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Abstract

Prediction of protein catalytic residues provides useful information for the studies of protein functions. Most of the existing
methods combine both structure and sequence information but heavily rely on sequence conservation from multiple
sequence alignments. The contribution of structure information is usually less than that of sequence conservation in
existing methods. We found a novel structure feature, residue side chain orientation, which is the first structure-based
feature that achieves prediction results comparable to that of evolutionary sequence conservation. We developed a
structure-based method, Enzyme Catalytic residue SIde-chain Arrangement (EXIA), which is based on residue side chain
orientations and backbone flexibility of protein structure. The prediction that uses EXIA outperforms existing structure-
based features. The prediction quality of combing EXIA and sequence conservation exceeds that of the state-of-the-art
prediction methods. EXIA is designed to predict catalytic residues from single protein structure without needing sequence
or structure alignments. It provides invaluable information when there is no sufficient or reliable homology information for
target protein. We found that catalytic residues have very special side chain orientation and designed the EXIA method
based on the newly discovered feature. It was also found that EXIA performs well for a dataset of enzymes without any
bounded ligand in their crystallographic structures.
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Introduction

Due to the advances of structural genomics project, the number

of protein structures determined is increasing rapidly. However,

the functions and catalytic mechanisms of a huge number of

proteins remain unclear because of the time-consuming processes

of wet-lab experimental approaches. It becomes increasingly

important to predict catalytic residues by computation methods,

which can greatly reduce the time and costs for researchers.

Prediction of catalytic residues is challenging because of the fact

that only a small fraction of residues in protein are catalytic

residues. Despite the number of catalytic residues is small in

proteins, they are directly involved in catalytic reactions and play

an important role in enzyme catalysis.

Many methods have been proposed to predict protein catalytic

residues from its sequence or structure. The most direct strategy is

to find its homologous sequences or structures whose function and

catalytic residues are already known [1–5]. An information-

theoretic approach for estimating sequence conservation based on

Jensen–Shannon divergence was used to predict catalytic residues

from protein sequence [1]. Phylogenetic motifs, sequence regions

conserving the overall familial phylogeny was shown to be a

promising feature for protein functional site prediction [2].

Sequence conservation and 3D-profile, including cleft shape,

stability, and electrostatic potential, generated from known

enzyme structures was used to identify catalytic sites [3]. Another

method detects specific conservation patterns near known catalytic

residues on sequence and constrains what combination of amino

acids can exist near a predicted catalytic residue [4]. A library of

structural templates representing catalytic sites, based on infor-

mation from literatures, and analysis of homologous template

families were used to locate catalytic sites [5]. Neural network

combined with sequence identity and sequence conservation was

demonstrated to be able to accurately predict enzyme catalytic

residues [6]. Another work used not only sequence conservation,

but also predicted secondary structures and predicted solvent

accessible surface [7]. Catalytic residues are identified by multiple

sequence alignment or structure template search with enzymes

whose catalytic residues are already annotated. However, there are

limitations for such homology-based methods. First, homologous

enzymes whose catalytic residues are already correctly annotated

are required. Second, proteins that have similar structure do not

always have identical catalytic residues [8]. There are also

situations that proteins of the same function have quite different

tertiary structures [9].

Another group of methods directly identify catalytic sites from

protein structure without relying on sequence conservation from

multiple sequence alignments or structure template search. They

aim to find out the fundamental different characteristics between

catalytic residues and noncatalytic residues. It was found that, if a

protein was represented as a network in which the residues are

vertices and their interactions are edges, the central residues, i.e.

the central hubs are usually functional important residues or in

direct contact with them [10]. It was also reported that the

catalytic residues are usually located in small fractions of the
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exposed residues closest to the protein centroid [11]. The

calculation of a force constant, i.e. the ease of moving a given

residue with respect to the other residues in the protein, was

applied to the detection of catalytic residues. It was concluded that

catalytic residues usually have higher force constant [12]. A

method called Theoretical Microscopic Titration Curves (THE-

MATICS) [13] was developed to predict catalytic residues by

computing residue electrostatic properties from protein structure.

THEMATICS was later combined with geometric features

derived from protein structure [14] to predict catalytic residues

from enzyme structure using a monotonicity-constrained maxi-

mum likelihood approach, called Partial Order Optimum

Likelihood (POOL). A more recent study [15] models spherical

regions around target residues, extracts the properties of their

content such as physico-chemical properties, atomic density,

flexibility, presence of water molecules or heteroatoms. These

extracted features are combined with sequence information,

including sequence conservation.

We propose a structure-based method (EXIA) that predicts

catalytic residues from single protein structure without needing

sequence or structure alignments. The novelty of EXIA is based

on calculating orientation of side chain vectors, which is a newly

found unique structural feature of catalytic residues. The proposed

method is compared against existing structure-based features and

has the best performance among these structure-based features.

EXIA method combined with sequence conservation from PSI-

Blast outperforms state-of-the-art catalytic residue prediction

methods. In addition to prediction, the finding also benefits to

understanding of the special structural features of catalytic

residues.

Methods

Overview of the Prediction System
The idea of the method comes from the fact that most enzyme

catalysis is the collaboration between multiple catalytic residues

that form a ‘‘catalytic spot’’. The catalytic residue functional part,

i.e. the atoms directly participating in catalytic reaction, is usually

located on the side chain. We found that the vector between the

Ca atom and the functional atom, i.e. the direction of side chain,

usually points to the center of the catalytic spot. Figure 1 illustrates

the phenomenon in E-coli asparaginase II (PDB id: 3eca). The

catalytic residues, T12, Y25, T89, D90, and K162, in chain A of

this protein form a catalytic spot (ligands and other residues not

shown). The side chains all point to the center of the catalytic spot.

The EXIA method is designed based on this observation and is

summarized in Figure 2.

There are two phases in the method: in the first phase, only

residue types whose functional part locating on the side chain are

included in the calculation; in the second phase, residues of other

types are predicted based on the results of the first phase.

Definition of Side Chain Vector
The side chain direction of residue k is the vector sk from its Ca

atom to its functional atom:

sk~X F
k {X CA

k ð1Þ

where XF
k and XCA

k are the crystallographic position of the

functional atom and Ca atom of residue k. The definitions are

based on the annotations in Catalytic Site Atlas (CSA) [16]. The

most frequent functional atom for each amino acid is used. If there

were more than one frequent functional atom, the atom closest to

the centroid of functional atoms is used. For example, arginine has

two frequent functional atoms, NH1 and NH2. Instead of using

NH1 or NH2, we used atom CZ that is closest to the centroid of

NH1 and NH2. Table 1 lists the amino acid types whose

functional atom is on the side chain (side chain functional amino

acids) and the atom we decided to use to calculate their side chain

vector.

First Phase – Predicting Side Chain Functional Amino
Acids

In the first phase, only amino acids listed in Table 1 are

included in calculations of side chain directions. Other residues are

not removed from the structure but are only used in the

calculation of backbone flexibility. First, the structure is embedded

in a three-dimensional 40|40|40 grid of points. Each point is a

probable position of the catalytic spot. The grid size is the optimal

balance between program speed and grid spacing small enough to

scan possible spots. The grid spacing is between 1 Å to 1.6 Å

depending on the protein size. The prediction performance is

worse using larger grid spacing. Using smaller grid spacing spent

more computation time but would not improve prediction

performance. For each point i, residues having a distance between

its Ca atom and the point i less than 10Å are defined as the

surrounding residues of point i. Points that have less than three

surrounding residues are removed. For each point i and any one of

its surrounding residue j, the vector between point i and Ca atom

of residue j is defined as:

vij~X i{X j ð2Þ

where X i and X j are the position of point i and Ca atom of

residue j. We compute the angle hij between vij and sj , which is the

side chain vector of residue j,

hij~acos
vij
:sj

vij

�� �� sj

�� �� ð3Þ

For points that are within or near the area of the catalytic spot,

they should have smaller h angles. For each point i, the averaged

angle hi among all of its surrounding residues is defined as,

hi~
X

hij

�
N ð4Þ

where N is the number of surrounding residues of point i. We

assume that points near the catalytic spot have smaller averaged h

and the points that have averaged hw80
0

are removed. The cut-

off value is chosen based on the statistics of side chain orientations

of catalytic residues (as shown in the ‘‘Analysis on side chain

orientations of catalytic residues’’ section). About 80% of catalytic

residues have the angle h #80 degrees. We found that it is the

most proper cut-off value by trying different cut-off values ranging

from 30 to 100 degrees. For every remaining point with N

surrounding residues, we select three residues from N surrounding

residues and give each selected residue a ‘‘voting score’’. For each

point, the selection process is repeated for all possible combina-

tions of any three surrounding residues. Residues are finally

ranked by their sum of voting scores (denoted as S) received from

these points. The final result of this phase is a list of residues

ranked by their S score, i.e. the likelihood of being a catalytic

residue according to our prediction. The design of voting score is

described in the next section.

Special Sidechain Orientation of Catalytic Residue
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Figure 1. Structures of the catalytic residues of E-coli asparaginase II. Structures of the catalytic residues of E-coli asparaginase II (PDB id:
3eca). Thr12, Tyr25, Thr89, Asp90, and Lys162, in chain A of this protein form a catalytic spot (ligands and other residues not shown). Residue side
chain direction is defined as the vector from its Ca atom to its functional atom. The side chain vectors of catalytic residues tend to point to the center
region of the catalytic spot. ‘‘Catalytic spot centroid’’ is simply a concept and is not formally defined in EXIA method. This observation and the
concept are the basic ideas of the EXIA method.
doi:10.1371/journal.pone.0047951.g001

Figure 2. Overview of the EXIA method. The protein structure is first embedded in grid of points. Points with less than two neighboring residues
(distance ,10 Å) are removed. Then for each neighboring residue of each remaining point, the angle between the side chain vector of the residue
and the vector from residues Ca atom to the position of the point is calculated. The points with average angle (average angle of all its neighboring
residues) ,80u are removed. Each remaining point gives its neighboring residues a voting score based on backbone flexibility. In the end, residues
are ranked by their total voted scores.
doi:10.1371/journal.pone.0047951.g002
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Voting Score
The voting score is based on the weighted-contact number

model (WCN) [17,18], which is a measure of backbone flexibility

of residues. The WCN model was applied to the study of structural

characteristics of catalytic residues. Catalytic residues usually have

high WCN, i.e. structurally more rigid [19]. For any residue k in a

structure, its WCN wk is defined as,

wk~
X
m=k

1

r2
km

ð5Þ

where m is any other residues in the structure and r2
km is the

squared distance between the Ca atoms of residue k and m. This

calculation includes the Ca atoms of all residues in the structure

(not limited to residues of amino acid types listed in Table 1). As

described in the previous section, for every remaining point with N

surrounding residues, we select three residues from its N

surrounding residues and give each selected residue a voting

score. The voting strategy not only gives higher score to residues

involved in ‘‘better’’ combination, i.e. combination of residues that

have high contact strength, but also strongly weights the number

of surrounding residues. The design is consistent with previous

findings that catalytic residues are more structurally rigid [19]. For

any three residues selected (denoted as n, a subset of the N

surrounding residues), we define an averaged WCN wn, which is

the average WCN of these three residues,

wn~
X
j[n

zw
j

.
3 ð6Þ

where zw
j is the normalized WCN, wj , of residue j. Among these

three residues, each residue receives a voting score S,

S~wnzzw
j ð7Þ

where wn is the averaged WCN and zw
j is the normalized WCN of

residue j. For each point, the selection process is repeated for all

possible combinations of any three surrounding residues. The final

score Sj of residue j is the sum of voting scores from all voting

scores received,

Sj~
X

S ð8Þ

Residues having final score larger than a threshold are predicted as

catalytic residue. The threshold for each protein depends on its

side chain functional residue number f, i.e., the number of residues

of amino acid types listed in Table 1. These amino acid types

usually have functional atom located on the side chain. According

to our observations, the best threshold for each protein depends on

its f, as in.

Threshold~a|f 1=2zb ð9Þ

where a and b are parameters optimized by trying their different

combinations and, for each combination, calculating the average

MCC of each protein in the PW79 dataset. The combination of a

and b resulting in the highest average MCC was chosen (a = 0.06,

b = 0.88). For protein of larger size, the threshold is more stringent

to avoid unnecessary guesses yielding more false positives. Residue

that has final score zS
j §Threshold is predicted as catalytic

residue, where zS
j is the normalized Sj of residue j.

Second Phase – Predicting Non-side Chain Functional
Amino Acids

Despite most catalytic residues have their functional atom on

the side chain; there are a small fraction (approximately 5% in

each dataset) of catalytic residues having functional atom on the

backbone. For example, the functional atom of most catalysis-

related glycine is the backbone amide nitrogen. The second phase

is designed to identify these types of amino acids based on the

results of the first phase. We pick the top three ranked residues in

the final list of first phase and find their neighboring residues with

Ca atoms distance less than 10 Å. Note that we only find the

neighboring residues with amino acid types that are not listed in

Table 1. For each neighboring residue j, if its WCN wj is larger

than wcut = 0.9, residue j is predicted to be a catalytic residue.

Sequence Conservation
The core of the EXIA method is purely based on structure

information. It becomes even more powerful by including

sequence conservation. The sequence conservation is directly

taken from the PSI-Blast [20] position-specific substitution matrix

(PSSM) for each protein. PSI-Blast is set to search against the non-

redundant (nr) database for three iterations with an E-value

threshold of 561023. The nr database is a default built-in protein

sequence database in PSI-Blast. It includes all non-redundant

protein sequences in the GenBank CDS translations, PDB,

SwissProt, PIR and PRF. The sequence conservation score cj of

residue j is directly taken from the ‘‘information per position’’

column in the PSSM profile. The combination of EXIA and

sequence conservation is to directly include cj in the final score Sj of

residue j as in,

Sj~
X

Sz1:6|zc
j ð10Þ

where zc
j is the normalized cj of residue j.

Table 1. List of side chain vector atoms.

Amino acid type Side chain vector atom1

ARG CZ

ASN CG

ASP CG

CYS SG

GLN CD

GLU CD

HIS NE

LYS NZ

SER OG

THR OG

TRP CZ

TYR OH

1The side chain vector is from residue Ca atom to its side chain vector atom.
Atom nomenclatures are from Protein data bank [28].
doi:10.1371/journal.pone.0047951.t001
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Normalization of Scores
The WCN wj, sequence conservation cj and the final score Sj of

any residue j, are normalized to their corresponding z-scores,

z~
x{�xx

s
ð11Þ

where x is the original value of wj, cj or Sj, �xx and s are the average

and standard deviation of all corresponding values in the protein.

The normalized wj, cj and Sj are denoted as zw
j , zc

j and zS
j

respectively.

Performance Measurement
The following performance measures are used to evaluate our

prediction:

True positive rate (TPR) or recall or sensitivity is denoted as R,

TPR~
tz

tzzf {

.

False positive rate (FPR),

FPR~
f z

t{zf z

.

Precision (P),

P~
tz

tzzf z

.

Matthew’s correlation coefficient (MCC),

MCC~
tz|t{{f z|f {

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tzzf zð Þ tzzf {ð Þ t{zf zð Þ t{zf {ð Þ

p :

where tz, t{, f z, f { are the true positive, true negative, false

positive, and false negative respectively. These measurements are

calculated according to the overall performances for each dataset.

The receiver operating characteristic (ROC) curve is the average

of per-protein ROC curve, which is plotted by changing

thresholds from highest (FPR = 0) to lowest (FPR = 1).

Datasets
Most datasets commonly used in recent competing methods are

included here and are constructed based on the data from

Catalytic Site Atlas [16]. The datasets include the PW79 dataset,

79 enzyme selected by [21] and the POOL160 dataset, 160

enzymes used in [14]. Three datasets with varying homology

levels, the EF fold, the EF superfamily and the EF family, used in [22].

The EF datasets are created according to the fold, superfamily,

and family levels of SCOP ASTRAL 40 v1.65 [22]. In addition,

from the five datasets, we collected all of the structures that do not

have any bounded ligands in their crystal structure as the UB78

dataset. In these datasets, all ligands and non-protein compounds

are removed. The full lists of PDB codes and catalytic residues of

the six datasets are in the supporting information (Dataset S1, S2,

S3, S4, S5, S6). In these datasets, for the proteins missing

important side chain atoms (atoms listed in Table 1), we discarded

the structure and replaced it with another structure of the same

enzyme by manual searching proper replacement with highest

sequence and structure similarity as the replaced structure. In few

cases that no proper replacement available, we used Cb atom as

side chain vector atom for the structurally incomplete residues.

The details are noted in the dataset lists (Dataset S1, S2, S3, S4,

S5, S6) in the supporting information.

Results and Discussion

In this section, we first compared the prediction results of EXIA

with other prediction methods that only use structure or sequence

information. Then we compared the results of EXIA combined

with PSSM with that of the state-of-the-art prediction method. We

also discuss the success of EXIA by analyzing side chain

orientations of catalytic and non-catalytic residues. In the end,

we show the prediction results on enzymes of single catalytic

residue and the predictions results on a dataset of enzyme

structures intrinsically without any bounded ligand.

Comparison of EXIA with Predictions using Only
Structure Features

To evaluate the performance of the EXIA method, we

compared the prediction results using EXIA without sequence

conservation with the most recent and successful structure-based

prediction method, the Partial Order Optimum Likelihood

(POOL) method [14], which achieved the best performance

among the methods using structure information only. There are

two primary structural features in the POOL method: the

THEMATICS feature (denoted as POOL(T)) and the cleft size

feature (POOL(G)), which is the computational geometry to define

and measure pockets on the protein surface using CASTp. Table 2

compares the prediction results of EXIA without sequence

conservation with that of POOL with different combinations of

features, including POOL(T), POOL(G), and sequence conserva-

tion (POOL(C)) for the POOL160 dataset. The results show that

EXIA performed obviously better than POOL(T+G) on recall at

equal precision, precision at equal recall, and area under curve

receiver operating characteristic (AUCROC). POOL achieved the

best performance combining POOL(T), POOL(G), and

POOL(C). EXIA, even without using sequence conservation,

performed significantly better than POOL, which used both

sequence and structure information. The comparison of ROC

curves of EXIA and POOL on the POOL160 dataset is shown in

figure S2.

Comparison of EXIA with Predictions using Only
Sequence-based Features

In the development of catalytic residues prediction methods,

sequence information was the primary feature, which was usually

based on information of amino acid types and sequence

conservation. Incorporation of structure information did improve

the results of sequence-based prediction, but predictions using only

structure information had never been found to be comparable to

sequence-based predictions. These structure information used to

predict catalytic residues includes experimental or computational

backbone flexibility, relative solvent accessible surface area, atomic

density, physical and chemical properties in 3D environments,

cleft shape and size [21,23], network centrality [24], and etc.

According to previous reports [21,23], the prediction accuracies

based on individual one of these structure features were mostly

from 51% to 60% except predictions based on well-designed cleft

Special Sidechain Orientation of Catalytic Residue
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shape and hydrogen bonding number statistics, which have

accuracies from 63% to 69%. However, prediction using only

amino acid type information could easily reach a prediction

accuracy of 70% and using only sequence conservation has over

80% accuracy.

Here we directly compared EXIA without sequence conservation

with the state-of-the-art sequence-based prediction method,

CRpred [25], which was shown to have comparable results with

predictions using both structure and sequence information. The

novelty of CRpred is the design of several new types of sequence-

based features computed using windowed hydrophobicity, custom-

designed sequence motifs, and position-specific scoring matrix and

entropy of weighted observed percentages from PSI-BLAST.

Table 3 summarizes the prediction results of CRpred and EXIA

without PSSM on four benchmark datasets. EXIA outperforms

CRpred on the PW79 dataset by comparing the recall at equal

precision and the precision at equal recall. EXIA has recall (0.68)

and precision (0.25) higher than theirs (R = 0.54, P = 0.18). On the

EF fold and EF superfamily datasets, EXIA has comparable results

to CRpred. On the EF family dataset, CRpred has better

prediction results than EXIA. It is interesting to note that CRpred

has best prediction results on the EF family dataset, which has

higher homology level. On the datasets that have lower homology

levels, the EF fold and EF superfamily datasets, the performances

of CRpred slightly decreases. EXIA performs equally well on these

three datasets with AUCROC from 0.940 to 0.944 without being

affected by the differences of homology levels. The comparison of

ROC curves of EXIA and CRpred on the EF fold dataset is shown

in figure S1.

The point of this comparison is not to determine whether

structure information is more important or efficient than sequence

information. Structure and sequence information are both

important and are complementary features in catalytic residue

prediction. EXIA is the first pure structure-based method that has

comparable prediction performances to sequence-based predic-

tions. Another advantage of EXIA is that it only requires single

protein structure without needing sequence or structure compar-

isons, which are usually required in sequence-based methods. In

the next section, we combined EXIA and sequence conservation

from PSI-Blast PSSM profiles.

Combination of EXIA and Sequence Conservation and
Comparison with State-of-the-art Method

A recent prediction method [15] outperformed other existing

methods on various benchmark datasets. Their method is based on

effective representation of structure information by modeling

spherical regions around candidate residues and statistics on the

physic-chemical and structural properties in the region. They used

support vector machine to predict catalytic residues based on these

features combined with sequence information and made a wide

and complete comparisons with other competing methods. Table 4

summarizes the prediction results of EXIA combined with PSSM

(EXIA+PSSM) and comparison with their results on five datasets.

We compared the best recall and precision values in their report

with our recall at equal precision and our precision at equal recall.

EXIA+PSSM has higher recall and precision than theirs in most

comparisons except in the POOL160 dataset. The precision

(0.189) and recall (0.780) are almost equal to theirs (0.190 and

0.781). By comparing AUCROC (area under ROC curve), which

is a more reliable and global measure of performance, EX-

IA+PSSM outperforms the competing method on both PW79 and

POOL160 datasets. Figure S3 also shows the comparison of ROC

curves on the EF fold dataset.

Prediction Results of Combining EXIA and Sequence
Conservation

Matthew’s correlation coefficient (MCC) is a good measurement

of prediction performance because that MCC is very sensitive to

false positives. Due to the extremely unbalanced number of

catalytic and non-catalytic residues in enzymes, MCC were in the

range of 0.23 to 0.36 for the PW79 dataset in previous predictions

[15,21] because of the large number of possible false positives. The

unbalanced number of catalytic and non-catalytic residues also

causes problems in machine learning method, for example, model

training in support vector machine. To avoid such problem, a

commonly used strategy is to build a balanced dataset in which the

ratio between catalytic and non-catalytic residues is equal by

subsampling non-catalytic residues [21,23]. When the subsampling

Table 2. Comparison of EXIA prediction with POOL on
POOL160 dataset.

POOL using different features

POOL(T+G)1 POOL(T+G+C)2

Recall 61.74 64.68

Precision 18.06 19.07

AUCROC 0.907 0.925

EXIA without PSSM

Recall at equal P 70.803 68.605

Precision at equal R22.204 20.806

AUCROC 0.960 0.960

EXIA+PSSM

Recall at equal P 80.00 77.80

Precision at equal R24.30 23.30

AUCROC 0.969 0.969

1POOL method using only structure features (POOL(T): THEMATICS and
POOL(G): geometry features).
2POOL method using sequence (POOL(C): sequence and sequence
conservation) and structure features.
3Recall of EXIA at equal precision as POOL(T+G).
4Precision of EXIA at equal recall as POOL(T+G).
5Recall of EXIA at equal precision as POOL(T+G+C).
6Precision of EXIA at equal recall as POOL(T+G+C).
doi:10.1371/journal.pone.0047951.t002

Table 3. Comparison of EXIA prediction with CRpred on four
benchmark datasets.

Benchmark datasets

PW79 EF fold
EF
superfamily EF family

CRpred

Recall (R) 53.7 48.2 52.1 58.3

Precision (P) 17.5 17.0 17.0 18.6

EXIA1

Recall at equal P 67.8 45.1 49.5 45.8

Precision at equal
R

24.7 16.2 16.1 14.6

AUCROC 0.961 0.940 0.940 0.944

1Prediction results using EXIA without sequence conservation.
doi:10.1371/journal.pone.0047951.t003

Special Sidechain Orientation of Catalytic Residue
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strategy is applied to testing dataset, MCC increases greatly to

0.7,0.8 because that the number of possible false positives (non-

catalytic residues) is greatly reduced [21]. Here, MCC was

calculated without changing the ratio of catalytic and non-catalytic

residues. Figure 3 shows the MCC of EXIA prediction for each

protein in the POOL160 and PW79 datasets. For the POOL160

dataset, there are 42% of proteins having MCC§0:5 and the

average MCC is 0.48. For the PW79 dataset, there are 53% of

proteins having MCC§0:5 and the average MCC is 0.53.

Figure 4 shows the overall ROC and Recall-precision (RP)

curves of EXIA+PSSM on the benchmark datasets. The ROC and

RP curves on EF superfamily and EF family datasets are very

similar to that of EF fold dataset and are not shown in the figure.

Figure 5 shows the structures of catalytic residues and prediction

results of a typical example, human ferrochelatase (PDB id: 1 hrk),

which is a homodimer that catalyzes the insertion of ferrous iron

into protoporphyrin to form heme. The side chain orientations of

catalytic residues, H263, H341, and E343, on its A chain are

shown in figure 5(A). Figure 5(B) is the prediction results of the

enzyme by EXIA without using sequence conservation and based

on the isolated A chain structure. The figure shows the ranked

final score S of residues and the catalytic residues are the top three

ranked ones.

Why does EXIA Work? Analysis on Side Chain
Orientations of Catalytic Residues

The design of EXIA method is based on the special orientation

of catalytic residues in enzyme. Here, we directly compared the

Table 4. Comparison of EXIA prediction with competing
methods on five benchmark datasets.

Benchmark datasets

PW79 POOL160 EF fold
EF
superfamily EF family

Competing
method1

Recall (R) 46.0 78.1 64.2 67.3 61.7

Precision (P) 28.0 19.0 17.1 16.9 18.5

AUCROC 0.963 0.948 – – –

EXIA+PSSM2

Recall at equal P 63.0 78.0 72.3 72.4 69.0

Precision at equal R 34.7 18.9 20.2 18.9 21.1

AUCROC 0.978 0.969 0.968 0.965 0.966

EXIA without
PSSM3

Recall at equal P 48.9 68.6 44.8 50.0 46.3

Precision at equal R 30.3 14.4 12.0 11.9 13.7

AUCROC 0.962 0.960 0.940 0.940 0.944

1Prediction results by Cilla and Passerini [15].
2Prediction using EXIA combined with sequence conservation.
3Prediction using EXIA without sequence conservation.
doi:10.1371/journal.pone.0047951.t004

Figure 3. Distributions of Matthew’s correlation coefficient for
each protein in the PW79 and POOL160 datasets. The per-
protein Matthew’s correlation coefficient of prediction combined EXIA
and sequence conservation. MCC was calculated without changing the
ratio of catalytic and noncatalytic residues in the datasets.
doi:10.1371/journal.pone.0047951.g003

Figure 4. ROC and Recall-precision curves of EXIA+PSSM on the
PW79, POOL160, and EF fold datasets. (A) ROC and (B) Recall-
precision curves of EXIA+PSSM on the PW79, POOL160, and EF fold
datasets. EF superfamily and EF family datasets had similar results to the
EF fold dataset.
doi:10.1371/journal.pone.0047951.g004
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side chain orientations of catalytic residues with that of randomly

selected residues. For each enzyme in the PW79 dataset (except

enzymes of single catalytic residue), we calculated the center-of-

mass of the catalytic residues and assumed the center-of-mass is

approximately the center of the ‘‘catalytic spot’’. First, for each

catalytic residue j, we calculated the angle between the side chain

vector of residue j and the vector from Ca atom of residue j to the

center-of-mass position. Second, for randomly selected residues,

each protein in the dataset was embedded in a 40|40|40 grid of

points. For each point, we found its neighboring residues (distance

between the point and the residue ,10 Å) and repeated the angle

calculation for this group of residues (as a group of spatially close

residues randomly picked). Figure 6 compares the angles for

catalytic residues with angles for random residues. The range of

angles are originally between 2180u to 180u, we converted the

angle values to its corresponding absolute value. The results are

obvious that the angle distribution for randomly picked residues is

a normal distribution from 0u to 180u, which means that for a

randomly chosen spot in protein structure, the side chain

orientations of residues surrounding the spot are random. Side

chains for random residues do not seem to point to any particular

position. For catalytic residues, the angles are significantly smaller

than those of random residues (statistically significant tested by a

paired t-test with a= 0.001). The results suggest that catalytic

residues do have very special side chain orientation comparing to

random groups of residues in protein. The side chain vector of

catalytic residue tends to point to the center of the catalytic spot,

which is approximated by the center-of-mass of catalytic residues.

The special orientation of side chain is a unique structure feature

of catalytic residues and is the foundation of success of the EXIA

method.

Figure 7 shows the catalytic residue structures of metapyroca-

techase from Ppseudomonas putida mt-2 (PDB id: 1mpy) and L-

alanine dehydrogenase (PDB id: 1pjb). In figure 7(A) and (C),

atoms colored in dark grey are the Ca atoms and side chain vector

atoms. Figure 7(B) and (D) illustrate the position of the center-of-

mass of these catalytic residues and their side chain vectors. In

metapyrocatechase, the side chains of catalytic residues, H199,

H246, and Y255, all point to their center-of-mass. The same

phenomenon is observed on the catalytic residues, K74, H95,

E117, and D269 of L-alanine dehydrogenase. It is not possible to

observe that side chain of catalytic residues point to the center-of-

mass perfectly. The side chain orientation of catalytic residues

must properly ‘‘fit’’ the ligand it catalyzed. The results in figure 6

still clearly show that side chains of catalytic residues tend to point

to their center-of-mass.

Comparison of Prediction Results on Residue Level
In the reports of these competing methods, there are not much

residue-level prediction results available for direct comparison.

The POOL method is the only one that provides a web server

[26]. We have manually submitted five proteins, including

dimerization cofactor of hepatocyte nuclear factor 1 (PDB id:

1dco), UDP N-acetylglucosamine acyltransferase (1lxa), catechol

Figure 5. Structures of catalytic residues of human ferrochelatase and results of prediction. (A) Structures of catalytic residues, H263,
H341, and E343, of human ferrochelatase (PDB id: 1 hrk). Side chain structures of the catalytic residues are shown as ball-and-stick. (B) Prediction
results of human ferrochelatase by EXIA without sequence conservation. This figure shows the distribution of ranked final score of residues. The
catalytic residues, H263, H341, and E343, are the top three ranked residues.
doi:10.1371/journal.pone.0047951.g005

Figure 6. Comparison of side chain orientation of catalytic
residues and randomly selected residues. The side chain
orientation of catalytic residues is obviously different from those of
random residues. Smaller angle means that residue side chain tends to
point to the centroid of the residue group (details in the corresponding
section). The angles for catalytic residues are obvious smaller than
random selected residues.
doi:10.1371/journal.pone.0047951.g006
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2,3-dioxygenase (1mpy), uucleoside diphosphate kinase (1nsp), and

acylphosphatase (2acy), to the web server. We compared the

prediction rank of EXIA+PSSM and POOL for the catalytic

residues of each protein. Table 5 summarizes the results and the

number of false positives when all true positives (catalytic residues)

are correctly identified. In these examples, EXIA performs better

than POOL, having catalytic residues highly ranked and correctly

identifying them with smaller number of false positives than those

of POOL.

Prediction Performance of Enzymes of Single Catalytic
Residue

A small fraction of enzymes in these benchmark datasets (10%

, 20%) have only one catalytic residue. Although the basic

concept of EXIA method is to find multiple residues that have

their side chains pointing to a certain point, for proteins having

single catalytic residues, EXIA is still able to identify their catalytic

residue. Table 6 summarizes the prediction results of single-

catalytic-residue proteins on the five datasets. The average MCC

of single-catalytic-residue proteins on PW79 and POOL160

datasets are 0.44 and 0.36, which are lower than the overall

average MCC on these two datasets (0.53 and 0.48 respectively)

but are higher than the best MCC reported before [15]. The

reason is that EXIA is based on not only side chain orientations

but also the backbone flexibility, which is highly related to catalytic

residues. It was found that catalytic residues are usually

structurally rigid [19], harder to be moved [12], or have high

closeness centrality in network of protein structure [24]. The

design of EXIA includes backbone flexibility in the voting scores

based on the weighted-contact number model. Another reason

may be that, even for single-catalytic-residue proteins, their

catalytic residue tends to locate in such environment, i.e. side

chain orientations identified by EXIA.

Prediction Performance on Unbound Structures
A dataset (UB78), which includes all structures that have no

bounded ligand in their crystal structure from the PW79,

POOL160, and three EF datasets, is used to test the performance

of EXIA on unbound enzyme structures. The overall AUCROC

of EXIA+PSSM prediction on the UB78 dataset is 0.961, which is

similar to the results on the POOL160 (0.969), EF_fold (0.968),

EF_superfamily (0.965), and EF_family (0.966) datasets. The

overall AUCROC of EXIA without PSSM prediction on the

UB80 dataset is 0.941, which is also similar to the results on the

EF_fold (0.940), EF_superfamily (0.940), and EF_family (0.944)

datasets. The results show that EXIA works well in the unbound

structures too. The results also suggest that the side chains of

catalytic residues, even in the unbound state, are ready to form a

catalytic spot to interact with ligand and are distinct from other

non-catalytic residues.

Conclusions
We found that catalytic residues in enzyme have very special

orientation of side chain comparing to those of random residues.

Based on the novel observation that the side chain of catalytic

residues usually points to the center of catalytic spot, we have

developed a purely structure-based method, EXIA, to predict

catalytic residues EXIA identifies catalytic residues by finding

residues with such property and the prediction results show that

catalytic residues can be correctly predicted from protein structure

in various benchmark datasets, including a dataset of ligand

unbound structures.

Figure 7. Side chain orientation of catalytic residues in two example enzymes. The catalytic residue structures of (A) metapyrocatechase
from Ppseudomonas putida mt-2 (PDB id: 1mpy) and (C) L-alanine dehydrogenase (PDB id: 1pjb). Atoms colored in dark grey are the Ca atom and side
chain vector atom for each residue. (B) and (D) illustrate the position of center-of-mass of these catalytic residues (centroid) and their side chain
vector. These examples clearly show that the side chain vectors tend to point to the centroid.
doi:10.1371/journal.pone.0047951.g007
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Structure information is usually thought to be more ‘‘informa-

tive’’ than sequence information in bioinformatics studies of

proteins. On the contrary, sequence information were more

effective features than structure information in prediction of

protein catalytic residues. Prediction method using only sequence

information was shown to perform almost equally well to methods

using both sequence and structure information [25]. We show that

EXIA is currently the most effective structure-based method and,

without using any sequence information, is comparable to the

state-of-the-art sequence-based method. The prediction of com-

bining EXIA and sequence information outperforms existing

prediction methods and has average MCC from 0.48 to 0.53 on

five benchmark datasets.

A recent study found that evolutionary information is actually

hidden in single protein structure [27]. The backbone flexibility

profile computed from single protein structure and its PSSM

profile from PSI-Blast are found to be quite similar. The success of

EXIA also suggests that information properly extracted from

protein structure is very powerful in the prediction of catalytic

residues. For proteins whose evolutionary information is not

available, EXIA is still able to provide invaluable information in

the study of protein functions.
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Table 5. Comparison of prediction rank and number of false positives for EXIA+PSSM and POOL.

Protein Catalytic residue Prediction rank
Number of false positives when all catalytic residues are
identified

EXIA+PSSM POOL EXIA+PSSM POOL

1dco H62 2 1 0 5

H63 3 5

H80 4 9

D89 1 4

1lxa H125 2 4 1 3

1mpy H199 2 6 3 4

H246 6 7

Y255 1 1

1nsp K16 4 4 4 18

N199 7 21

H122 1 10

2acy R23 3 8 1 7

N41 2 9

doi:10.1371/journal.pone.0047951.t005

Table 6. Average MCC of proteins having single catalytic
residue on the five datasets.

Average MCC

Benchmark
datasets

Number of
proteins1 EXIA+PSSM2 EXIA3

PW79 12 0.44 0.45

POOL160 16 0.36 0.42

EF fold 36 0.40 0.30

EF superfamily 44 0.40 0.33

EF family 55 0.38 0.33

1Number of proteins having single catalytic residue.
2Prediction using combination of EXIA and sequence conservation.
3Prediction using EXIA.
doi:10.1371/journal.pone.0047951.t006
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