels, suggesting that Hedgehog pathway activation may enhance
angiogenesis, cell cycle progression, and reduce apoptosis. Therefore, targeting genes associated with Hedgehog signaling may
represent a promising therapeutic strategy for advanced-stage HCC treatment. Notably, patients in the subtype of Hedgehog activation
have higher TIDE scores, suggesting that Hedgehog activation subtype has a higher immune-suppressive microenvironment. This was
validated by immune cell infiltration analysis among subgroups, where immune-suppressive cells, like CD4" Th2 T cells [33] and
immune-suppressive molecule CD274 (PDL1) [34], were mainly enriched in patients with Hedgehog activation subtype. Therefore, for
this subset of patients, alternative immunotherapeutic strategies or combination therapy with ICB should be explored to achieve better
treatment outcomes.

Secondly, our prognostic scoring model based on hedgehog genes further demonstrated a strong association between hedgehog
genes and the TME features. CD8™ T cells are an essential immune cell, with a capability of identification and elimination pathogens
and tumor cells [35]. Contrastingly, the pivotal role of regulatory T cells (Tregs) in immune evasion and tumor growth is evident, as
they possess the capability to counteract T cell-mediated immune responses [36]. Herein, immune-related pathways exhibited acti-
vation in samples with low HHAS. Upon further examination of immune cells, various tumor immune suppressive subgroups were
notably elevated in the high HHAS group, including Tregs, whereas anti-tumor immune subgroups like CD8" T cells were prominently
enriched in the low HHAS group. Additionally, higher levels of MO macrophages were observed in high HHAS samples, while M1
macrophages were enriched in low HHAS samples. Correspondingly, the proportion of TIL cells and dendritic cells also changed, which
could be associated with the response of immune cells to the hedgehog pathway in the HCC microenvironment.

Lastly, indications from our study propose that samples with low HHAS might derive greater benefits from ICI treatment. Similar to
patients with Hedgehog activation cluster, high HHAS patients are positively correlated with TIDE scores, suggesting their association
with immune-suppressive state and a potentially poor response to ICI therapy. Moreover, the high HHAS samples are positively
correlated with Exclusion scores and negatively correlated with Dysfunction scores, indicating that immune-suppressive states of these
patients mainly stem from immune escape mechanisms in the TME, rather than immunosuppressive cell dysfunction. Further eval-
uations reveal that high HHAS patients possess a significantly lower response to PD-L1 inhibition and decreased survival quality
compared to low HHAS patients. The results of this immunotherapy are consistent with the immune-suppressive state in the TME of
patients with high HHAS scores and suggest that the immune-suppressive and immune-escape states of high HHAS samples may be the
primary reasons for their poor prognosis. However, further investigations are essential to explore the involvement of HHAS in immune
cells, potentially holding substantial clinical implications for optimizing disease treatment and immunotherapy.

Our study comes with certain limitations. Firstly, our data primarily relied on bulk RNA-seq, which offers a lower level of evidence
when compared to single-cell sequencing. Therefore, it is imperative to conduct validation using single-cell sequencing in future
studies to gain a more comprehensive understanding of cellular-level differences. Secondly, despite our efforts to mitigate batch effects
through data standardization, batch effects between different datasets may introduce some degree of bias in our research findings.
Lastly, to realize the clinical value of our study results, it is crucial to validate them using large-scale, multi-center clinical cohort data,
ensuring credibility and reliability.

Overall, our current study provides a thorough investigation of the immunological activity and therapeutic response of HCC based
on Hedgehog-signaling related genes. We reveal that stimulation of the Hedgehog pathway might be intricately linked to decreased
TME immunological activity and adverse clinical outcomes in HCC patients. Therefore, developing effective therapies for HCC patients
may involve targeting the Hedgehog signaling pathway, presenting a promising strategy.
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