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Mutations in the leucine-rich repeat kinase 2 (LRRK2)-encoding gene are

the most common cause of monogenic Parkinson’s disease. The identifica-

tion of LRRK2 polymorphisms associated with increased risk for sporadic

Parkinson’s disease, as well as the observation that LRRK2-Parkinson’s

disease has a pathological phenotype that is almost indistinguishable from

the sporadic form of disease, suggested LRRK2 as the culprit to provide

understanding for both familial and sporadic Parkinson’s disease cases.

LRRK2 is a large protein with both GTPase and kinase functions. Muta-

tions segregating with Parkinson’s disease reside within the enzymatic core

of LRRK2, suggesting that modification of its activity impacts greatly on

disease onset and progression. Although progress has been made since its

discovery in 2004, there is still much to be understood regarding LRRK20s
physiological and neurotoxic properties. Unsurprisingly, given the presence

of multiple enzymatic domains, LRRK2 has been associated with a diverse

set of cellular functions and signalling pathways including mitochondrial

function, vesicle trafficking together with endocytosis, retromer complex

modulation and autophagy. This review discusses the state of current

knowledge on the role of LRRK2 in health and disease with discussion of

potential substrates of phosphorylation and functional partners with partic-

ular emphasis on signalling mechanisms. In addition, the use of immune

cells in LRRK2 research and the role of oxidative stress as a regulator of

LRRK2 activity and cellular function are also discussed.

Introduction

Parkinson’s disease (PD) is an insidious and progres-

sive neurodegenerative disease, affecting around 1–2%
of the population over the age of 65 [1]. The vast

majority of PD is sporadic in origin, with only 5–10%

being familial [2]; because age is the most significant

risk factor for the development of the disease, and

with an ever-increasing life span in the western world,

disease prevalence is likely to increase. Current treat-
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ments ameliorate symptoms but are not capable of

slowing disease progression. Moreover, it has been

estimated that by the time that motor symptoms

emerge, 50–70% of substantia nigra dopaminergic

neurons have already degenerated [3]; damage which is

currently irreversible. It is clear that there is a direct

need to increase understanding of PD aetiology and

the molecular mechanisms of pathogenesis in order to

achieve early diagnosis and identify potential neuro-

protective therapies.

Mutations in the gene encoding for leucine-rich

repeat kinase 2 (LRRK2) are the most frequent cause

of familial PD [4]. LRRK2-PD has an almost indistin-

guishable clinico-pathological phenotype from sporadic

PD regarding age of onset, the presence of Lewy bodies

(although a minority of cases have been reported with-

out Lewy bodies) [5] and responsiveness to dopamine

replacement therapy. These observations, paired with

the identification of LRRK2 polymorphisms associated

with increased lifetime risk for developing sporadic PD

[6], suggested that LRRK2 may provide a deep under-

standing of the molecular mechanisms of PD. The exact

physiological role of LRRK2 is still unknown, although

it has been implicated in many cellular functions. In the

effort to tackle PD, there is a compelling need for a

profound understanding of LRRK2 functions, as well

as a description of the signalling pathways in which

LRRK2 may be involved in diverse cell types, the iden-

tification of regulators of LRRK2 activity, binding

partners and phosphorylation targets.

LRRK2 genetics, protein domain
structure; kinase and GTPase
activities

In 2004, LRRK2 was identified as the gene responsible

for PD inheritance associated with the PARK8 locus

[7,8] and was found to be comprised of 51 exons, giv-

ing rise to a large (268 kDa) protein. Subsequently,

many variants in LRRK2 primary structure have been

identified, including dominant mutations segregating

with familial PD that also occur in sporadic PD and

in cancer [9], together with polymorphisms at the

LRRK2 locus that increase the lifetime risk for the

development of sporadic PD, but also inflammatory

bowel disorder and leprosy [4,10,11].

LRRK2 is a multidomain protein encompassing two

enzymatic functions at its core. The GTPase domain,

comprising of Ras of complex protein (ROC) termi-

nating with a spacer domain called the C-terminal of

the Roc-domain (COR), is immediately followed by

the kinase domain, belonging to the serine/threonine

kinases. This enzymatic core is surrounded by protein–

protein interaction domains comprising the armadillo,

ankyrin and leucine-rich repeat (LRR) domains at the

LRRK2 N terminus [12]. The LRRK2 C terminus

harbours the WD40 domain, which is deemed essential

for protein folding, thus controlling LRRK2 function

and kinase activity [13] (Fig. 1). Interestingly, the

dominant, pathogenic mutations described up to date,

occur within the enzymatic core of LRRK2 (Fig. 1),

suggesting that modification of LRRK2 activity

greatly impacts PD onset and progression. The similar-

ity in PD phenotype and age of onset between homo-

zygous and heterozygous mutation carriers suggests

that pathogenic mutations might act by conferring a

toxic function on LRRK2 [14,15].

In the overall LRRK2-PD population, the G2019S

mutation is the most frequent pathogenic mutation [4].

Its occurrence differs among groups; the G2019S muta-

tion is rare in Asia, although it is relatively frequent in

Southern Europe, reaching a maximum frequency in

Ashkenazi Jewish (10–30% of PD patients are G2019S

carriers) [16] and North African Berber populations

(35–40% of PD patients are G2019S carriers) [17]. The

penetrance of the G2019S-LRRK2 mutation appears to

have a clear age-dependent effect and varies from

around 50% at age 50, to ~ 74% at age 79 [16];

although some patients do not manifest any clinical fea-

tures even in their 80s [18]. The G2019S mutation occurs

in the kinase domain of LRRK2, leading to an increase

in kinase activity [19]. Cellular toxicity, in both the

absence and presence of oxidative stress, and the forma-

tion of inclusion bodies were observed when overex-

pressing G2019S-LRRK2 in cell lines and primary

neuronal cultures [20,21]. These results, and the fact

that genetic inactivation of LRRK2 kinase activity

showed a protective effect against such a toxic pheno-

type, suggest that an alteration in LRRK2 kinase activ-

ity is potentially involved in the neurotoxic and

pathogenic mechanisms of LRRK2-PD. A second

mutation in the kinase domain (I2020T) was isolated in

the Japanese family in which the PARK8 locus was first

described as being associated with PD [22]. The effect of

this mutation on LRRK2 kinase activity remains con-

troversial [23–25] and, even with a confirmed increase in

kinase activity, it would not be as striking as that

reported for G2019S-LRRK2 under the same experi-

mental conditions [26]. Nevertheless, I2020T-LRRK2

has been shown to induce toxicity in overexpressing

models [19,27]. Combined analysis of LRRK2 toxicity

when carrying the G2019S or I2020T mutation suggests

that an increase in LRRK2 kinase activity is sufficient

per se, but not essential to trigger neurotoxicity.

The kinase function of LRRK2 is of particular

interest, especially to pharmacologists, because kinases
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are typical targets of pharmaceuticals. The LRRK2

kinase domain is thought to assume a typical kinase

fold, in which an N-terminal and a C-terminal sub-

domain can be identified, with the active site sitting in

the cleft between the two. The activation loop, thought

to be situated in the C terminus of the kinase domain

[28], possesses a DYG motif. In some proteins, this

motif undergoes conformational changes that may be

related to kinase activity regulation [29]. Interestingly,

the G2019S mutation is situated within this segment of

the activation loop and it has been speculated that the

glycine residue here imparts conformational flexibility

[30]; therefore, replacement of the glycine with a serine

residue may alter LRRK2 dynamics.

The R1441C, R1441G and R1441H mutations are

located in the GTPase domain of LRRK2; the

R1441G mutation is especially frequent in the Basque

population where it accounts for > 40% of familial

PD cases [31]. Finally, the Y1699C mutation lies

within the spacer domain, between the GTPase and

kinase domains, and is responsible for one of the larg-

est PD pedigrees in the UK with 25 affected subjects

over four generations [32]. The R1441C/G/H muta-

tions showed decreased GTP hydrolysis [33,34], as did

the Y1699C mutation [35]. Their impact on the kinase

function of LRRK2 is still debatable [26]; even if an

increase in kinase activity is present, it is recorded as a

moderate effect in comparison with G2019S-LRRK2.

R1441C, R1441G and Y1699C LRRK2 have been

associated with cellular toxicity [27,36] thus reinforcing

the idea that kinase activity is not the only culprit

for LRRK2-induced neurotoxicity. Collectively, this

suggests that the pathobiology of LRRK2 is likely

to involve the entire enzymatic core, its activity, its

folding and potentially its interactions with functional

partners.

The presence of a double enzymatic core within the

LRRK2 protein suggests that these two functions

might influence each other’s activities. Autophospho-

rylation of specific residues (Fig. 1) within the ROC

domain has been found to modulate GTP binding [37]

and it has been suggested that LRRK2 GTPase activ-

ity is regulated by its kinase activity. However, this

should be viewed with some caution; autophosphory-

lation has been observed predominantly in in vitro

assays as opposed to cellular systems. Moreover, if

GTPase activity were regulated solely by autophos-

phorylation, it would be logical to assume that muta-

tions within the kinase domain would subsequently

alter GTP binding/hydrolysis. The hydrolysis of GTP

to GDP has been shown to be altered in cell cultures

expressing mutations in the GTPase domain

[33,35,38]. However, mutations such as G2019S, which

occur in the kinase domain of the protein, do not dis-

rupt this [39]. Recently, LRRK2 kinase activity was

shown to be dependent on GTP binding to the ROC

domain [40]. In addition, ARHGEF7, the rho guanine

nucleotide exchange factor, was identified as an inter-

actor of LRRK2 that could influence GTP hydrolysis

activity [41], whereas the guanine exchange nuclear

factor GAP (ArfGAP1) markedly reduced GTP

hydrolysis and promoted the kinase activity of

LRRK2 in vitro [42]. Furthermore, using a systems

biology approach, Dusonchet et al. [43] identified reg-

ulator of G-protein signalling 2 (RGS2) as an interac-

tor able to regulate LRRK2 kinase and GTPase

activities in vitro in a synergistic manner. Clearly, the

enzyme activities of LRRK2 undergo intramolecular

Fig. 1. LRRK2 domian structure, pathogenic mutations, constitutive and autophosphorylation sites important for understanding LRRK2

function and dysfunction. Pathogenic mutations and susceptibility polymorphisms are shown in red, constitutive phosphorylation in green

and a selection of autophosphorylation sites shown in black. The blue curved arrows depicts intramolecular regulation of kinase activity by

other LRRK2 domians; IkappaB and casein kinase 1 alpha (shown in yellow) phosphorylate and PP1 alpha dephosphorylates (shown in fawn)

LRRK2 at S910/S935 sites.
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regulations that can also be influenced by other

LRRK2 interactors.

In addition to the known pathogenic mutations,

there are a number of coding variants within the

LRRK2 gene which are very rare, and some of these

are also present in controls (see Paisan-Ruiz et al. [18]

for a detailed review on LRRK2 genetics). Among

these, the coding variants G2385R in the WD40

domain and R1628P in the COR domain act as com-

mon PD risk factors among Asian populations [44–
46]. The G2385R variant essentially doubles the life-

time risk of getting PD [47]. It has been shown that

the C-terminally truncated constructs that include the

WD40 domain impacts on LRRK2 kinase activity,

and a G2385R substitution resulted in ~ 50% loss of

kinase activity [13]. Interestingly, a combined G2019S/

G2385R construct harboured kinase activity similar to

WT-LRRK2 protein, suggesting that these mutations

were in fact opposing each other’s functions [13]. This

is further suggestive of a complex interplay of intramo-

lecular interactions within the LRRK2 molecule that is

likely to reflect on cellular functions of LRRK2. The

rare N1437H polymorphism has been found in Scandi-

navian families [48,49], but the lack of detailed genetic

data makes the pathogenic prediction uncertain. How-

ever, overexpression of the construct in HEK293 cells

led to increased phosphorylation at Ser1292 [50]. The

genome-wide association study by Ross et al. [47]

showed the LRRK2 locus to be an independent risk

factor for sporadic PD. This important finding,

together with a similar phenotypic spectrum of

LRRK2 patients compared with sporadic cases [51],

has fuelled the hypothesis that LRRK2 might also

play a role in the pathogenesis of sporadic PD.

One final remark should be on LRRK20s closest

paralogue LRRK1. Despite rare variants in LRRK1

having been proposed to segregate with PD, there is

no genetic support for the causal involvement of

LRRK1 in disease [52]. LRRK1 displays a similar

domain organization as LRRK2 [53], however, it has

been observed that they have specific and independent

interactors and are implicated in unique cellular path-

ways [54]. Unfortunately, because of its nonpathogenic

relevance, LRRK1 is not a subject of intense study like

LRRK2. There are also limited tools developed to

study LRRK1; antibodies are not as reliable as those

validated for LRRK2, LRRK1 knockout mice [55]

and double LRRK2/LRRK1 knockout mice are avail-

able (Jackson laboratories) but they have not been

extensively studied and there are currently no LRRK1

kinase inhibitors. However, given the close similarity

between LRRK1 and LRRK2 and the apparent

absence of involvement of LRRK1 in PD, it would be

extremely interesting to analyse functional differences

between the two enzymes.

Importance of LRRK2
autophosphorylation and constitutive
phosphorylation

Research efforts focussed towards finding molecular

substrates of LRRK2 phosphorylation have proven

difficult and at the moment, the only recognized target

for LRRK2 kinase activity is LRRK2 itself. LRRK2

has been found to autophosphorylate > 20 serine and

threonine residues in vitro [37,50,56–61]. The majority

of the autophosphorylation sites reside in the ROC

domain, with only a few in the COR and kinase

domains (Fig. 1). The physiological relevance of these

phosphorylation sites is still not clear; some of them

have failed to be detected in vivo. In the cellular con-

text, autophosphorylation was observed at T1410 [61]

and at Ser1292 and this was proposed as a potential

measure of LRRK2 kinase activity [50].

Immediately prior to the LRRK2 ROC domain,

there is a cluster of serine residues – Ser910, Ser935,

Ser955 and Ser973 [60,62–64] (Fig. 1), which are con-

stitutively phosphorylated; however, they are not auto-

phosphorylation sites. Phosphorylation of these

residues is affected by LRRK2 mutations in the ROC/

COR/kinase domains, by LRRK2 kinase inhibition

and also by extrinsic stressors [62,65,66]; they are,

therefore, used as indirect measures of LRRK2 kinase

activity. Dephosphorylation of Ser910/Ser935 affects

14-3-3 binding and impacts on downstream signalling

[65,66]. The Ikappa B family of kinases has been

shown to phosphorylate LRRK2 at Ser910/Ser935 [67]

and more recently, casein kinase 1 alpha was proposed

as the kinase that phosphorylates LRRK2 at these

sites [68]. However, Protein phosphatase 1A (PPIA)

dephosphorylated LRRK2 at Ser910/Ser935 which was

reversed using calyculin A [69], a PP1A inhibitor. Fur-

ther confirmation of PP1A as the phosphatase for

LRRK2 constitutive phosphorylation was shown when

calyculin A prevented dephosphorylation of LRRK2

at Ser910/Ser935 as a consequence of arsenite-induced

oxidative stress [66]. Finding kinases and phosphatases

modulating LRRK2 function in a variety of brain cell

types and under different cellular contexts will be an

important avenue of LRRK2 research that should aid

in our understanding of the pathobiology of LRRK2.

Signalling pathways through LRRK2

The presence of active kinase and GTPase domains

surrounded by protein–protein interaction motifs,
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suggested analysing LRRK2 in the context of signal-

ling pathways. Indeed, over the past decade, many dif-

ferent signal transduction cascades have been

associated with LRRK2 (Fig. 2).

The mitogen-activated protein kinase pathways

(MAPK) were among the first to be investigated as

potentially related to LRRK2. MAPK pathways are

composed of three layers of proteins able to activate

each other in a cascade. At the top layer is a kinase

identified as MAP3K that is able to phosphorylate

and activate a MAP2K in the second layer, which con-

sequently activates the final MAPK, thus inducing a

change in transcription. LRRK2 was able to bind to

and phosphorylate MAP2K, -3, -4, -6 and potentially -

7 in vitro [70,71]. Furthermore, a G2019S-LRRK2

transgenic mouse model showed degeneration of dopa-

minergic neurons in the substantia nigra concomitant

with hyperphosphorylation of MAP2K4 [72]. Activa-

tion of MAP2K3 and MAP2K6 is stimulated by stress,

cytokines and growth factors, leading to the activation

of the downstream effector p38. Activation of

MAP2K4 and MAP2K7 is equally sensitive to stress,

cytokines and growth factors, leading to the activation

of the downstream effector JNK. JNK, and p38, are

known to control cell proliferation and differentiation,

apoptosis, inflammation, immune responses and the

production of cytokines [73].

Another MAPK pathway was recently associated

with LRRK2 after MAP2K1 and MAP2K2 (also

known as MEK1 and MEK2) were found to be acti-

vated by G2019S-LRRK2, leading to hyperphosphory-

lation of their effectors; ERK1 and ERK2. The

alteration of this MAPK pathway was considered

responsible for the G2019S-LRRK2 mediated increase

in basal autophagy [74].

The Wingless signalling pathway (Wnt) is responsi-

ble for the activation of the transcription factor b-cate-
nin, and is able to regulate nearly 400 genes [73]

involved in cell growth, apoptosis, immune functions

and inflammation, synaptogenesis during embryonic

development and synaptic maintenance in adulthood;

alterations in the Wnt pathway have been linked to a

loss of synapses during Alzheimer’s disease [75]. First,

the ROC–COR domain of LRRK2 was shown to

interact with Dishevelled proteins 1, -2 and -3 (DVL1–
3), key components of the Wnt pathway, whereas

LRRK2 pathogenic mutations were sufficient to alter

this binding [76]. This association has been further

characterized and LRRK2 is now hypothesized to

have a role interacting with DVL1–3 and other pro-

teins in the canonical Wnt cascade (LRP6 and BDC),

thus enhancing the transduction of the Wnt signal

[77].

It is interesting to note that LRRK2 is also involved

in cancer signalling pathways. Thus, LRRK2 has been

associated with MET signalling pathways in papillary

renal and thyroid carcinomas; in particular, LRRK2

knockdown was shown to reduce tumour proliferation

with concomitant increase in cell death, and reduction

of MET signalling through the effectors target of rapa-

mycin (TOR) and signal transducer and activator of

transcription 3 (STAT3) [78]. In this respect, MET is

an oncogene tyrosine kinase receptor that controls

multiple pathways involved in cell proliferation and

Fig. 2. Implication of LRRK2 in signalling pathways. The cartoon depicts multiple signalling pathways that have been associated with LRRK2

function in physiology and/or disease. Signalling pathways are sometimes interconnected and they coordinate the control over multiple

cellular activities as reported in the red boxes.
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actin organization. MET works by stimulating a vari-

ety of downstream effectors, among which are b-cate-
nin and ERK, thus linking MET with the Wnt and

MAPK pathways [79].

LRRK2 has been suggested to modulate nicotinic

adenine acid dinucleotide phosphate receptors, with

consequent activation of a calcium signalling cascade

(mediated by CaMKKb) that would eventually acti-

vate adenosine monophosphate-activated protein

kinase (AMPK) to coordinate different cellular func-

tions related to nutrient homeostasis and energetic bal-

ance [80]. The CaMKKb/AMPK pathway for

induction of autophagy is sensitive to inhibition by

endoplasmic reticulum-located Bcl-2 [81]; intriguingly,

it has recently been proposed that G2019S-LRRK2

may be able to bind to and phosphorylate Bcl-2, with

a consequent reduction of the mitochondrial mem-

brane potential, thus stimulating mitophagy [82].

Human LRRK2 and its Drosophila orthologue were

shown to be able to phosphorylate eukaryotic initia-

tion transcription factor 4E binding protein (4E-BP)

[83]. 4E-BP is a downstream effector in the TOR path-

way and its dephosphorylation during nutrient depri-

vation reduces protein synthesis. However, these data

was not reproduced in mammalian cells [84]. LRRK2

control over phosphorylation of 4E-BP was not sup-

ported by analysis of sporadic or G2019S-LRRK2 PD

brains, or in LRRK2 knockdown or G2019S overex-

pressing mice [85]. It is, therefore, possible to argue

that results from in vitro assays and low-complex

model organisms may not be directly transferable to

mammalian systems. However, there are other plausi-

ble hypotheses to justify this discrepancy; there may be

specific signals needed to activate the function of

LRRK2 over 4E-BP in mammalian systems, or the

involvement of LRRK2 within this branch of the TOR

pathway may be cell specific, meaning that a cautious

selection of cell type is needed to be able to detect it.

Knockin transgenic mice expressing G2019S-

LRRK2, as well as LRRK2 knockout mice, exhibited

increased expression of mTOR in the kidneys, whereas

knockin transgenic mice expressing a kinase inactive

form of LRRK2 showed the opposite [86]. In the same

publication, changes were also described, in the kid-

neys, for 4E-BP1 and for protein kinase B (Akt),

another hub protein that shares functions with mTOR

in the control of the cell metabolism. However, the tis-

sue specificity of these alterations and the complexity

of results coming from different genotypes, make the

physiological relevance of these results difficult to con-

textualize without further investigations.

Another study in Drosophila proposed that LRRK2

associates with Drosophila Argonaute-1 (dAgo1) and

human Argonaute-2 (hAgo2), thus modulating the

RNA-induced silencing complex [87]. A recent finding

suggested a component of the protein synthesis path-

way, the ribosomal small subunit s15, to be phosphor-

ylated by LRRK2 and sustain cell toxicity in both

Drosophila model and human neurons [88]. Interest-

ingly, the same study reported that s15 was hyper-

phosphorylated in ribosomal fractions from a small

number of G2019S brains compared with controls [88],

although this would need further verification using a

larger cohort. Another study performed by micro-

array-based protein interaction technology and affinity

purification coupled by tandem mass spectrometry iso-

lated, among many other positive hits, few ribosomal

proteins as possible LRRK2 interaction partners [54],

even though they were not selected to be carried on to

validation. Similarly, previous immunoprecipitation

tandem mass spectrometry isolated, but did not vali-

date, translation initiation factor 2C1 and 2C2 as pos-

sible LRRK2 interactors [89]. Overall, these reports

suggest a possible control of LRRK2 over protein syn-

thesis; but nonetheless, these will need further func-

tional confirmation in mammalian systems for a true

physiological function.

A recent study in LRRK2 knockout mice showed

that LRRK2 interacts with the PKARIIb subunit of

the protein kinase A holoenzyme regulating its locali-

zation. Aberrant localization of protein kinase A in

knockout mice increased cofilin and glutamate recep-

tor 1 (GluR1) phosphorylation, thus interfering with

synaptogenesis and dopamine signalling through the

dopamine receptor Drd1 [90].

A final remark should be for the 14-3-3 proteins

that have been demonstrated to be LRRK2 interaction

partners involved in the regulation of LRRK2 cellular

localization [62]. 14-3-3 proteins are able to interact

with a plethora of target proteins, thus supporting the

function of many different signalling cascades;

amongst which are the AMPK [91] and the TOR [92]

pathways.

An interesting variety of signalling pathways have

been associated with LRRK2 thus far from various

reports (see Fig. 2), however, these data have to be

considered cautiously because there is still incomplete

agreement regarding their relevance. Reproducibility

problems arise by the use of different cellular models,

different species and sometimes in vitro kinase assays

that have been difficult to replicate under expression

of physiological levels of LRRK2. However, the

intriguing idea behind this plethora of possible

LRRK2-modulated signalling pathways is that

LRRK2 might play more than one role depending on

the cell type in which it is expressed. Moreover, the
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presence of mutations in the LRRK2 sequence may

cause a gain of novel functions, thus implicating

LRRK2 in pathology pathways that may not be rele-

vant under physiological conditions. This may support

the existence of different functions for LRRK2 in PD,

cancer and immune disorders, and it suggests caution

in extrapolating general information from different

model systems and from experiments involving the use

of mutant LRRK2.

LRRK2 and cytoskeleton

Abnormalities in neurite outgrowth and branching

were among the earliest observed LRRK2 cellular phe-

notypes [93–95]. It was initially proposed that the

source of such morphological changes could be a con-

sequence of apoptotic processes [94]; however, further

studies provided evidence for an association of

LRRK2 with tubulin/actin, thus suggesting that such

morphological changes may be consequences of

LRRK2-modulation of cytoskeletal dynamics. The

GTPase domain of LRRK2 was shown to pull-down

a/b tubulin from cell lysates [96]; LRRK2 was copre-

cipitated with b tubulin from wild-type mouse brain

and recombinant LRRK2 has been proposed to phos-

phorylate b tubulin in vitro [97]; a high-throughput

screening to decipher LRRK2 interactome revealed

proteins of the actin family and from the actin-regula-

tory network to be LRRK2 interactors with LRRK2

able to affect actin polymerization in vitro [98], and

finally, LRRK2 carrying pathogenic mutations was

found to decorate microtubules in cell models [99].

Further work has demonstrated that the interaction

between LRRK2 and the cytoskeleton components is

not just for the purpose of localization; LRRK2 was

found to be able to modulate cytoskeletal dynamics.

Disassembly of actin filaments in a process mediated

by the GTPase Rac1, was observed in cell lines after

LRRK2 knockdown or expression of mutant LRRK2

[100]. In neuronal cells from R1441G-LRRK2 trans-

genic mice, as well as in G2019S-LRRK2 fibroblasts,

LRRK2 sensitized the actin cytoskeleton to depoly-

merizing agents [101]. LRRK2 was shown to be able

to phosphorylate moesin [25], a member of the ezrin/

radixin/moesin (ERM) protein family involved in regu-

lation of actin and microtubule structure; G2019S-

LRRK2 transgenic and LRRK2 knockout mice were

shown to have alterations in the pool of filamentous

actin in the filopodia as a consequence of alterations

of ERM proteins phosphorylation [95].

R1441C and Y1699C-LRRK2, but not G2019S or

wild-type LRRK2, were found to decorate nonacety-

lated microtubules in cell lines and to alter axonal

transport in rat neuronal cultures and in Drosophila

with a mechanism dependent on microtubules acetyla-

tion [102]. LRRK2 binding to tubulin was associated

with modulation of microtubule stability and acetyla-

tion [103]. The stabilization of microtubules by

LRRK2 may be mediated by LRRK20s interaction

with microtubule-associated protein tau, because it has

been demonstrated that LRRK2 is capable of phos-

phorylating tau in the presence of tubulin, thus alter-

ing microtubule–tau binding dynamics [104].

Furthermore, introduction of human LRRK2 into a

mouse model of tauopathy increased tau phosphoryla-

tion at various epitopes and changed its aggregation

properties [105].

It is difficult to find a reoccurring theme with LRRK2

findings, and make unique sense of the results obtained

in experiments performed with wild-type LRRK2,

mutated forms of LRRK2 and LRRK2 knockout. It is,

therefore, difficult to determine whether the regulation

of cytoskeleton dynamics is a normal LRRK2 physio-

logical feature, if it is altered during disease, thus con-

tributing to pathogenesis, or if it is a function that gains

relevance during disease only. Moreover, it is still not

clear whether mutations in the GTPase or kinase

domain of LRRK2 affect the regulation of cytoskeleton

dynamics to the same extent.

However, a putative function of LRRK2 in cyto-

skeletal dynamics is intriguing, not only because it

could elegantly recapitulate morphological alterations

observed in cellular models of LRRK2, but also

because it lends to the possibility that LRRK2 may be

involved in development and even govern different

functions in development and adult life.

LRRK2 and autophagy

Autophagy was initially associated with LRRK2 when

blocking macroautophagy through the knockdown of

essential autophagy proteins (Atg7 and Atg8) was suffi-

cient to attenuate the toxicity of overexpressed G2019S-

LRRK2 in SHSY5Y cells [106]. A following report

localized LRRK2 to autophagic vesicles and multivesic-

ular bodies, whereas the knockdown of endogenous

LRRK2 was found to be sufficient to induce macro-

autophagy in HEK293 cells [107]. Numerous studies

have followed this route of investigation, analysing the

role of LRRK2 in autophagy. However, different

approaches and model systems have been used to study

LRRK2 and it is still not known whether the role of

LRRK2 may be different throughout cell lines. The

effect of LRRK2 overexpression may be different with

respect to studies at endogenous levels, and it is not

known whether the two enzymatic domains within
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LRRK2 orchestrate facilitating or opposing functions.

Thus, although there is evidence implicating LRRK2 in

autophagy, the extant literature is not sufficient, and at

times controversial, in describing the molecular mecha-

nisms through which this association happens. First,

LRRK2 has been found to be a degradation substrate

of chaperone-mediated autophagy. Overexpression of

G2019S or WT-LRRK2 was able to reduce the payload

of chaperone-mediated autophagy, indicating that an

accumulation of a-synuclein, and misfolded proteins in

general, as seen in PD, may be a partial consequence of

a LRRK2-mediated alteration of cellular proteolytic

pathways [108]. LRRK2 kinase inhibitors and knock-

down [109–111], as well as LRRK2 overexpression in

cell models [80], were able to modify the macroauto-

phagic flux in vitro; however, it is still debatable

whether LRRK2 possesses a positive or negative regu-

latory role in the control of macroautophagy and if the

role of LRRK2 resides within the initiation or the clear-

ance steps. This open debate has been further empha-

sized by the study of LRRK2 knockout animal models.

Even though the brain of LRRK2 knockout mice did

not recapitulate the pathological hallmarks of PD, a

biphasic alteration in macroautophagy has been

observed in the kidneys, with enhanced autophagy at

young ages and reduced autophagy at old ages [112].

The use of human fibroblasts carrying LRRK2 patho-

genic mutations has confirmed an alteration in auto-

phagy with reports suggesting an increase in basal

macroautophagy in G2019S carriers [113], or an

impaired response to starvation-induced macroauto-

phagy across mutations in the LRRK2 catalytic core

(G2019S, Y1699C and R1441G) [114]. The use of

induced Pluripotent Stem cell (iPSC)-derived, human

dopaminergic neurons carrying G2019S-LRRK2 has

confirmed a reduction in macroautophagy in compari-

son with healthy controls [115]; but again, details of the

molecular mechanism underlying this are still ambigu-

ous. The recent identification of potential interactors of

LRRK2 such as Rab7L1, GAK, BAG5, Rab32 and en-

dophilin A (EndoA) [116–118], and the description of

an autophagy/lysosomal phenotype that can be cor-

rected by Rab9 in mutant Drosophila [119] suggest that

the study of LRRK2 in autophagy should probably be

considered with a much wider prospective, taking into

account a possible involvement of LRRK2 in vesicles

dynamics in general.

LRRK2 function in vesicle dynamics
and retromer function

Recent accruing evidence suggests a role for LRRK2 in

vesicle dynamics and retromer function. LRRK2 was

found to be associated with membranous structures

and vesicles in the mammalian brain [120] and enriched

in the Golgi complex [42,94] at the extent that mice

with wild-type and G2019S-LRRK2 overexpression

presented fragmentation of the Golgi complex [121].

LRRK2 has been described as regulating synaptic

endocytosis via association with Rab5b; siRNA knock-

down of LRRK2 markedly reduced synaptic vesicle

endocytosis [122], which was reversed by the introduc-

tion of Rab5B. In mammalian cells, interaction was

seen between LRRK2 and the dynamin GTPase super-

family [123] involved in membrane scission during

clathrin-associated endocytosis. In Drosophila, LRRK2

was shown to phosphorylate EndoA, decreasing En-

doA affinity for membranes and affecting EndoA-

dependent membrane tubulation. The G2019S muta-

tion impeded synaptic endocytosis [116] that was

restored by pharmacological inhibition of LRRK2

kinase activity in G2019S overexpressing flies. Knock-

out of EndoA led to neurodegeneration [73], thus link-

ing LRRK2-associated defects to PD. These results

were recently further validated in mammalian cells in

which LRRK2 was described as being able to phos-

phorylate neuronal-specific EndoA1 [124].

LRRK2 has been proposed to participate in the

control of synaptic vesicle exocytosis by phosphorylat-

ing Snapin, and thus regulating soluble NSF attach-

ment protein receptor (SNARE) complex functionality

and late endosomal transport [125]. Alterations in the

amount of ready releasable vesicles have been

described in cell models overexpressing G2019S-

LRRK2 [126]. LRRK2 silencing in primary cortical

neurons showed altered vesicle-recycling dynamics and

increased vesicle kinetics, suggesting a role for LRRK2

in the control of vesicle pools within the presynaptic

bouton [127]. Furthermore, inhibition of LRRK2

kinase activity was proven to reduce neurotransmitter

release, thus impacting on presynaptic functionality

(103). Studies in LRRK2 knockout rats proposed

LRRK2 to take part in the control of vesicles exocyto-

sis in lung cells [128].

Recently, LRRK2 has been described as colocalizing

with Sec16A, a protein involved in the formation of

the endoplasmic reticulum exit site. Loss of LRRK2

led to a reduction in protein transport to the dendritic

spine with a consequent reduction in glutamate recep-

tors onto the synapse surface [129].

Two interesting studies by MacLeod et al. [130] and

Beilina et al. [118] showed a genetic interaction

between LRRK2 and Rab7L1; a genetic risk factor for

sporadic PD. Expression of G2019S-LRRK2 in pri-

mary neurons induced lysosomal swelling and accumu-

lation of a component of the retromer complex; the
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mannose phosphate receptor [130]. The mannose phos-

phate receptor is normally recycled between endolyso-

somes and the Golgi apparatus [131]. The sorting

defect was rescued by the overexpression of the retro-

mer component VPS35, as well as the overexpression

of Rab7L1 [130]. Subsequently, Rab7 was found in

complex with LRRK2 to cooperatively promote clear-

ance of Golgi-derived vesicles through the autophagy–
lysosomal system. The pathogenic mutations, G2019S,

R1441C and Y1699C enhanced Golgi clearance, but

the hypothesis-testing mutations that decrease GTP

binding, the T1348N, or the kinase-inactive K1906M,

did not sustain Golgi clearance, suggesting that both

kinase and GTPase activities are required for main-

taining this cellular process [118]. Overexpression of

VPS35 exhibited protective effects in mutant LRRK2

Drosophila [132]; it is of interest to note that mutations

in the VPS35 encoding gene have been identified in

PD families [133,134], further implicating the disrup-

tion of retromer mediated protein sorting as poten-

tially leading to PD.

Many LRRK2 transgenic models have been created

in an attempt to model PD. Although none have alter-

ations resembling PD and the vast majority show no

signs of neurodegeneration either, some exhibit a vari-

ety of synaptic alterations [135] such as altered striatal

dopamine release and/or uptake [136], impairment of

dopamine signalling through D2 receptors [137],

impaired dopamine reuptake [138], alteration of gluta-

matergic transmission [139], impaired synaptic vesicles

endocytosis with ultrastructural abnormalities in stria-

tal neurons [124] and decreased extracellular dopamine

levels in the presence of unaltered synthesis, storage

and uptake [140]. These findings may be seen as a con-

firmation of a putative LRRK2 function at the syn-

apses; however, it is very difficult to harmonize

different results coming from different models and

combine them to eventually draw an exhaustive picture

of the molecular mechanism supported by LRRK2. At

the moment, we can only confidently state that the

bulk of all these studies suggest that LRRK2 may be

associated with a complex array of cellular functions

involving vesicle dynamics, trans-Golgi networks and

autophagy/lysosomal homeostasis. The intriguing

hypothesis is that the synergism of all these membrane

dynamics may be controlled by LRRK2 and may be

at the molecular base of PD neurodegeneration.

LRRK2, reactive oxygen species and
mitochondria

LRRK20s putative association with mitochondria sug-

gests that it might play a role in mitochondrial

dysfunction driving PD pathogenesis. Indeed, fibro-

blasts from PD patients carrying the G2019S mutation

showed abnormal mitochondrial morphology [141].

Similarly, wild-type LRRK2 overexpression in SH-

SY5Y cells caused mitochondrial fragmentation, which

was further exaggerated by the R1441C and G2019S

mutations [142]. In G2019S transgenic mice, ultrastruc-

ture examination showed an accumulation of damaged

mitochondria, consistent with altered mitophagy in

aged mice [143]. In a double-transgenic mouse express-

ing G2019S-LRRK2 and A53T a-synuclein, structural
and functional abnormalities within the brain mito-

chondria suggested LRRK2 to induce a mitochondrial

phenotype [121]. Overexpression of G2019S-LRRK2 in

SH-SY5Y cells caused mitochondrial uncoupling, lead-

ing to reduced membrane potential and increased oxy-

gen consumption [144]. Primary mouse cortical

neurons expressing either G2019S or R1441C-LRRK2

demonstrated increased mitophagy associated with

altered calcium levels [145]. Although human iPSC-

derived neurons carrying G2019S or R1441C-LRRK2

showed normal mitochondrial electron transport chain,

they showed increased vulnerability to chemical stres-

sors and disrupted mitochondrial movement [146].

LRRK2 overexpression caused the recruitment of dyn-

amin-like protein 1 (DLP1) protein to the mitochon-

dria [142]. Similarly, coexpression of DLP1 and

LRRK2 induced increased oxidative stress, DLP1 relo-

cation to the mitochondria and promoted mitochon-

dria clearance [147]. Finally, inhibition of DRP1 was

able to rescue mitochondrial fragmentation in both

G2019S expressing HEK cells and G2019S-LRRK2 fi-

broblasts [148]. These observations suggest that

LRRK2 might be responsible for mitochondria

homeostasis, possibly via DLP1-dependent, mitochon-

drial quality control. However, it remains to be deter-

mined whether this truly acts as a primary pathogenic

event in LRRK2-PD, or if mitochondrial damage hap-

pens just as a secondary consequence of LRRK2-

induced toxicity.

The same causative hierarchy is yet to be determined

for the association of LRRK2 with reactive oxygen

species (ROS). Elevated ROS has been implicated as a

pathological feature of PD; WT-LRRK2 may be neu-

roprotective, attenuating H2O2-induced cell-death in

HEK293 and SH-SY5Y cells [149], whereas iPS cells

carrying the G2019S mutation were found to be more

sensitive to H2O2 exposure with increased caspase 3

activation and cell death [150]. Similarly, mitochon-

drial dysfunction has been linked to increased ROS

production in LRRK2 mutant cells [147].

Several mechanisms have been proposed to control

the link between increased vulnerability to ROS and
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LRRK2 neurotoxicity. For example, increased kinase-

dependent interactions were shown between LRRK2

and two of its hypothetical substrates, DLP1 [147] and

peroxiredoxin 3 (PRDX3) [151]. However, increased

vulnerability to ROS was also described after overex-

pression of mutations outside the kinase domain as

well as with kinase dead mutations in Caenorhabd-

itis elegans [152], again suggesting that the molecular

function of LRRK2 is likely to be governed by a deli-

cate balance between kinase and GTPase activities.

More recently, studies from our laboratory have

shown that oxidative stress caused by arsenite led to

altered biochemical properties of LRRK2 protein.

Arsenite-induced stress caused LRRK2 self-associa-

tion, inhibited its kinase activity, abrogated the GTP

binding and translocated LRRK2 into centrosomes

[66]. In the context of exogenous stress and LRRK2

properties, it will be important to study other relevant

PD stressors in different cellular phenotypes.

LRRK2 and the immune system

Despite LRRK2 having ubiquitous expression, sub-

stantial levels of LRRK2 protein and mRNA are pres-

ent in peripheral blood mononuclear cells, lymph

nodes, spleen [153] and primary microglia [154]. There

is no definitive description of LRRK2 function in

immune cell lineages and how this may contribute to

disease pathogenesis. It has been proposed that within

the immune system, LRRK2 may be involved in the

activation and maturation of immune cells [155], in

controlling the radical burst against pathogens in mac-

rophages [156], and in modulating neuroinflammation

through cytokine signalling [157,158]. A more detailed

link between LRRK2 and neuroinflammation in PD

has been discussed recently by Greggio and colleagues

[159].

The manifestation of these very specific functions of

LRRK2 within the immune system opens up the

intriguing hypothesis that LRRK2 may play different

roles within different cell types and tissues. This sce-

nario could be explained only by the presence of

molecular mechanisms allowing the same LRRK2 pro-

tein to behave differently in different tissues; those

mechanisms may be based on cell-type-specific

LRRK2 differential splicing, or on tissue-specific

expression of LRRK2 activators, substrates and part-

ners. Little is known about LRRK2 splicing and it

may be reasonable to suppose that different cell types

express different LRRK2 isoforms potentially involved

in different cellular functions. The first study per-

formed in mice showed indeed a differential expression

of two splicing variants of LRRK2 in primary

neurons, astrocytes and microglia [160], but more

investigations are required.

Different cell lineages may express different LRRK2

partners able to specifically regulate LRRK2 levels

and phosphorylation; features that are supposed to be

linked with LRRK2 activation/repression. This

assumption was demonstrated by the observation that

LRRK2 expression and activity can be modulated via

immune-cell-specific signalling pathways (Fig. 3). For

example, LRRK2 expression can be induced in periph-

eral blood mononuclear cells by interferon-c [156,161];

or in monocytes after triggering their maturation to

dendritic cells and macrophages [155]. It was also dem-

onstrated that in a macrophagic cell line (RAW264.7)

and a microglial cell line (BV2), stimulation of toll-like

receptors 2 and 4 (TLR2, TLR4) was able to increase

phosphorylation of LRRK2 and induce its recruitment

to membranes [67,109]. Finally, toll-like receptor 4

stimulation was able to increase LRRK2 expression

and phosphorylation in primary rat microglia [158].

LRRK2 was described as a negative regulator of

nuclear factor of activated T cells (NFAT), a protein

involved in transcriptional regulation in T cells, mac-

rophages, dendritic cells and neutrophils [162]; rein-

forcing the hypothesis that LRRK2 may have a

precise role in the immune system because of the pecu-

liar interaction partners through which it can exert tis-

sue-specific functions. The pathological implications of

these observations are intriguing in two ways. First,

this enforces the relevance of astrocytes and microglia

Fig. 3. Implication of LRRK2 in immune-specific functions. The

cartoon summarizes the LRRK2-specific events that have been

described to occur in cells from the immune system.
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in PD alongside with neurons. Indeed, activated mi-

croglia and monocytes, as well as increased cytokine

levels, were reported in PD brains [26]. Second, a puta-

tive role of LRRK2 in the regulation of the immune

response may justify the genetic association of LRRK2

with the susceptibility to inflammatory bowel disorder

[10] and leprosy [11] other than with PD.

LRRK2 kinase inhibition: therapeutic
potential

The fact that LRRK2-PD has an almost indistinguish-

able pathological phenotype from sporadic PD and the

presence of a druggable kinase activity within LRRK2

were sufficient reasons for researchers to look at this

protein as a potential target for a neuroprotective

treatment in PD. Most notably, the development of

selective pharmacological inhibitors of LRRK2 kinase

activity is an active area of research with at least six

potential LRRK2 inhibitors described in the literature

and many leading pharmaceutical companies working

on LRRK2 research programmes (see Ref. [163] for a

review). Although some of the earlier inhibitors had

rather limited use because of their nonselective effects

in cells and their inability to cross the blood–brain
barrier [164,165], the development of LRRK2-IN-1

[166] provided the first step towards a pharmacological

tool to define the biological role of LRRK2, at least in

cell models. On the flip side, LRRK2-IN-1 is not brain

penetrant and also has inhibitory effects on ERK5

[161], a critical enzyme and therefore ruling out its use-

fulness in clinical settings. Furthermore, it has recently

been demonstrated that LRRK2-IN-1 exhibits signifi-

cant off-target effects, independently of LRRK2,

including the inhibition of tumour necrosis fac-

tor alpha in astrocytes and increased neurite branching

and length in neurons [167]; perceived pathways of

LRRK2 pathology. Not only does this highlight the

problematic use of LRRK2-IN-1 when investigating

LRRK2 function, but also negative off-target effects

in a therapeutic context.

Following the initial screening for LRRK2 inhibitor

compounds, more brain-penetrant LRRK2-specific

inhibitors were developed soon thereafter. The com-

pound HG-10-102-01(4) showed selective inhibition of

WT and G2019S-LRRK2 at micromolar concentra-

tions in mouse brain and also inhibited Ser910/Ser935

phosphorylation [168]. The compound GSK2578215A

[169] was highly selective for LRRK2 kinase inhibition

when compared with more than 450 other kinases

tested. However, both these compounds have limited

pharmacokinetic properties that exclude these from

testing in clinical trials in humans.

Based on the structure of the HG-10-102-01(4) com-

pound, two further compounds were developed

recently; the GNE-0877 and GNE-9605 [170]. Both

these compounds demonstrated high selectivity,

potency, brain penetrance and good metabolic clear-

ance and stability when tested in vivo in rat models

expressing human LRRK2 (see Ref. [171] for a

review). The improved pharmacokinetic profile sup-

ported the hypothesis that these compounds can be

safely tested in higher order animals and could poten-

tially be entered into the preliminary stages of drug

screening.

Clearly, the developments in identifying LRRK2

kinase inhibitors and a potential to treat PD have now

entered an exciting phase but should be viewed with

cautious optimism. A recent report demonstrated

abnormal lung, kidney and liver pathology in LRRK2

knockout rats compared with rats expressing physio-

logical levels of LRRK2 [172]. Crohn’s T2397M-

mutant LRRK2 patients have reportedly lower levels

of LRRK2 protein activity within their immune cells

[162], suggesting that one harmful side effect of a com-

plete inhibition of LRRK2 as a treatment for PD

could be the development of intestinal-immune dis-

eases. What would be necessary now is the investiga-

tion of LRRK2 inhibitors in higher order mammalian

models including their long-term effects on the

immune cells and peripheral organs in order to assess

safety [173]. The efficacy of such a therapy will also

need to be demonstrated, and confirmation of the

physical substrates of LRRK2 will aid in designing

alternative activity assays for such inhibitors. As well,

a general consensus of a model for LRRK2-mediated

pathology will need to be agreed upon in order for a

validation criteria to be established [173]. Importantly,

for clinical use, the long-term benefits of LRRK2

inhibitor treatment should outweigh the advantages of

the already existing symptomatic treatments for PD

[174]. In this endeavour, it will be important to

broaden the search for LRRK2 inhibition to include

domains outside of the kinase domain [175, 176].

Concluding remarks

It is evident that there is still much to be understood

about the LRRK2 protein regarding both its physio-

logical and neurotoxic properties. A large variety of

functions have been associated with LRRK2, both in

terms of its physiological and cellular roles, and its

pathological role during neurodegeneration (Fig. 4).

These constitute an intricate network of LRRK2 puta-

tive functions making it central to two recent bioinfor-

matics articles that have analysed LRRK2 interactome
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by means of protein–protein interaction databases and

repositories of cellular pathways [177,178]. Instead of

a clarifying mechanism of LRRK2-PD, this wide range

of implicated functions makes interpreting LRRK20s
role in disease even more challenging. Many questions

are still unanswered. This is, in part, due to the com-

plex protein structural domains of LRRK2, as well as

the variety of models used in LRRK2 research. What

needs to be resolved now is the ability to distinguish

between LRRK2 physiological functions and those

that are acquired during pathology, and to discrimi-

nate between primary and secondary pathophysiologi-

cal events.

It is still unknown whether LRRK2 may interpret

different roles in different cell types, thus giving origin

to cell-specific phenotypes; in light of this, LRRK2

functions may be tissue specific, thus giving an expla-

nation for the plethora of activities described up to

now in diverse model systems (Fig. 4). Analysis of

LRRK2 in different cell types is of extreme interest, as

is the investigation of different LRRK2 isoforms in

different brain regions, as recently shown by Trabzuni

et al. [179] in control brains. This, together with fur-

ther studies of LRRK2-related biology associated with

ROS and PD related toxins, phosphatases and kinases

that modulate LRRK2 biology, should lead to

increased understanding on LRRK2 function and dys-

function.

It will be crucial for future research on LRRK2 to

consider the early events in neurodegeneration, as

LRRK2 genetic penetrance varies between 30% and

80% depending on age. Although the loss of dopami-

nergic neurons is a key pathological characteristic of

PD, it is preceded by many other dysregulations,

which occur prior to the development of motor symp-

toms. It is the mechanism of LRRK2 associated with

these events that needs to be uncovered. For example,

LRRK2 has been associated with Wnt signalling path-

ways [76], which are essential for the acute regulation

of synaptic function; a function that is dysregulated in

the premotor symptom stages of rodent models of PD

[180]. From this prospective, the involvement of

LRRK2 in Wnt signalling is an exciting possibility

that may give a reason for the alteration in gene

expression, as well as disruption of vesicle trafficking

[181], which are implicated in PD. Another interesting

connection is between LRRK2 and the autophagy/

lysosomal/Golgi network, because alteration of the

proteolytic balance within the cell may be the reason

for the build-up of toxic aggregates of amyloidogenic

a-synuclein, as implicated in PD. Indeed, the majority

of LRRK2 mutation cases show an abnormal accu-

mulation of a-synuclein-positive Lewy bodies [182],

although it is unclear which a-synuclein species is

more relevant in G2019S pathology [183]. Identifying

signalling molecules that regulate the normal and

Fig. 4. Implication of LRRK2 in cellular functions. The cartoon represents the cellular processes (red boxes) that have been associated with

LRRK2 function in physiology and/or disease. The data are from a multitude of experiments run by laboratories across the world over the

past decade and are based on different model systems and experimental approaches. It is not possible to describe a hierarchy among these

processes, or score them based on reliability. More investigations are needed to determine which of these processes are directly controlled

by LRRK2 and which appear to be LRRK2 regulated or whether they are just consequences of other LRRK2 primary functions. It remains to

be determined if all of these functions co-occur in a single cell type or whether LRRK2 orchestrate different, specific functions in different

cell types.
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pathophysiological functions of LRRK2 is a critical

unmet need for developing novel therapies and the

choice of the most relevant disease models will be criti-

cal in this endeavour.

Finally, it is important that all progress in LRRK2

research is interpreted carefully. The development of

LRRK2 kinase inhibitors gives us cause for optimism

for potential treatment for PD, but clearly the effects

of inhibiting kinase activity should be gauged in the

context of the entire LRRK2 protein.
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