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Abstract: Chronic disease management often requires use of multiple drug regimens that lead to
polypharmacy challenges and suboptimal utilization of healthcare services. While the rising costs
and healthcare utilization associated with polypharmacy and drug interactions have been well
documented, effective tools to address these challenges remain elusive. Emerging evidence that
proactive medication management, combined with pharmacogenomic testing, can lead to improved
health outcomes and reduced cost burdens may help to address such gaps. In this report, we
describe informatic and bioanalytic methodologies that integrate weak signals in symptoms and chief
complaints with pharmacogenomic analysis of ~90 single nucleotide polymorphic variants, CYP2D6
copy number, and clinical pharmacokinetic profiles to monitor drug–gene pairs and drug–drug
interactions for medications with significant pharmacogenomic profiles. The utility of the approach
was validated in a virtual patient case showing detection of significant drug–gene and drug–drug
interactions of clinical significance. This effort is being used to establish proof-of-concept for the
creation of a regional database to track clinical outcomes in patients enrolled in a bioanalytically-
informed medication management program. Our integrated informatic and bioanalytic platform
can provide facile clinical decision support to inform and augment medication management in the
primary care setting.

Keywords: pharmacogenomics; polypharmacy; chronic disease; medication management; electronic
medical record; artificial intelligence

1. Introduction

The management of chronic diseases in the primary care setting often involves
polypharmacy challenges that often drive considerable healthcare utilization and costs.
While the term polypharmacy is used inconsistently in the literature [1], for the purposes
of this report, we are making reference to clinical instances where five or more medications
are used concurrently. Analysis of the Observational Health Data Sciences and Informatics
data set has documented that 10% of diabetes, 24% of hypertension and 11% of depres-
sion patients followed a treatment pathway that was unique among 250 million cases [2],
thus yielding a daunting number of permutations in drug combinations. This increasing
armamentarium necessitates individualized care plans, a challenging task for primary
care practitioners managing complex patient populations. OptumRx has estimated that
polypharmacy affects about 15% of the US population and costs over $175 B per year [3].
As such, polypharmacy is believed to have increased healthcare cost burdens in recent
years by ~30% [4]. Reduced adherence to drug therapy regimens and heightened incidence
of adverse drug reactions (ADRs) represent major challenges for polypharmacy patients,
including at-risk patients with multiple comorbid conditions.
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An estimated 15 million people 65 years of age and older face a polypharmacy chal-
lenge, with nearly 50% of them using at least one unnecessary medication [5]. The preva-
lence of potential hepatic cytochrome (CYP) enzyme-mediated drug–drug interactions has
been estimated to be as high as 80% [6], with elder adults considered to be more susceptible
to problematic drug interactions due to declining levels of hepatic and renal functions [7].
In a recent report, 56% of a study population prescribed (es)citalopram showed underly-
ing drug–drug and drug–gene interactions, which would be difficult for a practitioner to
address absent of pharmacogenomic testing [8]. Further complicating the optimization
of complex pharmacotherapies, individual variations in response to the same medication
can fluctuate over three orders of magnitude [9]. These issues collectively contribute to
over 2 million documented ADRs in the US and over 100,000 deaths [10]. Analysis of
the genetic variation in response to drugs and ADRs has been enabled somewhat by the
Pharmacogenomics Knowledge Base (PharmGKB), Pharmacogenomics Research Network
(PGRN), and the Clinical Pharmacogenetics Implementation Consortium (CPIC) [11–13].
However, data linkages and documentation of the full diversity of clinical phenotypes
associated with rare or emergent variants remain a significant hurdle. One of the largest
pharmacogenomic targeted exome sequencing studies conducted to date [14] has shown
that 96.2% of patients in a cohort of 5424 had CPIC Level A actionable variants, with half of
the variants identified in the population identified as novel variants [15]. In a different but
concordant report by Van Driest et al., 98% of the study population carried CPIC actionable
variants [16].

ADRs are major drivers of healthcare utilization, and precision interventions designed
to address these deficits provide tremendous opportunities for improved health outcomes
and reduced costs. These challenges are especially prevalent among rural and socioeconom-
ically disadvantaged populations, with most studies to date largely limited to retrospective
observations and data mining. These approaches pose data linkage limitations that pre-
clude longitudinal assessment of the natural history of polypharmacy and chronic disease
progression at the individual level [17]. As such, robust studies of polypharmacy and the
contribution of genetics to drug response have continued to be sparse.

Pharmacogenomics (PGx) is a discipline that focuses on a genome-wide assessment of
how individual genes alone or in combination with other loci affect individual responses to
drug treatment. PGx combines pharmacology (the science that focuses on the uses, effects,
and modes of action of drugs) and genomics (the study of structure, function, evolution,
and mapping of genomes) to develop effective, safe medication regimens tailored to an
individual’s genetic makeup [13]. PGx can aid in the prediction and stratification of who
may benefit from a medication, who may not respond at all, and who may experience
adverse reactions. Clinical use and reimbursement of pharmacogenomic testing remains
challenging, largely due to a dearth of evidence supporting clinical utility and cost ef-
fectiveness. While clinical decision support is recognized [18] as a key component for
the successful implementation of pharmacogenomic testing, widespread utilization of
pharmacogenomic testing is not commonplace [19]. Pharmacogenomic-based studies can
inform how single nucleotide polymorphisms (SNPs) and other variations in the human
genome correlate with disease, drug response, and the occurrence of clinically significant
phenotypes [20]. SNPs, the most common type of genetic variation found in humans and
the most commonly tested variant affecting drug response [20], may be present between
genes or within genes and their regulatory sequences. While most SNPs do not affect
health, some may be linked to disease or help to predict an individual’s response to a
particular drug [20]. As such, SNP-based pharmacogenomic analysis can highlight specific
targets and their impact on the subject’s medication blood levels and response. Genomic
and pharmacogenomic data combined with personal health and psychosocial data may be
effectively used to support providers with treatment-related decisions in the management
of chronic disease patients.

Here we present proof-of-concept for a clinical care protocol with the potential to
predict and confirm a subject’s response to their medication based on chief complaints
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and symptom functionality, specific medication-associated genomic data on receptors and
transporters, and measurement of drug levels. Evidence is presented that a computational
rendering of a patient’s complaints and medications alone can be useful in the identification
of symptoms with pharmacologic root-cause and that genotypes and pharmacokinetic
information can be used computationally in a way that is practical for guiding prescribing
choices in a primary care setting.

2. Materials and Methods
2.1. Clinical Environment and Process

A Texas A&M Interprofessional Pharmacogenomics (IPGx) Clinic is being established
as part of the Texas A&M Family Medicine Program, a clinical practice serving diverse
and underserved populations with chronic disease burden, including a high prevalence of
polypharmacy.

A digital continuity of care document/file with the contents listed in Table 1 above
is produced by the primary care electronic medical record for digital importation into
the (Clinical Semantic Network) CSN (Figure 1, step 2). This represents the baseline
information required for completion of the data analysis underlying the IPGx care model
(Figure 1, step 3a). Basic medical and family history information is collected followed by
a physical exam and collection of blood and/or buccal swabs for processing by a CAP-
CLIA bioanalytic laboratory (Figure 1, step 3b). A medication management report citing
complaints of potential pharmacological root causes and suggested alternative medications
is provided to the referring physician (Figure 1, step 4). Patients are offered an opportunity
to participate in a research registry underlying the IPGx database (Figure 1, step 5), and if
opting into the registry, administered baseline validated quality of life questionnaires in
digital format.

Table 1. Health Data Inputs into the Clinical Semantic Network to Interrogate for Symptoms and
Complaints that Might have Pharmacological Root-Cause.

Input Datum

Progress Notes (6 months)
Complaints

Active problem list
Medical History
Family History
Social History

Vitals
Vaccination History

Patient encounters (10 years)
Medication and dosing

Diagnosis codes
Billing

Quality of life questionnaires (disease specific, digital)
Continuity of care documents

Procedural notes
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Figure 1. Interprofessional Pharmacogenomics (IPGx) Model. 1. Referral of polypharmacy patient to the IPGx clinic. 2.
Interprofessional team collects relevant medical history with an emphasis on information related to chief complaints, which
also includes a transition of care history from primary care to the IPGx. This information is analyzed using the Clinical
Semantic Network to identify complaints of possible pharmacological root cause. 3a. When warranted, pharmacogenomic
profiling is performed. 3b. When warranted, pharmacokinetic profiling is performed. 4. A medication management report
citing complaints of potential pharmacological root causes and suggested alternative medications or adjustments to drug
regimen is provided to the referring physician. 5. If patient chooses to give informed consent, all clinical data, bioanalytic
data and biological specimens are entered into a pharmacogenomic research registry (clinical-genomic database).

2.2. Medical Record Analysis and the Clinical Semantic Network

The first piece of the artificial intelligence phase in the IPGx model is an analysis of
symptoms residing in electronic medical records that might be indicative of suboptimal
or problematic medication regimens. The Clinical Semantic Network (Goldblatt Systems,
Inc., Tucson, AZ, USA [21] is a computable medical record that enables facile analysis of
symptoms and complaints imported from the Texas A&M Primary Care medical record
(eClinical Works), in an HL7 clinical document architecture (CDA, see Table 1 IPGx continu-
ity of care (CoC) data). The IPGx CoC data in the CDA Clinical Document Architecture [22]
includes chief complaints such as drug side effects and symptoms, known diagnoses, and
medications prescribed. This information is exported from the electronic health record into
the CSN to render case specific data computable by the CSN [21].

The CSN is built on a commercial grade software that is tiered from Oracle, DOM,
Hibernate, and Java. It maps relational data to a domain model. The data structure
is computationally tractable and configured to enable the application of AI in terms of
predictive analytics.
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2.3. Bioanalytic Phase

The bioanalytic phase of the IPGx model involves interrogation of specific and action-
able pharmacogenomic targets (per CPIC guidelines) and confirmation of genotype impact
on the subject’s steady state blood levels of medication.

2.3.1. Clinical Pharmacogenomics

SNPs identified with genomic and pharmacogenomic analyses combined with per-
sonal health and psychosocial data may be used to develop a model for prediction of
disease outcome as well as an aid to physicians with clinical management [23]. The
Molecular Dx pharmacogenomic (PGx) assay targets an extensive list of medications and
therapeutic symptoms. For low daily volume and fast turn-around time, the MolecularDx
Comprehensive PGx panel is utilized (Table 2). Primers designed to amplify specific genetic
variations (SNPs, insertions, deletions, multi-nucleotide polymorphisms) in genes coding
for pharmacogenes or their regulatory elements are listed in Table 2.

Table 2. Drug Classes, Potentially Impacted Drugs, and Genes Texted in the MolecularDx Pharmacogenomics Platform as
of March 2021.

Drug Class Potentially Impacted Drugs Gene(s) Tested

ADHD
Atomoxetine, Amphetamines, Dexmethylphendiate,

Dextroamphetamine, Lisdexamfetamine, Methylphendiate
Clonidine, Guanfacine

CYP2D6, COMT

Alzheimer’s Disease Donepezil, Galantamine Memantine CYP2D6

Antiarrhythmics Donepezil, Galantamine Memantine CYP2D6

Anticancer Agents
Methotrexate, Belinostat, Erlotinib, Gefitinib, Nilotinib,

Pazopanib, Azathioprine, Mercaptopurine, Thioguanine,
Irinotecan, Irinotecan Liposomal

Antidepressants, SSRIs/SNRI Citalopram, Escitalopram, Desvenlafaxine, Duloxetine,
Mirtazapine, Paroxetine, Sertraline, Venlafaxine CYP2D6, CYP2C19

Antidepressants, Tricyclic

Amitriptyline, Clomipramine, Desipramine, Doxepin,
Imipramine, Nortriptyline, Trimipramine Amoxapine,

Fluoxetine, Fluvoxamine, Levomilnacipran, Maprotiline,
Nefazodone, Protriptyline, Vilazodone, Vortioxetine

CYP2C9

Antidiabetics Glimepiride, Glipizide, Glyburide, Tolbutamide,
Chlorpropamide Nateglinide, Repaglinide CYP2C9

Antiemetics Ondansetron, Dolasetron, Metoclopramide, Palonosetron CYP2D6

Antiepileptic

Phenytoin, Carbamazepine, Carbatrol, Eslicarbazepine,
Ethosuximide, Ezogabine, Felbamate, Fosphenytoin,

Gabapentin, Lacosamide, Lamotrigine, Levetiracetam,
Oxcarbazepine, Perampanel, Pregabalin, Rufinamide,

Tiagabine, Topiramate, Valproic Acid, Vigabatrin,
Brivaracetam, Phenobarbital, Primidone, Zonisamide

CYP2C9

Antihyperlipidemic Agents Atorvastatin, Fluvastatin, Lovastatin, Pravastatin,
Pitavastatin, Simvastatin, Rosuvastatin SLCO1B1, CYP3A4, CYP2C9

Antihypertensives Carvedilol, Metoprolol, Irbesartan, Nebivolol, Propranolol,
Timolol, Labetalol CYP2D6, CYP2C9

Antiplatelets/Anticoagulants
Clopidogrel, Prasugrel, Ticagrelor, Warfarin, Vorapaxar,

Apixaban, Dabigatran Etexilate, Edoxaban,
Fondaparinux, Rivaroxaban

CYP2C19, CYP2C9,
VKORC1, CYP3A5
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Table 2. Cont.

Drug Class Potentially Impacted Drugs Gene(s) Tested

Antipsychotics

Aripiparazole, Haloperidol, Iloperidone, Paliperidone,
Perphenazine, Pimozide, Risperidone, Thioridazine,

Asenapine, Brexpiprazole, Chlorpromazine, Fluphenazine,
Loxapine, Lurasidone, Pimavanserin, Quetiapine,

Thiothixene, Trazodone, Trifluoperazine, Ziprasidone,
Clozapine, Olanzapine, TetrabenazineOther Neurological

Agents: Dextromethorphan/Quinidine, Flibanserin

CYP2D6, CYP1A2

Anxiety/Insomnia Diazepam, Clobazam, Alprazolam, Clonazepam,
Lorazepam, Oxazepam CYP2C19

Acid Related Disorders Dexlansoprazole, Esomeprazole, Lansoprazole,
Omeprazole, Pantoprazole, Rabeprazole CYP2C19

Cardiovascular

Angiotensin II Receptor Antagonists: Azilsartan,
Candesartan, Eprosartan, Irbesartan, Losartan, Olmesartan,

Telmisartan, Valsartan
Antianginal Agents: Ranolazine Diuretics: Torsemide

Huntington Disease Tetrabenazine CYP2D6

Immunosuppressants Tacrolimus CYP3A5

Infections
Antifungals: Voriconazole

Anti-HIV Agents: Atazanavir
Antimalarials: Proguanil

Antifugals: Voriconazole Carisoprodol, Tizanidine, Cyclobenzaprine,
Metaxalone, Methocarbamol CYP2C19, CYP1A2

Anti-HIV Agents: Atazanavir Methadone CYP2B6

Antimalarials: Proguanil

Codeine, Fentanyl, Hydrocodone, Morphine, Oxycodone,
Tramadol, Alfentanil, Buprenorphine, Dihydrocodeine,

Hydromorphone, Levorphanol, Meperidine, Oxymorphone,
Sufentanil, Tapentadol, Methadone

CYP2D6, OPRM1

Other Bupropion, Naltrexone COMT, OPRM1, ANKK1/DRD2

Other Analgesics
Celecoxib, Flurbiprofen, Piroxicam, Diclofenac, Ibuprofen,

Indomethacin, Ketoprofen, Ketorolac, Meloxicam,
Nabumetone, Naproxen, Sulindac

CYP2C9

Pain Fibromyalgia Agents: Milnacipran

Rheumatology Anti-Gout Agents: AllopurinolImmunomodulators:
Apremilast, Leflunomide, Tofacitinib

Urinary Incontinence

Antispasmodics: Tolterodine, Darifenacin, Fesoterodine,
Mirabegron, Oxybutynin, Solifenacin, Trospium

5-Alpha Reductase Inhibitors: Dutasteride, Finasteride
Alpha Blockers: Alfuzosin, Doxazosin, Silodosin,

Tamsulosin, Terazosin
Phosphodiesterase Inhibitors for Erectile Dysfunction:

Avanafil, Sildenafil, Tadalafil, Vardenafil

CYP2D6
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This technology uses TaqMan Genotyping Assays [24] to target 90 PGx-related SNPs
plus CYP2D6 copy number. Genotyping is performed on the Applied Biosystems QuantStu-
dio 12K Flex. For higher daily volume and lax turn-around time, a custom-designed
SARS-CoV-2 research diversity array can be utilized. Whole blood with no centrifugation
is extracted using QIAamp DNA Blood Mini Kit (Cat. # 51106) used on QiaCube. TaqMan
Genotyper v1.6 software was used to make genotype calls. Calls are manually reviewed by
two pharmacists with pharmacogenomic expertise and agreed upon before reporting.

2.3.2. Clinical Pharmacokinetics

Candidate pharmacologic symptoms coupled with genotypes that portend drug–
drug and drug–gene interactions can be further validated by the measurement of steady
state blood concentrations of the medications of interest. Under the IPGx protocol, target
drugs corresponding to the drug–gene pairs in Table 2 and their metabolites are measured
utilizing a validated liquid chromatography mass spectrometry assay. Such results were
not entered into the virtual exercise presented in this report, but are available for use in
clinical practice.

2.4. Synthesis and Reporting

The CSN deconstructs and enhances a medication identification procedure utilizing
the medication’s molecular weight, excretion pathways, ATC class, volume of distribution,
bioavailability, elimination half-life, anticholinergic burden, steady state, and CYP450, or
transporter pathways. In this light, the CSN enabled the development of a polypharmacy
report that can be utilized by a clinician at point of care to get a holistic, yet cogent snapshot
of symptoms, complaints, diagnoses, and medications that might reflect drug–drug and
drug–gene interactions. This function generates a medication management summary
report that identifies high probability and actionability per CPIC guidelines of drug–gene
and drug–drug interactions at the root cause for select symptoms. These relationships can
ideally be confirmed by genotyping and/or clinical pharmacokinetic assays.

3. Results
3.1. Clinical Environment and Process

Polypharmacy patients and patients demonstrating symptoms and complaints that
might be indicative of possible medication interactions are referred to the IPGx clinic for
evaluation by the attending clinician (Figure 1, step 1). Patients are not required to consent
to the registry to receive the bioanalytic workup and medication management care; registry
participation is optional and not a condition of care. The program entails a process of
stepwise progression of electronic medical record analysis toward pharmacokinetic ground
truth to inform primary care practitioners. The first step consists of a clinically aware
computational analysis such that entry of complaints into the patient’s record, updates the
rendering of complaints that match the known side effects (from First Data Bank) of drugs
taken by the patient. The second step strengthens these associations if a pharmacokinetic
model of the medications renders potential instances of pathway overload (Epocrates).
Next, the CSN can further strengthen these associations by identification of pharmacogene
variants of known clinical significance that are consistent with the list of candidate side-
effects or pathway overload. Finally, pharmacokinetic data is incorporated to distinguish
among and validate instances of drug–gene or drug–drug interactions.

3.2. Medical Record Analysis and the Clinical Semantic Network

The first step is a computational and semantic comparison of case history to the
medications the patient is taking. This is powered by DrugBank [25], Epocrates [26], and
Lexicomp [27] to tally the subset of symptoms that are present and known to occur as side
effects of the medications the patient is taking. At a clinical informatics level, cough with
fever might be connected/mapped to curated ontologies such as SNOMED (Systematized
Nomenclature of Medicine [28]) about SARS-CoV-2, or pneumonia in a weighted fashion,
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by subject matter experts who then have the capability to markedly enhance this highly
navigable information. A net result is that a SNOMED identification can be established
with multiple attributes built into the CSN system. Other analogies in the CSN include
instances when a chief complaint is entered such that the system knows which history of
present illness questions should be used to interrogate. The technology works much in the
same manner as Google can predict shopping preferences based on user actions.

For the purposes of this communication, we created a virtual patient with medi-
cation, pharmacogenomic, and side effect profiles that were aggregated drawing from
previous experiences with a number of real-life clinical cases. The clinical characteristics
assessed included:

• Number of side effects/complaints/diagnoses identified in the patient and believed
to be related to his/her current medication regimen,

• Number of medications possibly contributing to the identified/diagnosed side effects,
• Number of drug metabolic pathways identified as being potentially overloaded,
• Number of drug metabolic pathways identified as borderline overloaded,
• Number of medications with pharmacogenomic profiles,
• Number of medications putting the patient at risk for serotonin syndrome,
• Number of medications putting the patient at risk for QT prolongation,
• Number of anticholinergic medications.

At this step, a side-effects dashboard is created by the CSN utilizing any drug in
the First Databank to distill complaints that could be of pharmacological origin. Figure 2
provides a summary of selected computational clinical findings for the virtual patient
which are also a rendering of the complaints from Table 1, that correspond to the subset of
complaints that are also known side effects of the medications the patient is taking. Those
side effects, as initially rendered prior to pharmacogenomic profiling, may not inherently
be of pharmacological origin, or may arise due to drug–drug interactions, or as a result of
drug–gene interactions. Pharmacogenomic testing and pharmacokinetic testing can reveal
whether these complaints are rooted in drug–gene or drug–drug interactions. The CSN
can be contrasted from step-and-fetch functionality of most electronic medical records by
the interconnectivity of medical terms. Those medical terms are connected in a neural-like
network of semantic associations that effectively represent knowledge and contextual
awareness of potentially related data elements in a patient record. The network consists of
nodes representing objects and arcs which describe the relationship between those objects.
Semantic networks can categorize the objects in various forms and can link those objects
making it particularly useful in an electronic health record which can utilize and act on
computable data. Interconnecting a patient’s clinical content (phenotypes) with this form
of health care knowledge gives the data in these relationships actionable context. There
is a pharmacokinetic modeling dimension in this analysis that examines the repertoire of
medications a patient has been prescribed and that models these data based on known
pathways for those medications to assess drug–drug interactions that might result from
pathways that are excessively taxed by virtue of the combination of medications (Figure 3).

This dashboard can incorporate correlative associations (complaints-drug side effects)
and bioanalytic associations (PGx genotypes and predicted or measured pharmacokinetic).
As such, this computationally rendered dashboard provides useful insight on the potential
root cause of complaints both before and after bioanalytic analysis is entered into the CSN
case record.
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3.3. Bioanalytics

Pharmacogenomics is used to assess the impact of individual pharmacogenomic vari-
ants on how subjects respond to their medication by evaluating specific medication receptor
targets as well as transporter functionality [29]. The dashboard design incorporates Clinical
Pharmacogenetics Implementation Consortium (CPIC) guidelines and the knowledge-
bases contained in PharmGKB and PharmVar to provide a cogent front-end presentation
of case-relevant and actionable pharmacologic considerations for use by the clinician at
point-of-care. The report reflects a comprehensive analysis of known pharmacogenomic
knowledge through the filter of established consensus medical guidelines. For illustrative
purposes, Table 3 presents a list of CYP2D6 haplotypes that the CSN is configured to
dynamically incorporate into the rendering of the pharmacogenomic analysis. The CSN
is capable of incorporating all variants of known clinical significance. The patient scope
varies and is dynamically adjusted to the variants that are presented by the instrumenta-
tion. The CYP2D6 haplotype call is made from the core variants for each haplotype and all
other variants are verified as constant relative to that haplotype so variants of unknown
significance are not presented as normal.
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Table 3. List of CYP2D6 alleles incorporated into the rendering of the Medication and Pharmacoki-
netic Pathway Summary in Figure 3.

CYP2D6 Haplotypes

* 2, * 3, * 4, * 5, * 6, * 7, * 8, * 9, * 10, * 11, * 12, * 14, * 15, * 17, * 19,
* 20, * 21, * 22, * 23, * 24, * 25, * 27, * 28, * 29, * 30, * 31, * 32, * 33,
* 34, * 35, * 36, * 37, * 38, * 39, * 40, * 41, * 42, * 43, * 44, * 45, * 46,
* 47, * 48, * 49, * 50, * 51, * 52, * 53, * 54, * 55, , * 56, * 57, * 58,
* 59, * 60, * 62, * 64, * 65, * 69, * 70, * 71, * 72, * 73, * 74, * 75, * 81,
* 82, * 83, * 84, * 85, * 86, * 87, * 88, * 89, * 90, * 91, * 94, * 95,
* 96, * 98, * 99, * 100, * 101, * 102, * 103, * 104, * 105, * 106, * 107,
* 108, * 109, * 110, * 111, * 112, * 113, * 114, * 115, * 116, * 117,
* 118, * 119, * 121, * 122, * 123, * 125, * 126, * 127, * 128, * 129,
, * 130, * 131,* 132, * 133, * 134, * 135, * 136, * 137, * 138, * 139

*: alleles.

3.4. Virtual Patient A

Patient A is a 60-year-old African American female with a ten-year history of depres-
sion, schizophrenia, and chronic pain who is referred to the IPGx Clinic by her primary care
physician for a polypharmacy consult. She began complaining of worsening shifts in her
mood and increasing feelings of worthlessness and sadness for the past six-months. She
stated that there have been to changes in her family life and that her work shifts had ended
a year before. She lives with her husband of 30 years and has two pets. The patient stated
that she does not understand why she feels sad all of the time and unable to enjoy life the
way she used to after her depression, schizophrenia, and pain had been so well controlled
with medications. She stated that her family commented that she is more “irritable” and
“angry all the time”. Upon further questioning, she noted that her physician had been
making adjustments to her medications and prescribed cyclobenzaprine for rigidity and
duloxetine for the worsening feelings of depression six months ago. She denies having any
other medical problems at this time and any known allergies to medications. The patient
reports taking duloxetine, tramadol, ondansetron, cyclobenzaprine, and olanzapine as
prescribed, and denies using over the counter medications, herbal supplements, or illicit
drugs. Her vital signs were all within normal limits and her physical examination was
unremarkable. The patient consents to pharmacogenomic and pharmacokinetic testing
and opts to join the pharmacogenomics registry. A blood sample is drawn and buccal
swabs are collected for analysis. The patient returns to clinic after one month for follow up
and discussion of findings. The results of the metabolic panel and blood cell counts were
unremarkable. Pharmacogenomic testing is conducted and shows that the patient is a poor
CYP2D6 metabolizer. Figure 2 presents screenshot depictions of side-effects—a listing of
patient reported symptoms and complaints attributed to potential pharmacological root
causes (denoted by black stars) compared to known side effects of the medications the
patient has been prescribed (denoted by red and yellow stars, for moderate and severe side
effects, respectively).

4. Discussion
4.1. Integration with Primary Care

The IPGx program has leveraged health care policy mandates calling for health data
standardization protocols [30]. The transitioning of the IPGx CoC data set (Table 1) into the
CSN is somewhat amenable to HL7 continuity of care data CDA formats. These data can
be output in a readily computable format from most medical records, and have proven to
be tractable and scalable in the IPGx model. The side effects table (Figure 2) for composite
clinic case represented by patient A were compiled from a medical history, in the form
of a CDA, composed of data enumerated in Table 1 that were extracted from a primary
care electronic medical record (eClinical Works) from which patients are being referred for
an ongoing pilot project digitally linking the IPGx with primary care. Future work will
examine and confirm the utility of using CoC HL7 CDAs using data from other providers
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and health systems that refer patients to the IPGx clinic. Most current electronic medical
record vendors will have standard capability to produce a CoC CDA similar or identical to
the one used here. The return of results and medication management recommendations
to primary care are a work-in-progress and currently presented in the form of a PDF
report that can be appended to the electronic medical record at the referring primary care
clinic. However, the CSN retains “clinical awareness” meaning that the semantic linkage
between relevant threads in phenotypes->(complaints->potential side-effects)->genotypes-
>pharmacokinetic ground truth for a given patient are not lost. One existing constraint is
that this functionality and the underlying data structures are unique to the CSN and not
readily transferrable to any know electronic medical record beyond standard SNOWMED
nomenclatures.

A current challenge in primary care environments with populations of polypharmacy
and polydisease burden is managing the increased complexity of medication repertoires
and standards of care that do not account for this emergent complexity. Some medical
records have alerts for potential drug–drug interactions, but none of these computational
tools are linked to what the patient is actually experiencing, and as such, they do little
to distinguish among complaints caused by disease versus those potentially caused by
medications. The status quo leaves the primary care with a dearth of tools to respond to
these noisy considerations in an environment with personalized and precision strategies
increasingly necessary to avoid ADRs.

4.2. Medical Record Analysis and the Clinical Semantic Network

Nausea and depression are symptoms and complaints that the CSN identified in the
side effects table as potentially having a pharmacological root cause (Figure 2). The side
effects table provides an emerging view of phenotypes that may have a pharmacologic
root cause, based on First Data Bank side effects, and warrant further pharmacogenomic
and pharmacokinetic analysis of a patient and their case. The combination of worsening
symptoms and new medications in Patient’s A dashboard suggests that these symptoms
may result from overburdening of the CYP2D6 pathway, an oxidative drug metabolizing
pathway utilized by 25% of medications, and a common nexus for ADRs in polyphar-
macy [31,32]. This assessment is consistent with the finding that many of the medications
taken by Patient A (duloxetine, tramadol, ondansetron, cyclobenzaprine, and olanzapine)
interact with the CYP2D6 metabolic pathway. Duloxetine is a recognized inhibitor of
CYP2D6, thus potentially increasing circulating drug levels for agents such as tramadol
that are metabolized by this pathway. Duloxetine, olanzapine, cyclobenzaprine, and on-
dansetron are also utilizers of CYP1A2, and may be collectively contributing to overload of
this metabolic pathway (refer to Figure 3). Several of these agents also utilize the CYP3A2
and CYP3A4 pathways, thus compounding the level of taxation of several alternative oxida-
tive metabolism pathways. In the top left header bar of Figure 3, the dashboard indicates
there are 15 drugs, corresponding to 10 genes/pathways of interest in this patient’s medica-
tion regimen and that two alternatives to ondansetron (granisetron, palonosetron) should
be considered to offload CYP metabolic pathways and possibly improve the patient’s
symptoms and optimize response to drug therapy.

Electronic health record alerts, computerized order entry systems, and pharmaceutical
box warnings are insufficient in helping physicians at point of care to identify critical drug–
drug or drug–gene interactions that might result from polypharmacy [31]. In this case,
CYP1A2, CYP2D6, and CYP3A4 may be overburdened (Figure 3) and perhaps overloaded
to a point of significant clinical consequence. In this patient’s case, the inclusion of drug–
drug interactions in the assessment is complicated by a pre-existing history of dementia
and chronic pain, disorders that can themselves present with symptoms of depression.
We recognize that ordering a pharmacogenomic test is currently not within established
clinical guidelines at this time. In fact, our research registry was established in order to
generate clinically relevant evidence to support expanded use of pharmacogenomic testing
in chronic disease management and polypharmacy. Again, the medical record analysis is



J. Pers. Med. 2021, 11, 443 13 of 18

simply an exercise in computational filtering of the symptoms with potential pharmacologic
origins from the broader noise contained within the medical and complaint history—a
tool that is likely useful in primary care even without deployment of a downstream
bioanalytic program.

4.3. Bioanalytics

Patient A was designated as a poor metabolizer variant of CYP2D6 into the CSN to
establish the utility of layering genotype information onto the pathway analysis dash-
board and to incorporate this information in triangulating symptoms with pharmacological
root cause to generate medication alternatives. A recent analysis of CYP2D6 genotypes
in an Austrian population evaluated in a family practice setting revealed that the me-
tabolizer status of patients taking medications metabolized by CYP2D6 [32] would be
clinically actionable in 16% of cases. A 2016 report by Bush et al. focused on variation
in 82 pharmacogenes in a cohort of 5000 clinical subjects, and CYP2D6 was identified
among the most polymorphic gene present [15]. In their study, over 96% of subjects had
one or more CPIC Level A actionable variant identified and more than a third had three or
more actionable variants, suggesting that these variations may influence the clinical care
of affected patients over their lifetime. In a similar study, Van Driest et al. [16] reported
that the number of CYP2D6 variants is highest among African-Americans [15], as seen in
Patient A. Accordingly, implementation of our informatic and bioanalytic platform would
place critical information at the fingertips of primary care and ambulatory care pharmacy
providers. Under the working premise of our virtual case, genotyping confirmed that
Patient A had a CYP2D6* 17 variant of CYP2D6 that made her a poor metabolizer. To gain
further insight and to validate the functional significance of the findings, a pharmacokinetic
assay of CYP2D6 metabolized medications would be ordered to hyperlink steady state
levels in the dashboard under the black circle with the letter “i” next to the drug name in
the pathway analysis dashboard (Figure 3). This would be done to establish with certainty
if the patient has elevated steady state levels of duloxetine and tramadol that not only
overload CYP pathways, but may also be material contributors to the chief complaint
profile and polypharmacy burden for the virtual patient.

Patient A is taking five medications that utilize a low functioning variant of CYP2D6:
duloxetine, tramadol, ondansetron, cyclobenzaprine, and olanzapine. Virtual Patient A
notes depression, which could be attributable to several medications this patient is using,
including cyclobenzaprine and tramadol. Cyclobenzaprine, a medication that creates
a high anticholinergic burden, can exacerbate depression, and could be contributing to
CYP1A2, CYP2D6, and CYP3A4 overload. This medication is at the nexus of many of the
issues confronting this patient and warrants consideration for alternative medications or
supervised deprescribing. If nausea is persistent in the face of a CYP2D6 poor metabolizer
with an already overloaded pathway, the system informs the clinician to consider to replace
ondansetron with granisetron which lowers metabolic burden at CYP2D6.

This patient has an anticholinergic burden (ACB) score of 5, which is high [33] and
could be contributing to adverse effects. Of note is the fact that ondansetron, tramadol,
and duloxetine add serotonergic stress and the potential for QT prolongation in our virtual
patient. In this instance, the dashboard was further annotated with predicted phenotypes
associated with a known actionable variant of CYP2D6 (CYP2D6* 17) that is a poor metab-
olizer (Figure 3; pursuant to CPIC guidelines). This would augment a genotype annotated
and refined computational rendering of a list of side effects with a likely pharmacological
root cause. The decision support would identify tizanidine as a potentially less problematic
alternative to cyclobenzaprine, or even deprescribing cyclobenzaprine and monitoring the
patient. Further, the medications pathway dashboard identifies ondansetron as another
potential contributor to CYP2D6 overload (but not depression directly per se) Another
therapeutic option that emerges from this case is reconsidering tramadol. Tramadol is
metabolized at CYP2D6. It can interact with duloxetine from a drug–drug interaction
perspective. Tramadol can induce nausea. If it is clinically determined that Tramadol is
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required for pain management then a blood drug level is recommended to optimize dosage.
If not, tapering and seeking an alternative is reasonable. In this case, stiff person syndrome
is in the differential diagnosis due to the burdened serotonin system. In this case, the
CSN identifies and presents complaints (depression) that might have pharmacologic root
cause (serotonergic burden) likely due to a CYP2D6 variant rendering the patient a poor
metabolizer of ondansetron and cyclobenzaprine. In our virtual case, drug–drug–gene
interactions were identified electronically from historical clinical data and confirmed with a
bioanalytic workup. Specific recommendations for alternative medications included in the
final report may help resolve an otherwise disorderly and noisy interplay of polypharmacy,
genetic variation, and history of present illness.

5. Conclusions
5.1. Challenges and Realities

The most obvious challenge with clinical roll-out of the IPGx model is that most
of the bioanalytic methodologies described herein are not currently reimbursed by pay-
ers and disappointingly, out of reach for most primary care practices. The triggers for
genotyping the patients in our test case were rather compelling cases with symptomatol-
ogy that could with relative ease be attributed to pharmacological root causes: CYP2D6
overload, ACB, and drug–drug and drug–gene interactions. However, this practice is
not currently a reimbursable use case for ordering pharmacogenomic testing or clinical
pharmacokinetic assays. As such, the methodology described is currently impractical for
implementation across the healthcare system due to reimbursement constraints for nearly
all private and Medicare insurance policies. The IPGx registry program provides a strategy
to measure the positive impact of medication management to deconvolute chronic disease
and polypharmacy burdens in a clinically actionable manner and provide evidence of the
value-based approach.

Haga and colleagues have published rich commentary [34–36], and some primary
research, on clinical outcomes in populations in which pharmacogenomic testing has been
implemented. The chicken-and-egg paradox to further outcomes research is the dearth of
patients for whom pharmacogenomic testing is ordered because of a limited reimburse-
ment landscape [37], and the data linkage challenges posed by efforts to document the
public health impact of medication choices. Inherently, genotyping will likely continue
to be viewed as having questionable clinical utility absent the grounding provided by
measurements of actual drug levels and the clinical actionability that can be inferred when
combining genotyping and patient chief complaints.

The evidence versus usage paradox described is the underlying rationale for creation
of our IPGx registry. The goal is to collect evidence that these bioanalytic methods are
cost effective and can improve outcomes in cases where chronic disease burden and
polypharmacy are detrimental to health. Grant funding is often a key component of
expanded pharmacogenomic testing beyond the narrow scope provided by the healthcare
system in the US. The Vanderbilt University [18] and Duke University Health Systems [38]
have robust, interprofessional clinical pharmacogenomic programs, but it is unclear the
degree to which access to unreimbursed bioanalytical technology constrains the scope and
scale of their efforts to study pharmacogenomic testing at scale, in a clinical setting.

5.2. Significance to ADRs

It has been reported that about 2/3 of ADRs are attributable to drug–drug interac-
tions and about 1/3 to drug–gene interactions [39], so a diagnostic battery would ideally
inform both of these endpoints. Indeed, the CSN medical record analysis process enables
identification of clinically relevant, and inherently actionable, elevated drug levels and/or
clinically relevant pharmacogenomic variants. The final medication management report
produced by the CSN can reflect suspected medication effects, and provide grounding for
both drug–drug and drug–gene interactions. In complex cases, the final report is refined
by IPGx clinical staff through an interprofessional consultation among clinical pharmacists,
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the attending genomic medicine specialist, and the primary care physician to produce a
report listing medication management considerations for the referring physician. Such rec-
ommendations might include alternative medications to reduce anticholinergic burden or
load on specific cytochrome P450 pathways, or deprescribing. In essence, the IPGx platform
distills vast electronic health record, genotype, and pharmacokinetic information into an
informed, understandable, and actionable set of medication management considerations.

The workflows and reporting for the IPGx and the interface between IPGx and pri-
mary care were thoughtfully constructed. Disruptions of workflows or additional work
can be a nonstarter for research in a primary care environment and the same holds true for
piloting new care models. The upshot of the IPGx platform is that (1) the medical infor-
matic analysis can reveal potential ADR signals in standard continuity of care information
sets using the Clinical Semantic Network at the front end, and (2) can be complemented
with the bioanalytical analysis from that patients’ pharmacogenomic and clinical pharma-
cokinetic workup, at the back end of the IPGx encounter. The IPGx model can serve as
a force multiplier for the primary care physician in managing their most complex cases
driving healthcare utilization by “de-noising” dense medical histories and complementing
the analysis with bioanalytic ground truth, to provide cogent actionable data to inform
prescribing choices.

5.3. Bioanalytics and Future Directions

The IPGx registry has the potential to enroll individuals who possess variants of
unknown significance and novel variants. The significant clinical annotation (phenotype)
that accompanies each registry record is likely to provide insights on structure–function
relationships inherent in emergent variants. Additionally, over time, accumulation of a
meaningful number of cases with a given novel variant has utility as a de facto cohort for
future research. In fact, we expect that the IPGx registry will be a channel to recruit subjects
for future research looking into the nexus of chronic disease management, pharmacoge-
nomics, and public health; to demonstrate the value of personalized medicine approaches
on public health outcomes.

The genotyping profiles and informatics in the CSN are amenable to addition of HLA
insigh, a functionality that is being considered for integration into the IPGx care model
and the IPGx registry in the future. This addition has great potential to inform the clinical
significance of emergent HLA variants.

Oncology is a specialty from which the care of a referred population might be aug-
mented by the IPGx model. The primary care environment utilized for the present report
is not a practical context in which to develop the IPGx care platform for oncology care. A
number of complementary diagnostic and drug safety paradigms for cancer therapy will
be the basis for future work.

5.4. Opportunities

Most pharmacogenomic testing finds its way into clinical practice in a bottom-up
pathway, meaning that an individual variant (genotype) or drug–gene pair is implicated in
an ADR (phenotype) that is observed in the population. At that time, clinical outcomes
associated with testing use cases and interventions (i.e., CYP2C19 for clopidogrel) with
respect to that variant must be studied in randomized controlled trials before a recommen-
dation for clinical testing is adopted. This approach has proven to be challenging, even for
one of the most advanced areas of pharmacogenomic testing, anticoagulant therapy [40].
It takes time for the justification (pilot studies of ancillary studies piggybacked on drug
registration trials) to reach a critical threshold calling for a randomized controlled trial
that might ultimately demonstrate the clinical utility of testing for a given drug–gene pair.
The standard innovation pathway for a pharmacogenomic use case for a drug–gene pair,
can take many years for an emergent drug–gene pair to achieve reimbursement and even
longer for clinical adoption [41]. The lack of a large scale clinical-genomic databases to link
genotypes and drug dispensing data with outcomes is recognized as a challenge in further
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advancing the field of pharmacogenomics [8]. By expanding the diversity of disease and
populations receiving pharmacogenomic testing beyond those fitting in narrow, existing
reimbursement paradigms, the IPGx platform has the potential to produce outcome evi-
dence for emergent drug–gene pairs and clinical use cases for pharmacogenomic testing
that is supported by phenotype outcomes before (i.e., complaints in the electronic health
record) and after testing (steady-state drug levels). Use of the IPGx methodology presented
here would allow clinicians to make inferences from symptoms and genotyping that are
in turn informed by the grounding of clinical pharmacokinetic data. This approach may
provide useful insights into potential phenoconversion, a limiting challenge in relying
on pharmacogenetic testing alone for clinical decision-making [42]. The clinical-genomic
database of the IPGx can become a resource to inform the clinical decision making of the
referring physician, and accelerate guideline maturation cycles for emergent gene–drug
pairs. In the IPGx program, the informed consent and data strategy enable a simplified
portrayal of bioanalytic validation of symptoms and complaints that have a pharmacologic
root cause. As such, the approach is practical and actionable for a primary care provider. At
the same time, the process generates a rich corpus of longitudinally integrated biological,
genomic, and clinical information that is highly valuable for supporting research, practice
improvement, policy, and reimbursement.

Author Contributions: Conceptualization, K.R., P.S. and D.J.; methodology, K.R., D.J. and J.K.;
software, D.J. and J.K.; validation, D.J., G.N., J.K., G.U., A.A.-B. and K.R.; formal analysis, D.J. and
J.K.; investigation, D.J., J.K. and G.N.; resources, K.R., D.J.; data curation, D.J., J.K., P.S.; writing—
original draft preparation, P.S. and K.R.; writing—review and editing, P.S., D.J., G.U., A.A.-B., G.N.,
J.K. and K.R.; visualization, D.J., J.K. and P.S.; supervision, K.R.; project administration, P.S., D.J.;
funding acquisition, K.R. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors wish to acknowledge the contributions of Jesus Palomo in manuscript
editing and preparation.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Masnoon, N.; Shakib, S.; Kalisch-Ellett, L.; Caughey, G.E. What is polypharmacy? A systematic review of definitions. BMC Geriatr.

2017, 17, 230. [CrossRef]
2. Hripcsak, G.; Ryan, P.B.; Duke, J.D.; Shah, N.H.; Park, R.W.; Huser, V.; Suchard, M.A.; Schuemie, M.J.; DeFalco, F.J.; Perotte, A.;

et al. Characterizing treatment pathways at scale using the OHDSI network. Proc. Natl. Acad. Sci. USA 2016, 113, 7329. [CrossRef]
3. Quinn, K.J.; Shah, N.H. A dataset quantifying polypharmacy in the United States. Sci. Data 2017, 4, 170167. [CrossRef]
4. Akazawa, M.; Imai, H.; Igarashi, A.; Tsutani, K. Potentially inappropriate medication use in elderly Japanese patients. Am. J.

Geriatr. Pharmacother. 2010, 8, 146–160. [CrossRef]
5. Maher, R.L.; Hanlon, J.; Hajjar, E.R. Clinical consequences of polypharmacy in elderly. Expert Opin. Drug Saf. 2014, 13, 57–65.

[CrossRef]
6. Mallet, L.; Spinewine, A.; Huang, A. The challenge of managing drug interactions in elderly people. Lancet 2007, 370, 185–191.

[CrossRef]
7. Jennings, E.L.M.; Murphy, K.D.; Gallagher, P.; O’Mahony, D. In-hospital adverse drug reactions in older adults; prevalence,

presentation and associated drugs—a systematic review and meta-analysis. Age Ageing 2020, 49, 948–958. [CrossRef] [PubMed]
8. Bahar, M.A.; Lanting, P.; Bos, J.H.J.; Sijmons, R.H.; Hak, E.; Wilffert, B. Impact of Drug-Gene-Interaction, Drug-Drug-Interaction,

and Drug-Drug-Gene-Interaction on (es)Citalopram Therapy: The PharmLines Initiative. J. Pers. Med. 2020, 10, 256. [CrossRef]
9. Ingelman-Sundberg, M. Genetic variability in susceptibility and response to toxicants. Toxicol. Lett. 2001, 120, 259–268. [CrossRef]
10. Lazarou, J.; Pomeranz, B.H.; Corey, P.N. Incidence of adverse drug reactions in hospitalized patients: A meta-analysis of

prospective studies. JAMA 1998, 279, 1200–1205. [CrossRef] [PubMed]

http://doi.org/10.1186/s12877-017-0621-2
http://doi.org/10.1073/pnas.1510502113
http://doi.org/10.1038/sdata.2017.167
http://doi.org/10.1016/j.amjopharm.2010.03.005
http://doi.org/10.1517/14740338.2013.827660
http://doi.org/10.1016/S0140-6736(07)61092-7
http://doi.org/10.1093/ageing/afaa188
http://www.ncbi.nlm.nih.gov/pubmed/33022061
http://doi.org/10.3390/jpm10040256
http://doi.org/10.1016/S0378-4274(01)00278-8
http://doi.org/10.1001/jama.279.15.1200
http://www.ncbi.nlm.nih.gov/pubmed/9555760


J. Pers. Med. 2021, 11, 443 17 of 18

11. Relling, M.V.; Klein, T.E. CPIC: Clinical Pharmacogenetics Implementation Consortium of the Pharmacogenomics Research
Network. Clin. Pharmacol. Ther. 2011, 89, 464–467. [CrossRef]

12. Caudle, K.E.; Klein, T.E.; Hoffman, J.M.; Muller, D.J.; Whirl-Carrillo, M.; Gong, L.; McDonagh, E.M.; Sangkuhl, K.; Thorn,
C.F.; Schwab, M.; et al. Incorporation of pharmacogenomics into routine clinical practice: The Clinical Pharmacogenetics
Implementation Consortium (CPIC) guideline development process. Curr. Drug Metab. 2014, 15, 209–217. [CrossRef] [PubMed]

13. Whirl-Carrillo, M.; McDonagh, E.M.; Hebert, J.M.; Gong, L.; Sangkuhl, K.; Thorn, C.F.; Altman, R.B.; Klein, T.E. Pharmacoge-
nomics knowledge for personalized medicine. Clin. Pharmacol. Ther. 2012, 92, 414–417. [CrossRef]

14. Gordon, A.S.; Fulton, R.S.; Qin, X.; Mardis, E.R.; Nickerson, D.A.; Scherer, S. PGRNseq: A targeted capture sequencing panel for
pharmacogenetic research and implementation. Pharm. Genom. 2016, 26, 161–168. [CrossRef]

15. Bush, W.S.; Crosslin, D.R.; Owusu-Obeng, A.; Wallace, J.; Almoguera, B.; Basford, M.A.; Bielinski, S.J.; Carrell, D.S.; Connolly, J.J.;
Crawford, D.; et al. Genetic variation among 82 pharmacogenes: The PGRNseq data from the eMERGE network. Clin. Pharm.
Ther. 2016, 100, 160–169. [CrossRef]

16. Van Driest, S.L.; Shi, Y.; Bowton, E.A.; Schildcrout, J.S.; Peterson, J.F.; Pulley, J.; Denny, J.C.; Roden, D.M. Clinically actionable
genotypes among 10,000 patients with preemptive pharmacogenomic testing. Clin. Pharm. Ther. 2014, 95, 423–431. [CrossRef]
[PubMed]

17. Khezrian, M.; McNeil, C.J.; Murray, A.D.; Myint, P.K. An overview of prevalence, determinants and health outcomes of
polypharmacy. Ther. Adv. Drug Saf. 2020, 11, 2042098620933741. [CrossRef]

18. Pulley, J.M.; Denny, J.C.; Peterson, J.F.; Bernard, G.R.; Vnencak-Jones, C.L.; Ramirez, A.H.; Delaney, J.T.; Bowton, E.; Brothers,
K.; Johnson, K.; et al. Operational Implementation of Prospective Genotyping for Personalized Medicine: The Design of the
Vanderbilt PREDICT Project. Clin. Pharmacol. Ther. 2012, 92, 87–95. [CrossRef] [PubMed]

19. Roosan, D.; Hwang, A.; Roosan, M.R. Pharmacogenomics cascade testing (PhaCT): A novel approach for preemptive pharma-
cogenomics testing to optimize medication therapy. Pharm. J. 2021, 21, 1–7. [CrossRef]

20. Shastry, B.S. SNPs in disease gene mapping, medicinal drug development and evolution. J. Hum. Genet. 2007, 52, 871–880.
[CrossRef] [PubMed]

21. Rahman, F.G.S.; Boyd, I.; Kriak, J.; Meyer, R.; Boyd, S. AI Based Health Signals Discovery Engine. In Proceedings of the SNOMED
CT Expo, Kuala Lampur, Malaysia, 31 October–1 November 2019.

22. Dolin, R.H.; Alschuler, L.; Beebe, C.; Biron, P.V.; Boyer, S.L.; Essin, D.; Kimber, E.; Lincoln, T.; Mattison, J.E. The HL7 Clinical
Document Architecture. J. Am. Med. Inf. Assoc. 2001, 8, 552–569. [CrossRef] [PubMed]

23. Brown-Johnson, C.G.; Safaeinili, N.; Baratta, J.; Palaniappan, L.; Mahoney, M.; Rosas, L.G.; Winget, M. Implementation outcomes
of Humanwide: Integrated precision health in team-based family practice primary care. BMC Fam. Pract. 2021, 22, 28. [CrossRef]
[PubMed]

24. TaqMan SNP Genotyping Assays. Available online: https://www.thermofisher.com/document-connect/document-
connect.html?url=https%3A%2F%2Fassets.thermofisher.com%2FTFS-Assets%2FLSG%2Fmanuals%2Fcms_040597.pdf&
title=VGFxTWFuJnJlZzsgU05QIEdlbm90eXBpbmcgQXNzYXlz (accessed on 20 May 2021).

25. Chang, H.W.; Chuang, L.Y.; Tsai, M.T.; Yang, C.H. The importance of integrating SNP and cheminformatics resources to
pharmacogenomics. Curr. Drug Metab. 2012, 13, 991–999. [CrossRef]

26. McConachie, S.M.; Volgyi, D.; Moore, H.; Giuliano, C.A. Evaluation of adverse drug reaction formatting in drug information
databases. J. Med. Libr. Assoc. 2020, 108, 598–604. [CrossRef]

27. Elovic, A.; Pourmand, A. Lexicomp App Review. J. Digit. Imaging 2020, 33, 17–20. [CrossRef] [PubMed]
28. Wang, Y.; Halper, M.; Wei, D.; Gu, H.; Perl, Y.; Xu, J.; Elhanan, G.; Chen, Y.; Spackman, K.A.; Case, J.T.; et al. Auditing complex

concepts of SNOMED using a refined hierarchical abstraction network. J. Biomed. Inform. 2012, 45, 1–14. [CrossRef]
29. National Institute of General Medical Sciences 2011. Available online: https://www.nigms.nih.gov/education/fact-sheets/

Pages/pharmacogenomics.aspx (accessed on 20 May 2021).
30. Saripalle, R.; Runyan, C.; Russell, M. Using HL7 FHIR to achieve interoperability in patient health record. J. Biomed. Inform. 2019,

94, 103188. [CrossRef] [PubMed]
31. Rutman, M.P.; Horn, J.R.; Newman, D.K.; Stefanacci, R.G. Overactive Bladder Prescribing Considerations: The Role of Polyphar-

macy, Anticholinergic Burden, and CYP2D6 Drug-Drug Interactions. Clin. Drug Investig. 2021, 41, 293–302. [CrossRef]
32. Kamenski, G.; Ayazseven, S.; Berndt, A.; Fink, W.; Kamenski, L.; Zehetmayer, S.; Pühringer, H. Clinical Relevance of CYP2D6

Polymorphisms in Patients of an Austrian Medical Practice: A Family Practice-Based Observational Study. Drugs Real World
Outcomes 2020, 7, 63–73. [CrossRef] [PubMed]

33. Boustani, M.; Campbell, N.; Munger, S.; Maidment, I.; Fox, C. Impact of anticholinergics on the aging brain: A review and
practical application. Aging Health 2008, 4, 311–320. [CrossRef]

34. Haga, S.B.; Allen LaPointe, N.M.; Moaddeb, J. Challenges to integrating pharmacogenetic testing into medication therapy
management. J. Manag. Care Spec. Pharm. 2015, 21, 346–352. [CrossRef]

35. Haga, S.B.; Moaddeb, J. Comparison of delivery strategies for pharmacogenetic testing services. Pharm. Genom. 2014, 24, 139–145.
[CrossRef] [PubMed]

36. Haga, S.B. Managing Increased Accessibility to Pharmacogenomic Data. Clin. Pharmacol. Ther. 2019, 106, 922–924. [CrossRef]
[PubMed]

37. Hresko, A.; Haga, S.B. Insurance coverage policies for personalized medicine. J. Pers. Med. 2012, 2, 201–216. [CrossRef] [PubMed]

http://doi.org/10.1038/clpt.2010.279
http://doi.org/10.2174/1389200215666140130124910
http://www.ncbi.nlm.nih.gov/pubmed/24479687
http://doi.org/10.1038/clpt.2012.96
http://doi.org/10.1097/FPC.0000000000000202
http://doi.org/10.1002/cpt.350
http://doi.org/10.1038/clpt.2013.229
http://www.ncbi.nlm.nih.gov/pubmed/24253661
http://doi.org/10.1177/2042098620933741
http://doi.org/10.1038/clpt.2011.371
http://www.ncbi.nlm.nih.gov/pubmed/22588608
http://doi.org/10.1038/s41397-020-00182-9
http://doi.org/10.1007/s10038-007-0200-z
http://www.ncbi.nlm.nih.gov/pubmed/17928948
http://doi.org/10.1136/jamia.2001.0080552
http://www.ncbi.nlm.nih.gov/pubmed/11687563
http://doi.org/10.1186/s12875-021-01373-4
http://www.ncbi.nlm.nih.gov/pubmed/33530939
https://www.thermofisher.com/document-connect/document-connect.html?url=https%3A%2F%2Fassets.thermofisher.com%2FTFS-Assets%2FLSG%2Fmanuals%2Fcms_040597.pdf&title=VGFxTWFuJnJlZzsgU05QIEdlbm90eXBpbmcgQXNzYXlz
https://www.thermofisher.com/document-connect/document-connect.html?url=https%3A%2F%2Fassets.thermofisher.com%2FTFS-Assets%2FLSG%2Fmanuals%2Fcms_040597.pdf&title=VGFxTWFuJnJlZzsgU05QIEdlbm90eXBpbmcgQXNzYXlz
https://www.thermofisher.com/document-connect/document-connect.html?url=https%3A%2F%2Fassets.thermofisher.com%2FTFS-Assets%2FLSG%2Fmanuals%2Fcms_040597.pdf&title=VGFxTWFuJnJlZzsgU05QIEdlbm90eXBpbmcgQXNzYXlz
http://doi.org/10.2174/138920012802138679
http://doi.org/10.5195/jmla.2020.983
http://doi.org/10.1007/s10278-019-00219-x
http://www.ncbi.nlm.nih.gov/pubmed/31140006
http://doi.org/10.1016/j.jbi.2011.08.016
https://www.nigms.nih.gov/education/fact-sheets/Pages/pharmacogenomics.aspx
https://www.nigms.nih.gov/education/fact-sheets/Pages/pharmacogenomics.aspx
http://doi.org/10.1016/j.jbi.2019.103188
http://www.ncbi.nlm.nih.gov/pubmed/31063828
http://doi.org/10.1007/s40261-021-01020-x
http://doi.org/10.1007/s40801-019-00177-4
http://www.ncbi.nlm.nih.gov/pubmed/31863305
http://doi.org/10.2217/1745509X.4.3.311
http://doi.org/10.18553/jmcp.2015.21.4.346
http://doi.org/10.1097/FPC.0000000000000028
http://www.ncbi.nlm.nih.gov/pubmed/24384556
http://doi.org/10.1002/cpt.1602
http://www.ncbi.nlm.nih.gov/pubmed/31482575
http://doi.org/10.3390/jpm2040201
http://www.ncbi.nlm.nih.gov/pubmed/25562360


J. Pers. Med. 2021, 11, 443 18 of 18

38. Haga, S.B. Integrating pharmacogenetic testing into primary care. Expert Rev. Precis. Med. Drug Dev. 2017, 2, 327–336. [CrossRef]
[PubMed]

39. Verbeurgt, P.; Mamiya, T.; Oesterheld, J. How common are drug and gene interactions? Prevalence in a sample of 1143 patients
with CYP2C9, CYP2C19 and CYP2D6 genotyping. Pharmacogenomics 2014, 15, 655–665. [CrossRef]

40. Raymond, J.; Imbert, L.; Cousin, T.; Duflot, T.; Varin, R.; Wils, J.; Lamoureux, F. Pharmacogenetics of Direct Oral Anticoagulants:
A Systematic Review. J. Pers. Med. 2021, 11, 37. [CrossRef]

41. Heise, C.W.; Gallo, T.; Curry, S.C.; Woosley, R.L. Identification of populations likely to benefit from pharmacogenomic testing.
Pharm. Genom. 2020, 30, 91–95. [CrossRef] [PubMed]

42. Shah, R.R.; Smith, R.L. Addressing phenoconversion: The Achilles’ heel of personalized medicine. Br. J. Clin. Pharm. 2015, 79,
222–240. [CrossRef]

http://doi.org/10.1080/23808993.2017.1398046
http://www.ncbi.nlm.nih.gov/pubmed/31853504
http://doi.org/10.2217/pgs.14.6
http://doi.org/10.3390/jpm11010037
http://doi.org/10.1097/FPC.0000000000000400
http://www.ncbi.nlm.nih.gov/pubmed/32209836
http://doi.org/10.1111/bcp.12441

	Introduction 
	Materials and Methods 
	Clinical Environment and Process 
	Medical Record Analysis and the Clinical Semantic Network 
	Bioanalytic Phase 
	Clinical Pharmacogenomics 
	Clinical Pharmacokinetics 

	Synthesis and Reporting 

	Results 
	Clinical Environment and Process 
	Medical Record Analysis and the Clinical Semantic Network 
	Bioanalytics 
	Virtual Patient A 

	Discussion 
	Integration with Primary Care 
	Medical Record Analysis and the Clinical Semantic Network 
	Bioanalytics 

	Conclusions 
	Challenges and Realities 
	Significance to ADRs 
	Bioanalytics and Future Directions 
	Opportunities 

	References

